NON TOPOLOGICAL CONJUGACY OF SKEW PRODUCTS IN SU(2)

M. R. HERMAN VERY PRELIMINARY VERSION

1

0. Introduction

We fix $\alpha \in \mathbb{R} - \mathbb{Q}$. Given $A \in C^{\infty}(\mathbb{S}^1, SU(2))$ then $G_{\alpha,A} = r_{\alpha} \times A$ acts naturally on $\mathbb{S}^1 \times \mathbb{S}^3$ ($\mathbb{S}^3 \cong SU(2)$) where $r_{\alpha} : z \mapsto e^{2\pi i \alpha} z$.

Let

 $V_{\alpha} = \{ A \in C^{\infty}(\mathbb{S}^1, SU(2)), (G^n_{\alpha, A})_{n \in \mathbb{Z}} \text{ acting on } \mathbb{S}^1 \times \mathbb{S}^3 \text{ is not equicontinuous} \}.$

We propose to show that the closure of V_{α} for the C^{∞} topology contains SU(2) $(B \in SU(2) \subset C^{\infty}(\mathbb{S}^1, SU(2)))$ is identified to the constant map $x \in \mathbb{S}^1 \to B \in SU(2)$.

Let us note for that every $A \in V_{\alpha}$, $G_{\alpha,A}$ is not C^0 conjugated on $\mathbb{S}^1 \times SU(2)$ to action of $R_{\alpha} \times B$ on $\mathbb{S}^1 \times SU(2)$ for any $B \in SU(2)$.

1. Notations

1.1.
$$\mathbb{S}^1 = \{z \in \mathbb{C}, |z| = 1\}, SU(2) = \{ \begin{pmatrix} a & -b \\ b & \bar{a} \end{pmatrix}, a, b \in \mathbb{C}, |a|^2 + |b|^2 = 0 \}$$

If
$$A \in SU(2)$$
, $A = \begin{pmatrix} a & -\bar{b} \\ b & \bar{a} \end{pmatrix}$ then $A^{-1} = \begin{pmatrix} \bar{a} & \bar{b} \\ -b & a \end{pmatrix} = {}^t\bar{A}$.

 $C^{\infty}(\mathbb{S}^1, SU(2)) = \{A : \mathbb{S}^1 \to SU(2) \mid \text{is a map of class } C^{\infty}\}.$

If $\alpha, \beta \in \mathbb{R}$, $\lambda_{\alpha} = e^{2\pi i \alpha}$, $\lambda_{\beta} = e^{2\pi i \beta}$, $r_{\alpha} : z \to e^{2\pi i \alpha} z$.

1.2. On $G = \mathbb{S}^1 \times C^{\infty}(\mathbb{S}^1, SU(2))$ we put the group law

$$(\lambda_{\alpha}, A) \cdot (\lambda_{\beta}, B) = (\lambda_{\alpha+\beta}, A \circ r_{\alpha}B).$$

¹Ce document, extrait des archives de Michel Herman, a été préparé par R. Krikorian.

G acts on $\mathbb{S}^1 \times \mathbb{S}^3 \subset \mathbb{S}^1 \times \mathbb{C}^2$, $\mathbb{S}^3 = \{(z_1, z_2), |z_1|^2 + |z_2|^2 = 1\}, g = (\lambda_{\alpha}, A) \in G$ by

(1.3)
$$(z,y) \rightarrow (r_{\alpha}(z), A(z)y) = g \cdot (z,y)$$

and if $g_1, g_2 \in G$, $(g_2g_1)(z, y) = (g_2(g_1(z, y))$ (i.e. $\mathbb{S}^1 \times \mathbb{S}^3$ is a *G*-space). Let $G_0 = \{(1, A), A \in C^{\infty}(\mathbb{S}^1, SU(2))\}$. G_0 is a normal subgroup of *G*.

1.3 We put on G the C^{∞} topology. We denote by d_{∞} a metric on G such that d_{∞} defines the C^{∞} topology on G and G is complete for d_{∞} . G therefore is a *Baire space* as well as all its closed subsets. For the C^{∞} topology G is a topological group, and G_0 is closed in G. G is a Polish topological group.

2. Let $\alpha \in \mathbb{R} - \mathbb{Q}$. If $x \in \mathbb{R}$ we denote $||x||_a = \inf_{p \in \mathbb{Z}} |x+p|$ (group metric on \mathbb{R}/\mathbb{Z}).

