ON INVARIANT SETS UNDER THE DOUBLING MAP

M. R. HERMAN

Let $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$, $f(x) = 2x \mod 1$. For $x \in \mathbb{R}$ we note $||x|| = \inf_{p \in \mathbb{Z}} |x+p|$; $||\cdot||$ defines a group metric on \mathbb{T}^1 , i.e. satisfies ||-x|| = ||x|| and $||x+y|| \le ||x|| + ||y||$, for x and y in \mathbb{T}^1 .

Proposition (Veech(?), Douady and al. (?)). Let $K \subset \mathbb{T}^1$ be compact invariant by f, (i.e. f(K) = K) such that $f_{|K} = g$ is a homeomorphism; then K is finite.

Proof. g^{-1} is uniformly continous: there exists $\delta > 0$ such that $||x - y|| \leq \delta$, $x, y \in K$ implies $||g^{-1}(x) - g^{-1}(y)|| \leq 1/10$. We can and will suppose that $\delta \leq 1/10$. If $||x - y|| < \delta$ then $||g^{-1}(x) - g^{-1}(y)|| \leq \delta/2$. Indeed, $g^{-1}(x) - g^{-1}(y) = \frac{1}{2}(x - y) + \varepsilon/2 \mod 1$ where $\varepsilon = 0, 1$; but as $||g^{-1}(x) - g^{-1}(y)|| \leq 1/10$ and $||\frac{1}{2}(x - y)|| = \frac{1}{2}||x - y||$, we have $\varepsilon = 0$. Hence, when $||x - y|| \leq \delta$,

(0.1)
$$||g^{-j}(x) - g^{-j}(y)|| \le \delta/2^j, \ j = 1, \dots$$

The sequence $(g^{-j})_{j\geq 1}$ is equicontinuous by Ascoli's theorem: we can find a sequence $0 < j_0 < j_1 < \cdots < j_p < j_{p+1} < \cdots$ such that $(g^{-j_p})_{p\geq 0}$ tends uniformly to a continuous map $\hat{g}: K \to K$ when $p \to \infty$. We need the following lemma:

Lemma. \hat{g} is surjective.

Proof. Given any $x \in K$, let $x_{j_p} = g^{j_p}(x)$. We have $g^{-j_p}(x_{j_p}) = x$. We can find a convergent subsequence of $(x_{j_p})_{p\geq 0}$ converging to $z \in K$. We have $\hat{g}(z) = x$ which thus shows that \hat{g} is surjective.

Equation (??) implies that \hat{g} is locally constant and therefore by compactness of K, \hat{g} takes a finite number of values. As \hat{g} is surjective, K is finite.

¹Ce document, extrait des archives de Michel Herman, a été préparé par R. Krikorian. Le titre a été rajouté par le rédacteur.