NON TOPOLOGICAL CONJUGACY OF SKEW PRODUCTS IN $S U(2)$

M. R. HERMAN
VERY PRELIMINARY VERSION

0. Introduction

We fix $\alpha \in \mathbb{R}-\mathbb{Q}$. Given $A \in C^{\infty}\left(\mathbb{S}^{1}, S U(2)\right)$ then $G_{\alpha, A}=r_{\alpha} \times A$ acts naturally on $\mathbb{S}^{1} \times \mathbb{S}^{3}\left(\mathbb{S}^{3} \cong S U(2)\right)$ where $r_{\alpha}: z \mapsto e^{2 \pi i \alpha} z$.

Let
$V_{\alpha}=\left\{A \in C^{\infty}\left(\mathbb{S}^{1}, S U(2)\right),\left(G_{\alpha, A}^{n}\right)_{n \in \mathbb{Z}}\right.$ acting on $\mathbb{S}^{1} \times \mathbb{S}^{3}$ is not equicontinuous $\}$.
We propose to show that the closure of V_{α} for the C^{∞} topology contains $S U(2)\left(B \in S U(2) \subset C^{\infty}\left(\mathbb{S}^{1}, S U(2)\right)\right)$ is identified to the constant map $\left.x \in \mathbb{S}^{1} \rightarrow B \in S U(2)\right)$.

Let us note for that every $A \in V_{\alpha}, G_{\alpha, A}$ is not C^{0} conjugated on $\mathbb{S}^{1} \times S U(2)$ to action of $R_{\alpha} \times B$ on $\mathbb{S}^{1} \times S U(2)$ for any $B \in S U(2)$.

1. Notations

1.1. $\mathbb{S}^{1}=\{z \in \mathbb{C},|z|=1\}, S U(2)=\left\{\left(\begin{array}{cc}a & -\bar{b} \\ b & \bar{a}\end{array}\right), a, b \in \mathbb{C},|a|^{2}+|b|^{2}=\right.$ $1\}$.

$$
\begin{aligned}
& \text { If } A \in S U(2), A=\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right) \text { then } A^{-1}=\left(\begin{array}{cc}
\bar{a} & \bar{b} \\
-b & a
\end{array}\right)={ }^{t} \bar{A} . \\
& C^{\infty}\left(\mathbb{S}^{1}, S U(2)\right)=\left\{A: \mathbb{S}^{1} \rightarrow S U(2) \mid \text { is a map of class } C^{\infty}\right\} .
\end{aligned}
$$

If $\alpha, \beta \in \mathbb{R}, \lambda_{\alpha}=e^{2 \pi i \alpha}, \lambda_{\beta}=e^{2 \pi i \beta}, r_{\alpha}: z \rightarrow e^{2 \pi i \alpha} z$.
1.2. On $G=\mathbb{S}^{1} \times C^{\infty}\left(\mathbb{S}^{1}, S U(2)\right)$ we put the group law

$$
\left(\lambda_{\alpha}, A\right) \cdot\left(\lambda_{\beta}, B\right)=\left(\lambda_{\alpha+\beta}, A \circ r_{\alpha} B\right) .
$$

[^0]G acts on $\mathbb{S}^{1} \times \mathbb{S}^{3} \subset \mathbb{S}^{1} \times \mathbb{C}^{2}, \mathbb{S}^{3}=\left\{\left(z_{1}, z_{2}\right),\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}, g=$ $\left(\lambda_{\alpha}, A\right) \in G$ by
$$
\text { (1.3) } \quad(z, y) \rightarrow\left(r_{\alpha}(z), A(z) y\right)=g \cdot(z, y)
$$
and if $g_{1}, g_{2} \in G,\left(g_{2} g_{1}\right)(z, y)=\left(g_{2}\left(g_{1}(z, y)\right)\right.$ (i.e. $\mathbb{S}^{1} \times \mathbb{S}^{3}$ is a G-space).
Let $G_{0}=\left\{(1, A), A \in C^{\infty}\left(\mathbb{S}^{1}, S U(2)\right)\right\}$. G_{0} is a normal subgroup of G.
1.3 We put on G the C^{∞} topology. We denote by d_{∞} a metric on G such that d_{∞} defines the C^{∞} topology on G and G is complete for d_{∞}. G therefore is a Baire space as well as all its closed subsets. For the C^{∞} topology G is a topological group, and G_{0} is closed in $G . G$ is a Polish topological group.
2. Let $\alpha \in \mathbb{R}$ - \mathbb{Q}. If $x \in \mathbb{R}$ we denote $\|x\|_{a}=\inf _{p \in \mathbb{Z}}|x+p|$ (group metric on $\mathbb{R} / \mathbb{Z})$.

