Non existence of Lagrangian graphs *

Michael Robert HERMAN

We will consider C^1 exact symplectic diffeomorphisms of $T^*(\mathbb{T}^n)$ of the following form

$$F_{\varphi}(\theta, r) = (\theta + Lr, r + d\varphi(\theta + Lr)),$$

where L is a symmetric positive definite matrix of order n, where $\varphi \in C^2(\mathbb{T}^n, \mathbb{R})$ and

$$d\varphi = (\frac{\partial \varphi}{\partial \theta_1}, \dots, \frac{\partial \varphi}{\partial \theta_n}).$$

If the graph of $\psi \in C^1(\mathbb{T}^n, \mathbb{R}^n)$ is a Lagrangian invariant torus of F_{φ} , then

$$\psi \circ f - \psi = d\varphi \circ f$$

with $f = \mathrm{Id} + L\psi$. This is equivalent to

$$\frac{1}{2}\left(f+f^{-1}\right) = \operatorname{Id} + \frac{1}{2}L\,d\varphi. \tag{1}$$

The graph of $\psi = (\psi_1, \dots, \psi_n)$ being Lagrangian is equivalent to the fact that the 1-form $\sum \psi_i d\theta_i$ of \mathbb{T}^n is closed. Let $L^{\frac{1}{2}}$ be the positive square root of L. We differentiate (1)

$$\frac{1}{2} \left(Df(\theta) + (Df)^{-1} (f^{-1}(\theta)) \right) = I + \frac{1}{2} L E(\theta)$$

where $E(\theta)$ is the derivate matrix of $d\varphi$ (i.e. $Dd\varphi$). We write $G = L^{-\frac{1}{2}} Df L^{\frac{1}{2}}$. It is symmetric positive definite and we obtain

$$\frac{1}{2}\left(G + G^{-1} \circ f^{-1}\right) = I + \frac{1}{2}L^{\frac{1}{2}}EL^{\frac{1}{2}}.$$
 (2)

Thus we have the following necessary condition

the matrix
$$B_1(\theta) = I + \frac{1}{2}L^{\frac{1}{2}}E(\theta)L^{\frac{1}{2}}$$
 is positive definite. (3)

If φ is non constant then there exists $t_{\varphi} > 0$ such that if $t \in \mathbb{R}$, $|t| \geq t_{\varphi}$, (3) is violated for $F_{t\varphi}$. The condition (3) is not optimal. We have

$$\frac{1}{2n}\operatorname{tr}(G) + \frac{1}{2n}\operatorname{tr}(G^{-1} \circ f^{-1}) = 1 + \frac{1}{2n}\operatorname{tr}(L^{\frac{1}{2}}EL^{\frac{1}{2}})$$

$$= 1 + \frac{1}{2}e$$
(4)

^{*}Typing and minor corrections are due to P. Le Calvez

where

$$e = \frac{1}{n} \operatorname{tr}(L^{\frac{1}{2}} E L^{\frac{1}{2}}) = \frac{1}{n} \operatorname{tr}(L E).$$

Let

$$M = \max\left(\max_{\theta} \frac{1}{n} \operatorname{tr}(G(\theta)), \max_{\theta} \frac{1}{n} \operatorname{tr}(G^{-1}(\theta))\right).$$

We have

$$m = \min\left(\min_{\theta} \frac{1}{n} \operatorname{tr}(G(\theta)), \min_{\theta} \frac{1}{n} \operatorname{tr}(G^{-1}(\theta))\right) \ge \frac{1}{M}$$
 (5)

since, by Cauchy-Schwarz inequality, we have

$$\frac{1}{n}\mathrm{tr}(G(\theta))\,\frac{1}{n}\mathrm{tr}(G^{-1}(\theta))\geq 1.$$

