A PROOF OF PYARTLI'S THEOREM

JEAN-CHRISTOPHE YOCCOZ

Theorem 0.1. Let $\alpha: I \rightarrow \mathbb{R}^{n}$ a map which is (a, b) non-planar at each point of I. Let $\tau>n(n-2)$. There exists a constant $C=C(\tau)$ such that, for all $\gamma>0$, one has

$$
\operatorname{Leb}\{t \in I, \alpha(t) \notin H D C(\gamma, \tau)\}<C\left(1+\frac{b}{a}|I|\right)\left(\frac{\gamma}{a}\right)^{1 /(n-1)}
$$

We will first prove the following
Proposition 0.2. Let $n \geqslant 1$ and let $\alpha: I \rightarrow \mathbb{R}$ a C^{n} map on a compact interval I. Assume that there exist constants $b>a>0$ such that, for any $t \in I$, one has

$$
b \geq \max _{0 \leq m \leq n}\left|D^{m} \alpha(t)\right| \geq a
$$

Then one has, for any $\gamma>0$

$$
\operatorname{Leb}\{t \in I,|\alpha(t)|<\gamma\}<C\left(1+\frac{b}{a}|I|\right)\left(\frac{\gamma}{a}\right)^{1 / n}
$$

where the constant C depends only on n.
Proof. Replacing α, γ, b by $\alpha / a, \gamma / a, b / a$, we may assume that $a=1$. We may also assume that $C b \gamma^{1 / n}<1$: otherwise, the right-hand side in the inequality of the proposition is $>|I|$ and there is nothing to prove. Denote by $I(\gamma)$ the open set $\{t \in I,|\alpha(t)|<\gamma\}$.
Lemma 0.3. The open set $I(\gamma)$ has at most finitely many components.
Proof. Otherwise, there would exist $\varepsilon \in\{-1,+1\}$ and a sequence $\left(x_{j}\right)$ of points of I, converging to a limit x_{*}, such that $\alpha\left(x_{j}\right)=\varepsilon \gamma$ for all $j \geq 0$. Then we have also $\alpha\left(x_{*}\right)=$ $\varepsilon \gamma$. By Taylor's formula (or Rolle's theorem), we must have $D^{m} \alpha\left(x_{*}\right)=0$ for all $1 \leq$ $m \leq n$. This contradicts the hypothesis of the proposition.
Lemma 0.4. Each connected component of $I(\gamma)$ has length $\leq C_{0}(n) \gamma^{1 / n}$.
Proof. Assume that $x_{0}<x_{1}<\ldots<x_{2^{n}-1}$ are points of $I(\gamma)$ with $x_{j+1}-x_{j}=2 \gamma^{1 / n}$ for all $0 \leqslant j<2^{n}-1$. By the mean value theorem, there exists, for every $0 \leqslant j \leqslant 2^{n-1}-1$, a point $x_{j}^{(1)} \in\left(x_{2 j}, x_{2 j+1}\right)$ such that

$$
\left|D \alpha\left(x_{j}^{(1)}\right)\right|=\frac{\left|\alpha\left(x_{2 j+1}\right)-\alpha\left(x_{2 j}\right)\right|}{x_{j+1}-x_{j}}<\gamma^{\frac{n-1}{n}} .
$$

We also have $x_{j+1}^{(1)}-x_{j}^{(1)} \geqslant 2 \gamma^{1 / n}$ for $0 \leqslant j<2^{n-1}-1$. Proceeding in the same way, we construct, for each $1 \leq m \leq n$, a sequence $x_{j}^{(m)}, 0 \leqslant j \leqslant 2^{n-m}-1$ such that

- $x_{0}<x_{j}^{(m)}<x_{2^{n}-1}$;
- $\left|D^{m} \alpha\left(x_{j}^{(m)}\right)\right|<\gamma^{\frac{n-m}{n}}$;
- $x_{j+1}^{(m)}-x_{j}^{(m)} \geqslant 2 \gamma^{1 / n}$ for $0 \leqslant j<2^{n-m}-1$.

Let $x_{*}:=x_{0}^{(n)}$. We have $\left|D^{n} \alpha\left(x_{*}\right)\right|<1$, hence, from the hypothesis of the proposition, there exists $0 \leqslant m<n$ such that $\left|D^{m} \alpha\left(x_{*}\right)\right|>1$. On the other hand, we have $\left|D^{m} \alpha\left(x_{0}^{(m)}\right)\right|<\gamma^{\frac{n-m}{n}}$. This is not compatible with $\left|x_{*}-x_{0}^{(m)}\right|<2^{n} \gamma^{1 / n},\left|D^{m+1} \alpha\right| \leqslant b$, $C b \gamma^{1 / n}<1$ when C is large enough.