Let $\psi(n) = e^{-e^n}, n \in \mathbb{N}$. We fix $\alpha \in \mathbb{R} - \mathbb{Q}$. Let $l(\beta) = \inf_{\substack{n \ge 1 \\ n \in \mathbb{N}}} \|n\alpha + 2\beta\|_a(\psi(n))^{-1}$.

2.1.Lemma. $l^{-1}(0)$ a dense G_{δ} of \mathbb{R} .

Proof. $\beta \to l(\beta) \in \mathbb{R}_+ = \{x \in \mathbb{R}, x \ge 0\}$ is upper semicontinuous, hence $l^{-1}(0)$ is a G_{δ} . It is dense since it contains $\{2n\alpha + p, p \in \mathbb{Z}, -n \in \mathbb{N}^*\}$.

2.2 The set $G_{\alpha} = l^{-1}(0) - \{\frac{n\alpha}{2} + \frac{p}{q}, n \in \mathbb{Z}, p \in \mathbb{Z}, q \in \mathbb{N}^*\}$ is also a dense G_{δ} of \mathbb{R} . If $\beta \in G_{\alpha}, 2\beta + n\alpha \notin \mathbb{Q}$ for every $n \in \mathbb{Z}$.

3. Let $\alpha \in \mathbb{R} - \mathbb{Q}$ fixed. We define

$$O^{\infty}_{\alpha}(\mathbb{S}^1) = \{g^{-1}(\lambda_{\alpha}, \begin{pmatrix} \lambda_{\beta} & 0\\ 0 & \bar{\lambda}_{\beta} \end{pmatrix})g \mid \beta \in \mathbb{R}, g \in G_0\}$$

We denote by $\overline{O}_{\alpha}^{\infty}$ the closure for the C^{∞} topology of O_{α}^{∞} in G. $\overline{O}_{\alpha}^{\infty}$ with the induced C^{∞} topology is a Baire space (cf. 1.3).

4. Let $\delta = (\delta_1, \delta_2) \in \mathbb{S}^3$, (i.e. $|\delta_1|^2 + |\delta_2|^2 = 1$)

$$A_{\delta,n}(z) = \begin{pmatrix} \delta_1 & -\bar{\delta}_2 \bar{z}^n \\ \delta_2 z^n & \bar{\delta}_1 \end{pmatrix} \in SU(2).$$

We have

$$A_{\delta,n}^{-1} \circ r_{\alpha}(z) = \begin{pmatrix} \bar{\delta}_1 & \bar{\delta}_2 \bar{z}^n \bar{\lambda}_{\alpha}^n \\ -\delta_2 z^n \lambda_{\alpha}^n & \delta_1 \end{pmatrix}$$

$$(4.1) \quad \begin{pmatrix} A_{\delta,n}^{-1} \circ r_{\alpha} \begin{pmatrix} \lambda_{\beta} & 0\\ 0 & \bar{\lambda}_{\beta} \end{pmatrix} A_{\delta,n} \end{pmatrix}(z) \equiv C_{\delta,n,\beta}(z) = \\ \begin{pmatrix} \bar{\delta}_{1} & \bar{\delta}_{2} \bar{z}^{n} \bar{\lambda}_{\alpha}^{n} \\ -\bar{\delta}_{2} z^{n} \lambda_{\alpha}^{n} & \delta_{1} \end{pmatrix} \begin{pmatrix} \lambda_{\beta} \delta_{1} & -\lambda_{\beta} \bar{\delta}_{2} \bar{z}^{n} \\ \bar{\lambda}_{\beta}^{n} \delta_{2} z^{n} & \bar{\lambda}_{\beta} \bar{\delta}_{1} \end{pmatrix} = \\ \begin{pmatrix} \lambda_{\beta} \delta_{1} \bar{\delta}_{1} + \delta_{2} \bar{\delta}_{2} \bar{\lambda}_{\alpha}^{n} \bar{\lambda}_{\beta} & \bar{\delta}_{1} \bar{\delta}_{2} \bar{z}^{n} [\bar{\lambda}_{\alpha}^{n} \bar{\lambda}_{\beta} - \lambda_{\beta}] \\ \delta_{1} \delta_{2} z^{n} [-\lambda_{\beta} \lambda_{a}^{n} + \bar{\lambda}_{\beta}] & \bar{\lambda}_{\beta} \bar{\delta}_{1} \delta_{1} + \delta_{2} \bar{\delta}_{2} \lambda_{\alpha}^{n} \lambda_{\beta} \end{pmatrix}$$