Let

$$e_{-} = -\min_{\theta} e(\theta),$$

$$e_{+} = \max_{\theta} e(\theta).$$

By (4) and (5) we have

$$\frac{1}{M} \le 1 - \frac{1}{2}e_-.$$

If $M = \frac{1}{n} \operatorname{tr}(G(\theta_0))$ then by (4)

$$\frac{1}{2}\left(M + \frac{1}{n}\operatorname{tr}(G^{-1}(f^{-1}(\theta_0)))\right) = 1 + \frac{1}{2}e(\theta_0) \le 1 + \frac{1}{2}e_+$$

and therefore, since $\frac{1}{n} \operatorname{tr}(G^{-1}(f^{-1}(\theta_0))) \ge \frac{1}{M}$,

$$\frac{1}{2}\left(M + \frac{1}{M}\right) \le 1 + \frac{1}{2}e_{+}.\tag{6}$$

If $M = \frac{1}{n} \operatorname{tr}(G^{-1}(f^{-1}(\theta_0)))$ for some θ_0 the same gives also (6). This condition implies

$$\frac{1}{1 - \frac{1}{2}e_{-}} \le M \le 1 + \frac{1}{2}e_{+} + \left(e_{+} + \frac{1}{4}e_{+}^{2}\right)^{\frac{1}{2}}.$$
 (7)

Consequences. We suppose that the function φ is not constant. Then if $t > t_{\varphi}$, the function $F_{t\varphi}$ has no invariant Lagrangian torus that is a graph of a C^1 function of $C^1(\mathbb{T}^n, \mathbb{R}^n)$. If $e_+ \to 0$ and $e_- > 2\sqrt{e_+}$ then F_{φ} has no invariant Lagrangian torus that is a graph of a C^1 function in $C^1(\mathbb{T}^n, \mathbb{R}^n)$.

Remark. The condition (7) is optimal for n = 1, see [He]. If $e_{-} = e_{+} = 1$ (for φ) we obtain $t_{\varphi} = \frac{4}{3}$ in the case n = 1 (see [M]).

Theorem : We take L = I. There exists a sequence of C^{∞} functions $(\varphi)_{i \in \mathbb{N}}$ converging to 0 in the $C^{n+2-\varepsilon}$ topology (for every $\varepsilon > 0$) such that F_{φ_i} leaves invariant no Lagrangian torus that is the graph of a C^1 function.

Proof. It is enough to construct the sequence (φ_i) that violates (7). We have $e(\theta) = \frac{1}{n} \triangle \varphi$ with $\triangle = \sum_i \frac{\partial^2}{\partial \theta_i^2}$ the Laplacian. Let $\eta_1 \ge 0$ be a C^{∞} function of \mathbb{R} with support contained in $[-\frac{1}{4}, \frac{1}{4}]$ and such that

$$\begin{cases} \eta_1(x) = 1 & \text{if } -\frac{1}{8} \le x \le \frac{1}{8}, \\ \eta_1(-x) = \eta_1(x). \end{cases}$$

Let define $\eta(x) = \eta_1(||x||)$ for $x \in \mathbb{R}^n$. Let $\delta > 0$ be small and $x_0 = \left(\frac{1}{2}, 0, \dots, 0\right)$. We define the function of \mathbb{R}^n :

$$\begin{cases} \overline{e}_{\delta}(x) = \delta \eta(x) & \text{if } ||x|| \leq \frac{1}{4}, \\ \overline{e}_{\delta}(x) = -4\delta^{\frac{1}{2}} \eta \left((x - x_0)(4\delta^{\frac{1}{2}})^{-\frac{1}{n}} \right) & \text{if } ||x - x_0|| \leq \frac{1}{4} \left(4\delta^{\frac{1}{2}} \right)^{\frac{1}{n}}, \\ \overline{e}_{\delta}(x) = 0 & \text{otherwise.} \end{cases}$$

We extend these functions \mathbb{Z}^n periodically to functions $e_{\delta} \in C^{\infty}(\mathbb{T}^n)$ such that $\int_{\mathbb{T}^n} e_{\delta}(\theta) d\theta = 0$. If $\delta \to 0$, the family (e_{δ}) is bounded in the C^n topology and from interpolation, $e_{\delta} \to 0$ in the $C^{n-\varepsilon}$ topology for any $\varepsilon > 0$.