Let $\psi(n)=e^{-e^{n}}, n \in \mathbb{N}$.
We fix $\alpha \in \mathbb{R}-\mathbb{Q}$.
Let $l(\beta)=\inf _{\substack{n \geq 1 \\ n \in \mathbb{N}}}\|n \alpha+2 \beta\|_{a}(\psi(n))^{-1}$.
2.1.Lemma. $l^{-1}(0)$ a dense G_{δ} of \mathbb{R}.

Proof. $\beta \rightarrow l(\beta) \in \mathbb{R}_{+}=\{x \in \mathbb{R}, x \geq 0\}$ is upper semicontinuous, hence $l^{-1}(0)$ is a G_{δ}. It is dense since it contains $\{2 n \alpha+p, p \in \mathbb{Z},-n \in$ $\left.\mathbb{N}^{*}\right\}$.
2.2 The set $G_{\alpha}=l^{-1}(0)-\left\{\frac{n \alpha}{2}+\frac{p}{q}, n \in \mathbb{Z}, p \in \mathbb{Z}, q \in \mathbb{N}^{*}\right\}$ is also a dense G_{δ} of \mathbb{R}. If $\beta \in G_{\alpha}, 2 \beta+n \alpha \notin \mathbb{Q}$ for every $n \in \mathbb{Z}$.
3. Let $\alpha \in \mathbb{R}-\mathbb{Q}$ fixed. We define

$$
O_{\alpha}^{\infty}\left(\mathbb{S}^{1}\right)=\left\{\left.g^{-1}\left(\lambda_{\alpha},\left(\begin{array}{cc}
\lambda_{\beta} & 0 \\
0 & \bar{\lambda}_{\beta}
\end{array}\right)\right) g \right\rvert\, \beta \in \mathbb{R}, g \in G_{0}\right\}
$$

We denote by $\bar{O}_{\alpha}^{\infty}$ the closure for the C^{∞} topology of O_{α}^{∞} in G. $\bar{O}_{\alpha}^{\infty}$ with the induced C^{∞} topology is a Baire space (cf. 1.3).
4. Let $\delta=\left(\delta_{1}, \delta_{2}\right) \in \mathbb{S}^{3}$, (i.e. $\left|\delta_{1}\right|^{2}+\left|\delta_{2}\right|^{2}=1$)

$$
A_{\delta, n}(z)=\left(\begin{array}{cc}
\delta_{1} & -\bar{\delta}_{2} \bar{z}^{n} \\
\delta_{2} z^{n} & \bar{\delta}_{1}
\end{array}\right) \in S U(2) .
$$

We have

$$
\begin{gather*}
A_{\delta, n}^{-1} \circ r_{\alpha}(z)=\left(\begin{array}{cc}
\bar{\delta}_{1} & \bar{\delta}_{2} \bar{z}^{n} \bar{\lambda}_{\alpha}^{n} \\
-\delta_{2} z^{n} \lambda_{\alpha}^{n} & \delta_{1}
\end{array}\right) \\
\left(\begin{array}{cc}
A_{\delta, n}^{-1} \circ r_{\alpha}\left(\begin{array}{cc}
\lambda_{\beta} & 0 \\
0 & \bar{\lambda}_{\beta}
\end{array}\right) A_{\delta, n}
\end{array}\right)(z) \equiv C_{\delta, n, \beta}(z)= \tag{4.1}\\
\left(\begin{array}{cc}
\bar{\delta}_{1} & \bar{\delta}_{2} \bar{z}^{n} \bar{\lambda}_{\alpha}^{n} \\
-\delta_{2} z^{n} \lambda_{\alpha}^{n} & \delta_{1}
\end{array}\right)\left(\begin{array}{cc}
\lambda_{\beta} \delta_{1} & -\lambda_{\beta} \bar{\delta}_{2} \bar{z}^{n} \\
\bar{\lambda}_{\beta}^{n} \delta_{2} z^{n} & \bar{\lambda}_{\beta} \bar{\delta}_{1}
\end{array}\right)= \\
\left(\begin{array}{cc}
\lambda_{\beta} \delta_{1} \bar{\delta}_{1}+\delta_{2} \bar{\delta}_{2} \bar{\lambda}_{\alpha}^{n} \bar{\lambda}_{\beta} & \bar{\delta}_{\delta} \bar{\delta}_{2} \bar{z}^{n}\left[\bar{\lambda}_{a}^{n} \bar{\lambda}_{\beta}-\lambda_{\beta}\right] \\
\delta_{1} \delta_{2} z^{n}\left[-\lambda_{\beta} \lambda_{a}^{n}+\bar{\lambda}_{\beta}\right] & \bar{\lambda}_{\beta} \bar{\delta}_{1} \delta_{1}+\delta_{2} \bar{\delta}_{2} \lambda_{\alpha}^{n} \lambda_{\beta}
\end{array}\right)
\end{gather*}
$$

