An example of non convergence of Birkhoff sums ${ }^{1}$

Michael Robert HERMAN

We consider the 2-torus \mathbb{T}^{2} and a diffeomorphism $f:(\theta, r) \mapsto(\theta+\ell(r), g(r))$, where ℓ is a C^{∞} function and g is the projective transformation $g(r)=\frac{r}{r+1}$. We suppose $\ell(r)=r$ for r small, hence, in a neighbourhood of $\mathbb{T}^{1} \times\{0\}$ we have

$$
f(\theta, r)=\left(\theta+r, \frac{r}{r+1}\right) .
$$

Let φ be a non-negative C^{∞} function on \mathbb{T}^{2}, such that:

$$
\begin{aligned}
& \varphi(x)=1, \text { if } x \in B_{1 / 20} \\
& \varphi(x)=0, \text { if } x \notin B_{1 / 10},
\end{aligned}
$$

where B_{R} is the Euclidian ball of radius R. Let $S_{n}(\theta, r)=\frac{1}{n} \sum_{0}^{n-1} \varphi \circ f^{k}(\theta, r)$ denote the nth Birkhoff sum.

Proposition. For $r \neq 0$, the sequence $S_{n}(\theta, r)$ does not have a limit when n goes to $+\infty$.
Proof. As $r \neq 0$, we have $0<g^{n}(r)<1 / 20$ for large n. Therefore, it is enough to prove the proposition when $0<r<1 / 20$. Let $f^{n}(\theta, r)=\left(\theta_{n}, r_{n}\right)$. We have

$$
\begin{equation*}
r_{n}=\frac{r}{1+n r}=\frac{1}{n}-\frac{1}{r n^{2}}+O\left(\frac{1}{n^{3}}\right) \tag{1}
\end{equation*}
$$

and $\theta_{n}=\theta_{0}+r_{0}+r_{1}+\cdots+r_{n-1}$. As $\sum_{0}^{n-1} r_{j} \rightarrow \infty$ and $r_{n} \rightarrow 0$ when n goes to ∞, the sequence $\left(\theta_{n}, r_{n}\right)$ passes through $B_{1 / 20}$ and $\mathbb{T}^{2} \backslash B_{1 / 10}$ infinitely often.
Given $N \gg 1$, let $n_{1}>N$ be the first integer such that $\left(\theta_{n_{1}}, r_{n_{1}}\right) \in B_{1 / 20}$ and $\left(\theta_{n_{1}-1}, r_{n_{1}-1}\right) \notin B_{1 / 20}$; let $n_{1}^{\prime}>n_{1}$ be the first integer such that $\left(\theta_{n_{1}^{\prime}}, r_{n_{1}^{\prime}}\right) \in B_{1 / 20}$ and $\left(\theta_{n_{1}^{\prime}+1}, r_{n_{1}^{\prime}+1}\right) \notin B_{1 / 20}$. We define similarly integers $n_{2}^{\prime}>n_{2} \geq N$ for the set $\mathbb{T}^{2} \backslash B_{1 / 10}$. We have

$$
\begin{aligned}
& \sum_{n_{1}}^{n_{1}^{\prime}} r_{j}=\frac{1}{10}+O\left(\frac{1}{n_{1}}\right) \\
& \sum_{n_{2}}^{n_{2}^{\prime}} r_{j}=\frac{4}{5}+O\left(\frac{1}{n_{2}}\right)
\end{aligned}
$$

[^0]and hence, using (1),
(2) $\frac{n_{1}^{\prime}}{n_{1}}=e^{1 / 10}+O\left(\frac{1}{n_{1}}\right)$,
(3)
$$
\frac{n_{2}^{\prime}}{n_{2}}=e^{4 / 5}+O\left(\frac{1}{n_{2}}\right)
$$

Therefore we have

$$
\begin{align*}
& S_{n_{1}^{\prime}}\left(\theta_{0}, r_{0}\right)=e^{-1 / 10} S_{n_{1}}\left(\theta_{0}, r_{0}\right)+\left(1-e^{-1 / 10}\right)+O\left(\frac{1}{n_{1}}\right), \tag{4}\\
& \text { (5) } \quad S_{n_{2}^{\prime}}\left(\theta_{0}, r_{0}\right)=e^{-4 / 5} S_{n_{2}}\left(\theta_{0}, r_{0}\right)+O\left(\frac{1}{n_{2}}\right) .
\end{align*}
$$

Assume that the sequence $S_{n}(\theta, r)$ converges to a limit a. From (4) and (5), we have

$$
a=e^{-1 / 10} a+1-e^{-1 / 10}, a=e^{-4 / 5} a
$$

These equations have no common solution. The proposition follows.

[^0]: ${ }^{1}$ Ce document extrait des archives de Michel Herman a été préparé par F. Laudenbach et J.-C. Yoccoz.