since $\delta_2 \bar{\delta}_2 = (1 - \delta_1 \bar{\delta}_1)$

$$(4.2) \quad C_{\delta,n,\beta}(z) = \begin{pmatrix} [-\bar{\lambda}^n_{\alpha}\bar{\lambda}_{\beta} + \lambda_{\beta}]\delta_1\bar{\delta}_1 + \bar{\lambda}^n_{\alpha}\bar{\lambda}_{\beta} & \bar{\delta}_1\bar{\delta}_2\bar{z}^n[\bar{\lambda}^n_{\alpha}\bar{\lambda}_{\beta} - \lambda_{\beta}] \\ \delta_1\delta_2z^n[-\lambda_{\beta}\lambda^n_{\alpha} + \bar{\lambda}_{\beta}] & \lambda^n_{\alpha}\lambda_{\beta} + \delta_1\bar{\delta}_1[\bar{\lambda}_{\beta} - \lambda^n_{\alpha}\lambda_{\beta}] \end{pmatrix}$$

from (4.2) we conclude

$$A_{\delta,n}^{-1} \circ r_{p\alpha} \begin{pmatrix} \lambda_{\beta}^{n} & 0\\ 0 & \bar{\lambda}_{\beta}^{n} \end{pmatrix} A_{\delta,n} = \\ \begin{pmatrix} \bar{\delta}_{1} \delta_{1} [\lambda_{p\beta} - \lambda_{-pn\alpha - p\beta}] + \bar{\lambda}_{\alpha}^{n\beta} \bar{\lambda}_{\beta}^{p} & \bar{\delta}_{1} \bar{\delta}_{2} z^{n} [\bar{\lambda}_{\alpha}^{np} \bar{\lambda}_{\beta}^{p} - \lambda_{\beta}^{p}] \\ \delta_{1} \delta_{2} z^{n} [-\lambda_{p\beta + np\alpha} + \lambda_{-p\beta}] & \lambda_{\alpha}^{np} \lambda_{\beta}^{p} + \delta_{1} \bar{\delta}_{1} [\bar{\lambda}_{\beta}^{p} - \lambda_{\alpha}^{pn} \lambda_{\beta}^{p}] \end{pmatrix}$$

5. We choose $\delta = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. We note $h_n = (1, A_{\delta,n}) \in G_0$. We consider

$$c_{n,\alpha,\beta} = h_n^{-1} (\lambda_\alpha, \begin{pmatrix} \lambda_\beta & 0\\ 0 & \bar{\lambda}_\beta \end{pmatrix}) h_n \in O_\alpha^\infty$$

We write $c_{n,\alpha,\beta} = (\lambda_{\alpha}, C_{n,\beta})$. We suppose that $\beta \in G_{\alpha}$. Using 2.1 and 2.2 we can find a sequence $n_j \to \infty$ such that

$$|\bar{\lambda}_{\alpha}^{n_j}\bar{\lambda}_{\beta}^2 - 1| \le C ||n_j\alpha + 2\beta||_a \le Ce^{-e^{n_j}}$$

(C is a universal constant)

We conclude from (4.2)

5.1 Proposition 1 $\forall \beta \in G_{\alpha}, \exists n_j \to \infty \text{ such that}$

$$c_{n_j,\alpha,\beta} \to (\lambda_\alpha, \begin{pmatrix} \lambda_\beta & 0\\ 0 & \bar{\lambda}_\beta \end{pmatrix})$$

in the C^{∞} topology.

We write for $p \in \mathbb{N}$

$$c_{n_j,\alpha,\beta}^p = (\lambda_{p\alpha}, C_{n_j,\beta}^{(p)}) = h_n^{-1}(\lambda_{p\alpha}, \begin{pmatrix} \lambda_\beta^p & 0\\ 0 & \bar{\lambda}_\beta^p \end{pmatrix})h_n.$$

We suppose that $\beta \in G_{\alpha}$. We have (cf. (4.3))²

(5.2)
$$\sup_{p\geq 1} (\|C_{n_j,\beta}^{(p)}(1) \begin{pmatrix} 1\\ 0 \end{pmatrix} - C_{n_j,\beta}^{(p)}(e^{i\pi/n_j}) \begin{pmatrix} 1\\ 0 \end{pmatrix}\| = 2$$

(This follows from the fact that

$$\|C_{n_j,\beta}^{(p)}(1)\begin{pmatrix}1\\0\end{pmatrix} - C_{n_j,\beta}^{(p)}(z)\begin{pmatrix}1\\0\end{pmatrix}\| = |\lambda_{pn_j\alpha+2p\beta} - 1||1 - z^n|/2$$

and $\sup_{p\geq 1} |\lambda_{p(n_j\alpha+2\beta)} - 1| = 2$ since $n_j\alpha + 2\beta \notin \mathbb{Q}$, when $\beta \in G_\alpha$ (see (2.2)).