since $\delta_{2} \bar{\delta}_{2}=\left(1-\delta_{1} \bar{\delta}_{1}\right)$

$$
C_{\delta, n, \beta}(z)=\left(\begin{array}{cc}
{\left[-\bar{\lambda}_{\alpha}^{n} \bar{\lambda}_{\beta}+\lambda_{\beta}\right] \delta_{1} \bar{\delta}_{1}+\bar{\lambda}_{\alpha}^{n} \bar{\lambda}_{\beta}} & \bar{\delta}_{1} \bar{\delta}_{2} \bar{z}^{n}\left[\bar{\lambda}_{\alpha}^{n} \bar{\lambda}_{\beta}-\lambda_{\beta}\right] \tag{4.2}\\
\delta_{1} \delta_{2} z^{n}\left[-\lambda_{\beta} \lambda_{\alpha}^{n}+\bar{\lambda}_{\beta}\right] & \lambda_{\alpha}^{n} \lambda_{\beta}+\delta_{1} \bar{\delta}_{1}\left[\lambda_{\beta}-\lambda_{\alpha}^{n} \lambda_{\beta}\right]
\end{array}\right)
$$

from (4.2) we conclude

$$
\begin{aligned}
& A_{\delta, n}^{-1} \circ r_{p \alpha}\left(\begin{array}{cc}
\lambda_{\beta}^{n} & 0 \\
0 & \bar{\lambda}_{\beta}^{n}
\end{array}\right) A_{\delta, n}= \\
& \\
& \qquad\left(\begin{array}{cc}
\bar{\delta}_{1} \delta_{1}\left[\lambda_{p \beta}-\lambda_{-p n \alpha-p \beta}\right]+\bar{\lambda}_{\alpha}^{n \beta} \bar{\lambda}_{\beta}^{p} & \bar{\delta}_{1} \bar{\delta}_{2} z^{n}\left[\bar{\lambda}_{\alpha}^{n{ }_{2}} \bar{\lambda}_{\beta}^{p}-\lambda_{\beta}^{p}\right] \\
\delta_{1} \delta_{2} z^{n}\left[-\lambda_{p \beta+n p \alpha}+\lambda_{-p \beta}\right] & \lambda_{\alpha}^{n p} \lambda_{\beta}^{p}+\delta_{1} \bar{\delta}_{1}\left[\bar{\lambda}_{\beta}^{p}-\lambda_{\alpha}^{p} \lambda_{\beta}^{p}\right]
\end{array}\right)
\end{aligned}
$$

5. We choose $\delta=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. We note $h_{n}=\left(1, A_{\delta, n}\right) \in G_{0}$. We consider

$$
c_{n, \alpha, \beta}=h_{n}^{-1}\left(\lambda_{\alpha},\left(\begin{array}{cc}
\lambda_{\beta} & 0 \\
0 & \bar{\lambda}_{\beta}
\end{array}\right)\right) h_{n} \in O_{\alpha}^{\infty}
$$

We write $c_{n, \alpha, \beta}=\left(\lambda_{\alpha}, C_{n, \beta}\right)$. We suppose that $\beta \in G_{\alpha}$. Using 2.1 and 2.2 we can find a sequence $n_{j} \rightarrow \infty$ such that

$$
\left|\bar{\lambda}_{\alpha}^{n_{j}} \bar{\lambda}_{\beta}^{2}-1\right| \leq C\left\|n_{j} \alpha+2 \beta\right\|_{a} \leq C e^{-e^{n_{j}}}
$$

