MICHAEL ROBERT HERMAN

We consider the 2-torus \mathbb{T}^2 and a diffeomorphism $f : (\theta, r) \mapsto (\theta + \ell(r), g(r))$, where ℓ is a C^{∞} function and g is the projective transformation $g(r) = \frac{r}{r+1}$. We suppose $\ell(r) = r$ for r small, hence, in a neighbourhood of $\mathbb{T}^1 \times \{0\}$ we have

$$f(\theta, r) = \left(\theta + r, \frac{r}{r+1}\right)$$

Let φ be a non-negative C^{∞} function on \mathbb{T}^2 , such that:

$$\varphi(x) = 1$$
, if $x \in B_{1/20}$,
 $\varphi(x) = 0$, if $x \notin B_{1/10}$,

where B_R is the Euclidian ball of radius R. Let $S_n(\theta, r) = \frac{1}{n} \sum_{0}^{n-1} \varphi \circ f^k(\theta, r)$ denote the *n*th Birkhoff sum.

Proposition. For $r \neq 0$, the sequence $S_n(\theta, r)$ does not have a limit when n goes to $+\infty$.

Proof. As $r \neq 0$, we have $0 < g^n(r) < 1/20$ for large *n*. Therefore, it is enough to prove the proposition when 0 < r < 1/20. Let $f^n(\theta, r) = (\theta_n, r_n)$. We have

(1)
$$r_n = \frac{r}{1+nr} = \frac{1}{n} - \frac{1}{rn^2} + O\left(\frac{1}{n^3}\right),$$

and $\theta_n = \theta_0 + r_0 + r_1 + \dots + r_{n-1}$. As $\sum_{i=0}^{n-1} r_i \to \infty$ and $r_n \to 0$ when n goes to ∞ , the sequence (θ_n, r_n) passes through $B_{1/20}$ and $\mathbb{T}^2 \setminus B_{1/10}$ infinitely often.

Given $N \gg 1$, let $n_1 > N$ be the first integer such that $(\theta_{n_1}, r_{n_1}) \in B_{1/20}$ and $(\theta_{n_1-1}, r_{n_1-1}) \notin B_{1/20}$; let $n'_1 > n_1$ be the first integer such that $(\theta_{n'_1}, r_{n'_1}) \in B_{1/20}$ and $(\theta_{n'_1+1}, r_{n'_1+1}) \notin B_{1/20}$. We define similarly integers $n'_2 > n_2 \ge N$ for the set $\mathbb{T}^2 \setminus B_{1/10}$. We have

$$\sum_{n_1}^{n_1'} r_j = \frac{1}{10} + O\left(\frac{1}{n_1}\right),$$
$$\sum_{n_2}^{n_2'} r_j = \frac{4}{5} + O\left(\frac{1}{n_2}\right),$$

¹Ce document extrait des archives de Michel Herman a été préparé par F. Laudenbach et J.-C. Yoccoz.

and hence, using (1),

(2)
$$\frac{n'_1}{n_1} = e^{1/10} + O\left(\frac{1}{n_1}\right),$$

(3) $\frac{n'_2}{n_2} = e^{4/5} + O\left(\frac{1}{n_2}\right).$

Therefore we have

(4)
$$S_{n_1'}(\theta_0, r_0) = e^{-1/10} S_{n_1}(\theta_0, r_0) + (1 - e^{-1/10}) + O\left(\frac{1}{n_1}\right),$$

(5)
$$S_{n_2'}(\theta_0, r_0) = e^{-4/5} S_{n_2}(\theta_0, r_0) + O\left(\frac{1}{n_2}\right).$$

Assume that the sequence $S_n(\theta, r)$ converges to a limit a. From (4) and (5), we have $a = e^{-1/10}a + 1 - e^{-1/10}$, $a = e^{-4/5}a$.

These equations have no common solution. The proposition follows. \Box