6. Let
$$h = (1, \beta) \in G_0, \beta \in G_\beta$$
; then $F_j = h^{-1}C_{n_j,\alpha,\beta}h \to h^{-1}(\lambda_\alpha, \begin{pmatrix} \lambda_\beta & 0\\ 0 & \bar{\lambda}_\beta \end{pmatrix})h =$

 \hat{F} in the C^{∞} topology, where n_j is the sequence given by proposition 1.

6.1. Proposition 2. Given $h \in G_0$, $\beta \in G_\alpha$ and n_j the sequence given by proposition 1, let $F_j^p = (\lambda_{p\alpha}, Q_j^{(p)}), p \in \mathbb{N}^*$. We can find $y_j, y'_j \in \mathbb{S}^3$ such that

(6.2)
$$\sup_{p\geq 1} \|Q_j^{(p)}(1)y_j - Q_j^{(p)}(e^{i\pi/n_j})y_j'\| > 1$$

and

(6.3)
$$\lim_{j \to \infty} \|y_j - y'_j\| = 0.$$

Proof. Let $y_j = B^{-1}(1) \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{S}^3, \ y'_j = B^{-1}(e^{i\pi/n_j}) \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{S}^3$. Since $\theta \mapsto B^{-1}(\theta)$ is continuous $\|y_j - y'_j\| \to 0$ when $j \to \infty$. We have $\|Q_j^{(p)}(1)y_j - Q_j^{(p)}(e^{i\pi/n_j})y'_j\| \leq \|B^{-1}(\lambda_{p\alpha})C_{n_j,\beta}^{(p)}(1) \begin{pmatrix} 1 \\ 0 \end{pmatrix} - B^{-1}(\lambda_{p\alpha})C_{n_j,\beta}^{(p)}(e^{i\pi/n_j}) \begin{pmatrix} 1 \\ 0 \end{pmatrix} \|+ 2\||B^{-1}(\lambda_{p\alpha}) - B^{-1}(\lambda_{p\alpha}e^{i\pi/n_j})\|\| = \|C_{n_j,\beta}^{(p)}(1) \begin{pmatrix} 1 \\ 0 \end{pmatrix} - C_{n_j,\beta}^{(p)}(e^{i\pi/n_j})\| + 2\||B^{-1}(\lambda_{p\alpha}) - B^{-1}(\lambda_{p\alpha}e^{i\pi/n_j})\|\|.$

Since $\theta \to B^{-1}(\theta)$ is continuous, the second term $\to 0$ when $j \to \infty$ and the proposition follows from 5.2.

 $[\]overline{(z_1, z_2)} = |z_1|^2 + |z_2|^2$; $||| \cdot |||$ denotes the induced operator norm.

6.4 Let us formulate the proposition in another way. We define the metric d on $\mathbb{S}^1 \times \mathbb{S}^3$ by

$$d((z,y),(z',y')) = \sup(|z-z'|, ||y-y'||)$$

where $(z, y), (z', y') \in \mathbb{S}^1 \times \mathbb{S}^3$.

6.5 F_j acts on $\mathbb{S}^1 \times \mathbb{S}^3$ by 1.3 and we can find $v_j = (1, y_j) v'_j = (e^{i\pi/n_j}, y'_j)$ such that $d(v_j, v'_j) \to 0$ as $j \to \infty$ and

$$\sup_{p \ge 1} d(F_j^p(v_j), F_j^p(v'_j)) > 1$$

7. Given $\varepsilon > 0$ we define the set

$$U_{\varepsilon} = \{F = (\lambda_{\alpha}, B) \in \overline{O}_{\alpha}^{\infty} \mid \exists v, v' \in \mathbb{S}^{1} \times \mathbb{S}^{3} \text{ such that } d(v, v') \leq \varepsilon \text{ and} \\ \sup_{p \geq 1} d(F^{p}(v), F^{p}(v')) > 1\}$$

7.1. Lemma. The set U_{ε} is open in $\overline{O}_{\alpha}^{\infty}$ for the C^{∞} topology. *Proof.*

$$U_{\varepsilon} = \bigcup_{\substack{v,v'\\d(v,v') \le \varepsilon}} \{F, \sup_{p \ge 1} d(F^p(v), F^p(v')) > 1\}$$

i.e. U_{ε} is the union of the sets $\{F, \sup_{p\geq 1} d(F^p(v), F^p(v')) > 1, v, v' \in \mathbb{S}^1 \times \mathbb{S}^3, d(v, v') \leq \varepsilon\}$; each set $\{F, \sup_{p\geq 1} d(F^p(v), F^p(v')) > 1\}$ is open since G is a topological group and for fixed v, v' and $p \in \mathbb{N}, F \in G \to d(F^p(v), F^p(v'))$ is continuous; hence $F \mapsto \sup_{p\geq 1} d(F^p(v), F^p(v'))$ is lower semi continuous.