(C is a universal constant)
We conclude from (4.2)
5.1 Proposition $1 \forall \beta \in G_{\alpha}, \exists n_{j} \rightarrow \infty$ such that

$$
c_{n_{j}, \alpha, \beta} \rightarrow\left(\lambda_{\alpha},\left(\begin{array}{cc}
\lambda_{\beta} & 0 \\
0 & \bar{\lambda}_{\beta}
\end{array}\right)\right)
$$

in the C^{∞} topology.
We write for $p \in \mathbb{N}$

$$
c_{n_{j}, \alpha, \beta}^{p}=\left(\lambda_{p \alpha}, C_{n_{j}, \beta}^{(p)}\right)=h_{n}^{-1}\left(\lambda_{p \alpha},\left(\begin{array}{cc}
\lambda_{\beta}^{p} & 0 \\
0 & \bar{\lambda}_{\beta}^{p}
\end{array}\right) h_{n} .\right.
$$

We suppose that $\beta \in G_{\alpha}$. We have (cf. (4.3)) ${ }^{2}$

$$
\begin{equation*}
\sup _{p \geq 1}\left(\left\|C_{n_{j}, \beta}^{(p)}(1)\binom{1}{0}-C_{n_{j}, \beta}^{(p)}\left(e^{i \pi / n_{j}}\right)\binom{1}{0}\right\|=2\right. \tag{5.2}
\end{equation*}
$$

(This follows from the fact that

$$
\left\|C_{n_{j}, \beta}^{(p)}(1)\binom{1}{0}-C_{n_{j}, \beta}^{(p)}(z)\binom{1}{0}\right\|=\left|\lambda_{p n_{j} \alpha+2 p \beta}-1\right|\left|1-z^{n}\right| / 2
$$

and $\sup _{p \geq 1}\left|\lambda_{p\left(n_{j} \alpha+2 \beta\right)}-1\right|=2$ since $n_{j} \alpha+2 \beta \notin \mathbb{Q}$, when $\beta \in G_{\alpha}$ (see (2.2)).
6. Let $h=(1, \beta) \in G_{0}, \beta \in G_{\beta}$; then $F_{j}=h^{-1} C_{n_{j}, \alpha, \beta} h \rightarrow h^{-1}\left(\lambda_{\alpha},\left(\begin{array}{cc}\lambda_{\beta} & 0 \\ 0 & \bar{\lambda}_{\beta}\end{array}\right)\right) h=$ \hat{F} in the C^{∞} topology, where n_{j} is the sequence given by proposition 1.
6.1. Proposition 2. Given $h \in G_{0}, \beta \in G_{\alpha}$ and n_{j} the sequence given by proposition 1, let $F_{j}^{p}=\left(\lambda_{p \alpha}, Q_{j}^{(p)}\right), p \in \mathbb{N}^{*}$. We can find $y_{j}, y_{j}^{\prime} \in \mathbb{S}^{3}$ such that

$$
\text { (6.2) } \sup _{p \geq 1}\left\|Q_{j}^{(p)}(1) y_{j}-Q_{j}^{(p)}\left(e^{i \pi / n_{j}}\right) y_{j}^{\prime}\right\|>1
$$

and

$$
\text { (6.3) } \lim _{j \rightarrow \infty}\left\|y_{j}-y_{j}^{\prime}\right\|=0
$$

Proof. Let $y_{j}=B^{-1}(1)\binom{1}{0} \in \mathbb{S}^{3}, y_{j}^{\prime}=B^{-1}\left(e^{i \pi / n_{j}}\right)\binom{1}{0} \in \mathbb{S}^{3}$. Since $\theta \mapsto B^{-1}(\theta)$ is continuous $\left\|y_{j}-y_{j}^{\prime}\right\| \rightarrow 0$ when $j \rightarrow \infty$. We have