Lemma 0.5. Let $J_{0}=\left(x_{0}, y_{0}\right), \ldots, J_{n}=\left(x_{n}, y_{n}\right)$ be $n+1$ consecutive connected components of $I(\gamma)$. We have $x_{n}-y_{0} \geq \frac{1}{2} b^{-1}$.

Proof. One has $\alpha\left(y_{i}\right)=\alpha\left(x_{i+1}\right)$ for $0 \leq i<n$. By Rolle's theorem, there exists $z_{i} \in$ $\left(y_{i}, x_{i+1}\right)$ such that $D \alpha\left(z_{i}\right)=0$. In the same way, we find, for each $1 \leqslant m \leqslant n$, $(n+1-m)$ distinct zeroes of $D^{m} \alpha$ in $\left(y_{0}, x_{n}\right)$. In particular, let x_{*} be a zero of $D^{n} \alpha$ in $\left(y_{0}, x_{n}\right)$. By the hypothesis of the proposition, there exists $0 \leq m<n$ such that $\left|D^{m} \alpha\left(x_{*}\right)\right| \geq 1$. On the other hand, there exists $y_{*} \in\left[y_{0}, x_{n}\right]$ such that $\left|D^{m} \alpha\left(y_{*}\right)\right| \leq \gamma$. As $\left|D^{m+1} \alpha\right| \leq b$ (and we may assume $\gamma<1 / 2$), we must have $x_{n}-y_{0} \geq\left|x_{*}-y_{*}\right| \geq$ $\frac{1}{2} b^{-1}$.

We can now prove the proposition. By Lemma 0.3 , the open set $I(\gamma)$ has finitely many connected components. Let $J_{i}=\left(x_{i}, y_{i}\right), 0 \leqslant i \leqslant N$, be those components, written in ascending order. From Lemma 0.4 , we have $\left|J_{i}\right| \leq C_{0}(n) \gamma^{1 / n}$ for every $i \in[0, N]$. On the other hand, from Lemma 0.5 , we have $x_{i+n}-x_{i} \geq \frac{1}{2} b^{-1}$ for $0 \leqslant i<i+n \leqslant N$. If $N<n$, we have $|I(\gamma)| \leq n C_{0}(n) \gamma^{1 / n}$. If $N \geq n$, we have $|I| \geq\left\lfloor\frac{N}{n}\right\rfloor \frac{1}{2} b^{-1}$, hence

$$
|I(\gamma)| \leq N C_{0}(n) \gamma^{1 / n} \leq 2 n\left\lfloor\frac{N}{n}\right\rfloor C_{0}(n) \gamma^{1 / n} \leq 4 n C_{0}(n) b|I| \gamma^{1 / n}
$$

The proof of the proposition is complete.
We will now prove Pyartli's theorem. We use the Euclidean operator norm in the definition of non-planarity. Let $\tau>n(n-2)$ and let $\gamma>0$.

Let $k \in \mathbb{Z}^{n}, k \neq 0$. Define $\alpha_{k}(t):=<\frac{k}{\|k\|}, \alpha(t)>$, and ${ }^{1}$

$$
I_{k}:=\left\{t \in I,\left|\alpha_{k}(t)\right| \leqslant \gamma\|k\|^{-n-\tau}\right\} .
$$

Let $A(t)$ be the $n \times n$ matrix whose columns are $\alpha(t), D \alpha(t), \ldots D^{n-1} \alpha(t)$. From $\|A(t)\| \leq$ $b,\left\|A(t)^{-1}\right\| \leq a^{-1}$, we get, for every $t \in I$

$$
\frac{a}{\sqrt{n}} \leq \frac{1}{\sqrt{n}}\left(\sum_{0}^{n-1} D^{m} \alpha_{k}(t)^{2}\right)^{1 / 2} \leq \max _{0 \leq m \leq n-1}\left|D^{m} \alpha_{k}(t)\right| \leq\left(\sum_{0}^{n-1} D^{m} \alpha_{k}(t)^{2}\right)^{1 / 2} \leq b
$$

From Proposition 0.2 we may therefore estimate the measure of I_{k} :

$$
\left|I_{k}\right| \leqslant C\left(1+\sqrt{n} \frac{b}{a}|I|\right)\left(\sqrt{n} \frac{\gamma}{a}\right)^{1 /(n-1)}\|k\|^{-\frac{n+\tau}{n-1}}
$$

As $\tau>n(n-2)$, we have $\frac{n+\tau}{n-1}>n$ and we can sum over $k \in \mathbb{Z}^{n}, k \neq 0$, the estimate above to get the inequality in Pyartli's theorem.

We will now explain how to obtain the two corollaries.