7.2. Proposition. For every $\varepsilon > 0$, U_{ε} is dense in $\overline{O}_{\alpha}^{\infty}$ for the C^{∞} topology.

Proof. It is enough to show $\overline{U}_{\varepsilon}$ (the closure of U_{ε} in $\overline{O}_{\alpha}^{\infty}$) contains the following dense set of O_{α}^{∞} , for the C^{∞} topology on $\overline{O}_{\alpha}^{\infty}$:

$$V = \{h^{-1}(\lambda_{\alpha}, \begin{pmatrix} \lambda_{\beta} & 0\\ 0 & \bar{\lambda}_{\beta} \end{pmatrix})h, \beta \in G_{\alpha}, h \in G_{0}\} \subset O_{\alpha}^{\infty}(\mathbb{S}^{1})$$

 $(G_{\alpha} \text{ is dense in } \mathbb{R} \text{ and } O_{\alpha}^{\infty}(\mathbb{S}^{1}) \text{ is dense in } \overline{O}_{\alpha}^{\infty}(\mathbb{S}^{1}) \text{ by definition of } \overline{O}_{\alpha}^{\infty}).$ Given $\hat{F} = h^{-1}(\lambda_{\alpha}, \begin{pmatrix} \lambda_{\beta} & 0 \\ 0 & \overline{\lambda}_{\beta} \end{pmatrix} h$, by 6.5 we can find a sequence

 $(F_j)_{j\in\mathbb{N}} \subset O^{\infty}_{\alpha}(\mathbb{S}^1), F_j \to \hat{F} \text{ in the } C^{\infty} \text{ topology, when } j \to \infty \text{ such that, when } j \text{ is large enough, } F_j \in U_{\varepsilon}.$

8. Let $\varepsilon_j > 0$, $\varepsilon_j \to 0$; by 7.1 and 7.2 $K_{\alpha} = \bigcap_j U_{\varepsilon_j}$ is a dense G_{δ} of $\overline{O}_{\alpha}^{\infty}$ ($\overline{O}_{\alpha}^{\infty}$ is a Baire space for the C^{∞} topology) (everything is always for the C^{∞} topology !)

Theorem. Given $\alpha \in \mathbb{R} - \mathbb{Q}$, and $\beta \in \mathbb{R}$, we can find $H_j = (\lambda_{\alpha}, B_j) \in \overline{O}_{\alpha}^{\infty}$, $j \in \mathbb{N}$, $H_j \to (\lambda_{\alpha}, \begin{pmatrix} \lambda_{\beta} & 0\\ 0 & \overline{\lambda}_{\beta} \end{pmatrix})$ in the C^{∞} topology when $j \to \infty$ and for every j there does not exist a homeomorphism k of $\mathbb{S}^1 \times \mathbb{S}^3$ that conjugates H_j acting on $\mathbb{S}^1 \times \mathbb{S}^3$ to any linear map $(\lambda_{\alpha'}, \begin{pmatrix} \lambda_{\beta'} & 0\\ 0 & \overline{\lambda}_{\beta'} \end{pmatrix})$ acting on $\mathbb{S}^1 \times \mathbb{S}^3$, $\alpha', \beta' \in \mathbb{R}$. Proof. If $H = (\lambda_{\alpha}, B) \in K_{\alpha} \subset \overline{O}_{\alpha}^{\infty}$ then $\forall \varepsilon_j > 0 \; \exists v_j, v'_j \in \mathbb{S}^1 \times \mathbb{S}^3$, $d(v_j, v'_j) \leq \varepsilon_j$ such that

$$\sup_{p \ge 1} d(H^p(v_j), H^p(v'_j)) > 1;$$

hence the sequence of diffeomorphisms $(H^p)_{p \in \mathbb{Z}}$ acting on $\mathbb{S}^1 \times \mathbb{S}^3$ is not uniformly equicontinuous.