$$
\begin{aligned}
& \left\|Q_{j}^{(p)}(1) y_{j}-Q_{j}^{(p)}\left(e^{i \pi / n_{j}}\right) y_{j}^{\prime}\right\| \leq \\
& \left\|B^{-1}\left(\lambda_{p \alpha}\right) C_{n_{j}, \beta}^{(p)}(1)\binom{1}{0}-B^{-1}\left(\lambda_{p \alpha}\right) C_{n_{j}, \beta}^{(p)}\left(e^{i \pi / n_{j}}\right)\binom{1}{0}\right\|+ \\
& 2 \mid\left\|B^{-1}\left(\lambda_{p \alpha}\right)-B^{-1}\left(\lambda_{p \alpha} e^{i \pi / n_{j}}\right)\right\| \| \\
& =\left\|C_{n_{j}, \beta}^{(p)}(1)\binom{1}{0}-C_{n_{j}, \beta}^{(p)}\left(e^{i \pi / n_{j}}\right)\right\|+2\| \| B^{-1}\left(\lambda_{p \alpha}\right)-B^{-1}\left(\lambda_{p \alpha} e^{i \pi / n_{j}}\right)\| \| .
\end{aligned}
$$

Since $\theta \rightarrow B^{-1}(\theta)$ is continuous, the second term $\rightarrow 0$ when $j \rightarrow \infty$ and the proposition follows from 5.2.

[^1]6.4 Let us formulate the proposition in another way. We define the metric d on $\mathbb{S}^{1} \times \mathbb{S}^{3}$ by
$$
d\left((z, y),\left(z^{\prime}, y^{\prime}\right)\right)=\sup \left(\left|z-z^{\prime}\right|,\left\|y-y^{\prime}\right\|\right)
$$
where $(z, y),\left(z^{\prime}, y^{\prime}\right) \in \mathbb{S}^{1} \times \mathbb{S}^{3}$.
6.5 F_{j} acts on $\mathbb{S}^{1} \times \mathbb{S}^{3}$ by 1.3 and we can find $v_{j}=\left(1, y_{j}\right) v_{j}^{\prime}=\left(e^{i \pi / n_{j}}, y_{j}^{\prime}\right)$ such that $d\left(v_{j}, v_{j}^{\prime}\right) \rightarrow 0$ as $j \rightarrow \infty$ and
$$
\sup _{p \geq 1} d\left(F_{j}^{p}\left(v_{j}\right), F_{j}^{p}\left(v_{j}^{\prime}\right)\right)>1
$$
7. Given $\varepsilon>0$ we define the set
\[

$$
\begin{array}{r}
U_{\varepsilon}=\left\{F=\left(\lambda_{\alpha}, B\right) \in \bar{O}_{\alpha}^{\infty} \mid \exists v, v^{\prime} \in \mathbb{S}^{1} \times \mathbb{S}^{3} \text { such that } d\left(v, v^{\prime}\right) \leq \varepsilon\right. \text { and } \\
\left.\sup _{p \geq 1} d\left(F^{p}(v), F^{p}\left(v^{\prime}\right)\right)>1\right\}
\end{array}
$$
\]

7.1. Lemma. The set U_{ε} is open in $\bar{O}_{\alpha}^{\infty}$ for the C^{∞} topology. Proof.

$$
U_{\varepsilon}=\bigcup_{\substack{v, v^{\prime} \\ d\left(v, v^{\prime}\right) \leq \varepsilon}}\left\{F, \sup _{p \geq 1} d\left(F^{p}(v), F^{p}\left(v^{\prime}\right)\right)>1\right\}
$$

i.e. U_{ε} is the union of the sets $\left\{F, \sup _{p \geq 1} d\left(F^{p}(v), F^{p}\left(v^{\prime}\right)\right)>1, v, v^{\prime} \in\right.$ $\left.\mathbb{S}^{1} \times \mathbb{S}^{3}, d\left(v, v^{\prime}\right) \leq \varepsilon\right\}$; each set $\left\{F, \sup _{p \geq 1} d\left(F^{p}(v), F^{p}\left(v^{\prime}\right)\right)>1\right\}$ is open since G is a topological group and for fixed v, v^{\prime} and $p \in \mathbb{N}, F \in G \rightarrow$ $d\left(F^{p}(v), F^{p}\left(v^{\prime}\right)\right)$ is continuous; hence $F \mapsto \sup _{p \geq 1} d\left(F^{p}(v), F^{p}\left(v^{\prime}\right)\right)$ is lower semi continuous.
7.2. Proposition. For every $\varepsilon>0, U_{\varepsilon}$ is dense in $\bar{O}_{\alpha}^{\infty}$ for the C^{∞} topology.
Proof. It is enough to show \bar{U}_{ε} (the closure of U_{ε} in $\bar{O}_{\alpha}^{\infty}$) contains the following dense set of O_{α}^{∞}, for the C^{∞} topology on $\bar{O}_{\alpha}^{\infty}$:

$$
V=\left\{h^{-1}\left(\lambda_{\alpha},\left(\begin{array}{cc}
\lambda_{\beta} & 0 \\
0 & \bar{\lambda}_{\beta}
\end{array}\right) h, \beta \in G_{\alpha}, h \in G_{0}\right\} \subset O_{\alpha}^{\infty}\left(\mathbb{S}^{1}\right)\right.
$$