Let φ_{δ} be the unique function in $C^{\infty}(\mathbb{T}^n,\mathbb{R})$ such that

$$\int_{\mathbb{T}^n} arphi_\delta \, d heta = 0, \ \ rac{1}{n} riangle arphi_\delta = e_\delta.$$

By Schauder estimates one knows that for any $\varepsilon > 0$ given, $\varphi_{\delta} \to 0$ in the $C^{n+2-\varepsilon}$ topology, when $\delta \to 0$. For a proof, see [Ho]. The proof shows that the functions φ_{δ} are bounded in the space of functions that are of class $C^{n+2-\varepsilon}$ and the partial derivatives of order $\leq n-1$ are smooth in the Zygmund sense. When $\delta \to 0$, e_{δ} does not satisfy (7) and the theorem follows.

Important remark. The functions e_{δ} constructed above are such that all the partial derivatives up to order 2n are bounded in $L^1(\mathbb{T}^n, d\theta)$: e_{δ} is bounded in $W^{2n,1}(\mathbb{T}^n)$. This implies that the functions φ_{δ} are bounded in $W^{2n+2*,1}(\mathbb{T}^n)$ (i.e. the set of functions such that all the partial derivatives up to order 2n+1 are Zygmund smooth in the L^1 sense, see [Ho]). By interpolation this implies that for any $\varepsilon > 0$, $\varphi_{\delta} \to 0$ in the Banach space $W^{2n+2-\varepsilon,1}(\mathbb{T}^n)$.

For $F_{\varphi}(\theta, r) = (\theta + Lr, r + d\varphi(\theta + Lr))$ we want to indicate some other a priori inequalities. Let

$$\lambda_1 = \max_{\theta} \lambda_1(B_1(\theta)),$$

$$\lambda_n = \min_{\theta} \lambda_n(B_1(\theta)),$$

where $\lambda_1(B_1(\theta)) \geq \cdots \geq \lambda_n(B_1(\theta))$ are the eigenvalues of $B_1(\theta)$, and

$$1 \le m = \max\left(\max_{\theta} \lambda_1(G(\theta)), \max_{\theta} \lambda_1(G^{-1}(\theta))\right).$$

We have

$$\min\left(\min_{\theta} \lambda_n(G(\theta)), \min_{\theta} \lambda_n(G^{-1}(\theta))\right) \ge \frac{1}{m}.$$

By (2) we have

$$\frac{1}{m} \le \frac{1}{2} \left(\lambda_n(G(\theta)) + \lambda_n(G^{-1}(f^{-1}(\theta))) \right) \le \lambda_n(B_1(\theta))$$

hence

$$\frac{1}{m} \le \lambda_n.$$

By the same argument as in the proof of (6) we have

$$\frac{1}{2}\left(m + \frac{1}{m}\right) \le \lambda_1$$

or

$$m \le \lambda_1 + \left(\lambda_1^2 - 1\right)^{\frac{1}{2}},$$

hence we have the a priori estimate

$$\lambda_n^{-1} \le \lambda_1 + (\lambda_1^2 - 1)^{\frac{1}{2}}.$$
(8)

Consequence. Let φ be a non constant function, then we find $t_0 > 0$ such that, if $t_0 < t < t_0 = \varepsilon$, for some $\varepsilon > 0$, then $F_{t\varphi}$ has no invariant torus that is the graph of a C^1 function, but the symmetric matrix $B_{t_0} = I + \frac{t_0}{2} L^{-\frac{1}{2}} E(\theta) L^{-\frac{1}{2}}$ is positive definite for every θ (let $t_1 > 0$ be such that $\det(B_{t_1}(\theta_0)) = 0$ for some θ_0 and $\det(B_t) \neq 0$ if $0 \leq t < t_1$, as $t \to t_1$, λ_1 is bounded but $\lambda_n^{-1} \to \infty$, this violates (8)).

Other inequalities.

