An application of the simplicity of $Diff_{+}^{k}(T^{1})^{-1}$

MICHAEL ROBERT HERMAN

We suppose that k is an integer, $k \neq 0, 2$; but k can be equal to $+\infty$ or ω . In these cases it is known that $Diff^k_+(T^1)$ is simple².

Proposition. There exists no non-trivial algebraic group homomorphism

$$\rho: Diff_+^k(T^1) \to Diff_+^1(D^2).$$

Observe that the standard cone construction embeds $Diff^k_+(T^1)$ into $Homeo_+(D^2)$.

Proof. Assume the existence of ρ . By simplicity of $Diff_+^k(T^1)$, ρ has to be injective. Let R be the rotation of T^1 defined by $R(x) = x + \frac{1}{2} \pmod{1}$. Then $r = \rho(R)$ has to be an involution of D^2 orientation preserving. Recall that any involution of a manifold is an isometry for some Riemannian metric. Moreover, any isometry of a connected Riemannian manifold is the identity as soon as it has a fixed point where the derivative is the identity. Therefore, $r|T^1$ is not the identity. Then the rotation number of $r|T^1$ is $\frac{1}{2}$ and r has no fixed points on T^1 .

Lemma 1. The involution r has a unique fixed point x_0 in the interior of D^2 .

Proof. At each fixed point y of r, the derivative is not the identity, hence is equal to -Id. It follows that r is C^1 -conjugate to the rotation $z \mapsto -z$ in the neighborhood of y. This implies that the fixed points of r are isolated, hence, since there are no fixed points on the boundary, in finite number. Moreover, each fixed point has index 1. Take $S^2 = D^2 \cup D^2$ and double r. One gets a homeomorphism \bar{r} of S^2 whose index is twice the number of fixed points of r. The lemma follows from $Index(\bar{r}) = 2$.

Let us consider $Z = \{G \in Diff_+^k(T^1) \mid R \circ G = G \circ R\}$. Observe that the center of Z is the cyclic group Z_0 of order 2 generated by R. Each $g = \rho(G)$, $G \in Z$, commutes with r. Then $g(x_0) = x_0 = r(x_0)$. Consider the group homomorphism

$$D_{x_0}: \quad \rho(Z) \to GL_+(2,\mathbb{R}) \,.$$
$$g \mapsto Dg(x_0)$$

It is a non-trivial homomorphism since $D_{x_0}(r) = -Id$. Notice that one has the following exact sequences (given by double covering).

 $^{^1\}mathrm{Ce}$ document extrait des archives de Michel Herman a été préparé par F. Laudenbach et J.C. Yoccoz.

²See [1] and [2] when $k = \infty$ or ω ; [3] and [4] in the other cases.

Lemma 2. The subgroup Z_0 is the only non-trivial normal subgroup of Z.

Proof. Let N be a normal subgroup of Z. Then $\pi(Z)$ is a normal subgroup of $Diff_+^k(T^1)$. As the latter is simple, $\pi(N)$ is a trivial subgroup of $Diff_+^k(T^1)$.

If $\pi(N) = \{Id\}$, N is equal to $\{Id\}$ or Z_0 .

Assume $\pi(N) = Diff_+^k(T^1)$. We claim that N contains Z_0 , which implies N = Z and proves the lemma.

To prove the claim notice that $N_0 = N \cap SL(2, \mathbb{R})$ is a normal subgroup of $SL(2, \mathbb{R})$ which maps onto $PSL(2, \mathbb{R})$. If N does not contain Z_0 , then N_0 does not contain -Id and $SL(2, \mathbb{R})$ is the product $\{\pm Id\} \times PSL(2, \mathbb{R})$, which is not true (indeed, the image of a rotation of order 4 in $SL(2, \mathbb{R})$ has order 2 in $PSL(2, \mathbb{R})$).

Proof of the proposition. The kernel $K = \ker D_{x_0} \circ \rho$ is a normal subgroup of Z. By lemma 2, it is equal to $\{Id\}$, Z_0 or Z. As $R \notin K$, the two last cases are excluded. We are going to prove that the first case is also impossible. Let $R_4 \in Z$ be the rotation $x \mapsto x + \frac{1}{4}$. Then $r_4 = D_{x_0} \circ \rho(R_4)$ is of order 4 in $GL_+(2, \mathbb{R})$. Therefore it is a rotation of angle $\pm \frac{\pi}{2}$ w.r.t. a unique (up to scaling) scalar product on \mathbb{R}^2 . The subset $A = \{G \in Z \mid G^2 = R_4\}$ is uncountable. For $G \in A$, the image $g = D_{x_0} \circ \rho(G)$ satisfies $g^2 = r_4$. There are only two elements in $GL_+(2, \mathbb{R})$ with this property. Then $D_{x_0} \circ \rho$ is not injective. \Box

References

- M.R. Herman, Simplicité du groupe des difféomorphismes de classe C[∞], isotopes à l'identité, du tore de dimension n, C. R. Acad. Sci. Paris, Sér. A-B, 273 (1971), A232-A234.
- [2] M.R. Herman, Sur le groupe des difféomorphismes du tore, Ann. Inst. Fourier (Grenoble) 3 (1973), 75-86.
- [3] J. N. Mather, Simplicity of certain groups of diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 271-273.
- [4] J. N. Mather, Commutators of Diffeomorphisms, Comment. Math. Helv. 49 (1974), 512-528.