(G_{α} is dense in \mathbb{R} and $O_{\alpha}^{\infty}\left(\mathbb{S}^{1}\right)$ is dense in $\bar{O}_{\alpha}^{\infty}\left(\mathbb{S}^{1}\right)$ by definition of $\left.\bar{O}_{\alpha}^{\infty}\right)$. Given $\hat{F}=h^{-1}\left(\lambda_{\alpha},\left(\begin{array}{cc}\lambda_{\beta} & 0 \\ 0 & \bar{\lambda}_{\beta}\end{array}\right) h\right.$, by 6.5 we can find a sequence
$\left(F_{j}\right)_{j \in \mathbb{N}} \subset O_{\alpha}^{\infty}\left(\mathbb{S}^{1}\right), F_{j} \rightarrow \hat{F}$ in the C^{∞} topology, when $j \rightarrow \infty$ such that, when j is large enough, $F_{j} \in U_{\varepsilon}$.
8. Let $\varepsilon_{j}>0, \varepsilon_{j} \rightarrow 0$; by 7.1 and $7.2 K_{\alpha}=\bigcap_{j} U_{\varepsilon_{j}}$ is a dense G_{δ} of $\bar{O}_{\alpha}^{\infty}\left(\bar{O}_{\alpha}^{\infty}\right.$ is a Baire space for the C^{∞} topology) (everything is always for the C^{∞} topology !)

Theorem. Given $\alpha \in \mathbb{R}-\mathbb{Q}$, and $\beta \in \mathbb{R}$, we can find $H_{j}=\left(\lambda_{\alpha}, B_{j}\right) \in$ $\bar{O}_{\alpha}^{\infty}, j \in \mathbb{N}, H_{j} \rightarrow\left(\lambda_{\alpha},\left(\begin{array}{cc}\lambda_{\beta} & 0 \\ 0 & \bar{\lambda}_{\beta}\end{array}\right)\right)$ in the C^{∞} topology when $j \rightarrow \infty$ and for every j there does not exist a homeomorphism k of $\mathbb{S}^{1} \times \mathbb{S}^{3}$ that conjugates H_{j} acting on $\mathbb{S}^{1} \times \mathbb{S}^{3}$ to any linear map $\left(\lambda_{\alpha^{\prime}},\left(\begin{array}{cc}\lambda_{\beta^{\prime}} & 0 \\ 0 & \bar{\lambda}_{\beta^{\prime}}\end{array}\right)\right)$ acting on $\mathbb{S}^{1} \times \mathbb{S}^{3}, \alpha^{\prime}, \beta^{\prime} \in \mathbb{R}$.
Proof. If $H=\left(\lambda_{\alpha}, B\right) \in K_{\alpha} \subset \bar{O}_{\alpha}^{\infty}$ then $\forall \varepsilon_{j}>0 \exists v_{j}, v_{j}^{\prime} \in \mathbb{S}^{1} \times \mathbb{S}^{3}$, $d\left(v_{j}, v_{j}^{\prime}\right) \leq \varepsilon_{j}$ such that

$$
\sup _{p \geq 1} d\left(H^{p}\left(v_{j}\right), H^{p}\left(v_{j}^{\prime}\right)\right)>1 ;
$$

hence the sequence of diffeomorphisms $\left(H^{p}\right)_{p \in \mathbb{Z}}$ acting on $\mathbb{S}^{1} \times \mathbb{S}^{3}$ is not uniformly equicontinuous.

[^0]: ${ }^{1}$ Ce document, extrait des archives de Michel Herman, a été préparé par R . Krikorian.

[^1]: ${ }^{2}\left({ }^{*}\right)$ On \mathbb{C}^{2} we put the norm $\left\|\left(z_{1}, z_{2}\right)\right\|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} ;|\||\cdot|| \mid$ denotes the induced operator norm.