Let $v \in \mathbb{R}^n$, ||v|| = 1. Let

$$\lambda_{1}(v) = \max_{\theta} \langle B_{1}(\theta)v, v \rangle \leq \lambda_{1},$$

$$\lambda_{n}(v) = \min_{\theta} \langle B_{1}(\theta)v, v \rangle \geq \lambda_{n},$$

$$m_{v} = \max\left(\max_{\theta} \langle G(\theta)v, v \rangle, \max_{\theta} \langle G^{-1}(\theta)v, v \rangle\right),$$

hence

$$\min\left(\min_{\theta}\langle G(\theta)v,v\rangle,\min_{\theta}\langle G^{-1}(\theta)v,v\rangle\right)\geq m_v^{-1}$$

because we have

$$\langle G(\theta)v, v \rangle \langle G^{-1}(\theta)v, v \rangle \ge 1,$$

(this is a consequence of Cauchy-Schwarz inequality:

$$|\langle G(\theta)u,v\rangle|^2 \leq \langle G(\theta)u,u\rangle\, \langle G(\theta)v,v\rangle,$$

true for every u and v in \mathbb{R}^n and choosing $u = G^{-1}(\theta)v$).

We have by (2)

$$\frac{1}{2} \left(\langle G(\theta)v, v \rangle + \langle G^{-1} \circ f^{-1}(\theta)v, v \rangle \right) = \langle B_1(\theta)v, v \rangle$$

and it follows that

$$m_v^{-1} \le \lambda_n(v)$$

$$\frac{1}{2} (m_v + m_v^{-1}) \le \lambda_1(v)$$

which implies

$$\lambda_n(v)^{-1} \le \lambda_1(v) + (\lambda_1(v)^2 - 1)^{\frac{1}{2}}.$$

We can write the above inequalities in the following more condensed form. For $v \in \mathbb{R}^n$, we consider the functions

$$B_{+}(v) = \max_{\theta} \langle B_{1}(\theta)v, v \rangle,$$

$$B_{-}(v) = \min_{\theta} \langle B_{1}(\theta)v, v \rangle,$$

$$M(v) = \max_{\theta} \left(\max_{\theta} \langle G(\theta)v, v \rangle, \max_{\theta} \langle G^{-1}(\theta)v, v \rangle \right).$$

We suppose that $B_1(\theta) > 0$ for every θ , hence the functions B_+ , B_- and M are strictly positive on the unite sphere $S_{n-1} = \{v \in \mathbb{R}^n \langle v, v \rangle = 1\}$. The functions are homogenous of degree 2 (i.e. $B_+(kv) = k^2 B_+(v)$, $k \in \mathbb{R}$, etc) and $v \mapsto (B_+(v))^{\frac{1}{2}}$ and $v \mapsto (M(v))^{\frac{1}{2}}$ are norms on \mathbb{R}^n .

The inequalities obtained give on S_{n-1}

$$\frac{1}{2}\left(M + \frac{1}{M}\right) \le B_{+} \tag{9}$$

and

$$\frac{1}{M} \le B_- \Leftrightarrow B_-^{-1} \le M. \tag{10}$$

The inequalities (9) and (10) imply $M \ge 1$ and $B_n \ge 1$ on S_{n-1} . We obtain on S_{n-1}

$$M \le B_+ + (B_+^2 - I)^{\frac{1}{2}}$$

hence the a priori inequality on S_{n-1}

$$B_{-}^{-1} \le B_{+} + (B_{+}^{2} - I)^{\frac{1}{2}}.$$

Remark. If $P \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ is an orthogonal projection then we have

$$PG(\theta)^{t}P + PG^{-1} \circ f^{-1}(\theta)^{t}P = PB_{1}(\theta)^{t}P$$

for every $\theta \in \mathbb{T}^n$. On ImP we have similar inequalities as above but the ones associated to traces.

Bibliographie

- [He] M. R. HERMAN: Sur les courbes invariantes par les difféomorphismes de l'anneau, Vol. 1, Astérisque, Soc. Math. de France, 103-104 (1983).
- [Ho] L. HÖRMANDER: Linear partial differential operators, Springer Verlag, Berlin-New York, 103-104 (1976).
- [M] J. Mather: Non existence of invariant circles, Ergodic Theory Dynam. Systems, 4 (1984), 301-309.