[^0]Corollary 0.6. Let K be a compact subset of \mathbb{R}^{m} and let α be a C^{∞} map, defined in a neighborhood of K, taking values in \mathbb{R}^{n}. Let $\tau>n(n-2)$. Assume that there are constants $b>a>0$ such that α is (a, b) weakly non degenerate at each point of K. Then, for each $\gamma>0$, one has

$$
\operatorname{Leb}\{t \in K, \alpha(t) \notin H D C(\gamma, \tau)\}<C \frac{b}{a}\left(\frac{\gamma}{a}\right)^{1 /(n-1)}
$$

with a constant $C=C(K, n, \tau)$.
Proof. Let $x_{0} \in K$. Let $\nu:(\mathbb{R}, 0) \rightarrow\left(\mathbb{R}^{m}, x_{0}\right)$ be a C^{∞} map such that $\alpha \circ \nu$ is (a, b) non planar at 0 . The vector $D \nu(0)$ is different from 0 . Let $\ell: \mathbb{R}^{m-1} \rightarrow \mathbb{R}^{m}$ a linear map whose image supplements $\mathbb{R} D \nu(0)$ in \mathbb{R}^{m}. Then the differential at $(0,0)$ of the map $g:\left(t, t^{\prime}\right) \mapsto \nu(t)+\ell\left(t^{\prime}\right)$ is invertible. Let $\varepsilon_{0}>0$ be small enough to have

- the map g is a diffeomorphism from $\left[-\varepsilon_{0}, \varepsilon_{0}\right]^{m}$ onto a neighborhood $V\left(x_{0}\right)$ of x_{0};
- for each $t^{\prime} \in\left[-\varepsilon_{0}, \varepsilon_{0}\right]^{m-1}$, the map $t \mapsto \alpha \circ g\left(t, t^{\prime}\right)$ is $\left(\frac{a}{2}, 2 b\right)$ non planar at each $t \in\left[-\varepsilon_{0}, \varepsilon_{0}\right]$.
From Pyartli's theorem, there exists $C_{0}=C\left(x_{0}, n, \tau\right)$ such that, for each $t^{\prime} \in\left[-\varepsilon_{0}, \varepsilon_{0}\right]^{m-1}$, each $\gamma>0$, one has

$$
\operatorname{Leb}\left\{t \in\left[-\varepsilon_{0}, \varepsilon_{0}\right], \alpha \circ g\left(t, t^{\prime}\right) \notin H D C(\gamma, \tau)\right\}<C \frac{b}{a}\left(\frac{\gamma}{a}\right)^{1 /(n-1)}
$$

From Fubini's theorem, one gets

$$
\operatorname{Leb}\left\{x \in V\left(x_{0}\right), \alpha(x) \notin H D C(\gamma, \tau)\right\}<C_{1} \frac{b}{a}\left(\frac{\gamma}{a}\right)^{1 /(n-1)}
$$

One concludes observing that the compact subset K is contained in a finite union of neighborhoods $V\left(x_{i}\right)$.

Corollary 0.7. Let $\gamma>0, \tau_{0} \geq 0, M>m$. There exists τ_{1}, depending only on n, M, τ_{0}, such that, for any germ $\alpha:\left(\mathbb{R}^{m}, 0\right) \rightarrow \mathbb{R}^{n}$ which is weakly non degenerate at 0 and satisfies $\alpha(0) \in H D C\left(2 \gamma, \tau_{0}\right)$, one has, for small $\varepsilon>0$

$$
\operatorname{Leb}\left\{x \in \mathbb{R}^{m},\|x\|<\varepsilon, \alpha(x) \notin H D C\left(\gamma, \tau_{1}\right)\right\}=O\left(\varepsilon^{M}\right)
$$

Proof. Let $b>a>0$ be constants such that α is (a, b) weakly non degenerate at 0 . Let $\nu:(\mathbb{R}, 0) \rightarrow\left(\mathbb{R}^{m}, 0\right), \ell: \mathbb{R}^{m-1} \rightarrow \mathbb{R}^{m}, g\left(t, t^{\prime}\right):=\nu(t)+\ell\left(t^{\prime}\right), \varepsilon_{0}>0$ be as in the proof of Corollary 0.6. Let $\varepsilon_{1}>0$ be small enough so that the ball $\left\{\|x\|<\varepsilon_{1}\right\}$ is contained in $g\left(\left[-\varepsilon_{0}, \varepsilon_{0}\right]^{m}\right)$. For $k \in \mathbb{Z}^{n}, k \neq 0$, denote $\alpha_{k}(x):=<\frac{k}{\|k\|}, \alpha(x)>$. With $\tau_{1} \geq \tau_{0}$ to be chosen later, define

$$
E_{k}:=\left\{x \in \mathbb{R}^{m},\left|\alpha_{k}(x)\right| \leq \gamma\|k\|^{-n-\tau_{1}}\right\}
$$

Let $\varepsilon<\varepsilon_{1}$. For $\|x\|<\varepsilon$, one has $\left|\alpha_{k}(x)-\alpha_{k}(0)\right| \leq C \varepsilon$ and $\left|\alpha_{k}(0)\right| \geq 2 \gamma\|k\|^{-n-\tau_{0}}$. This implies $\left|\alpha_{k}(x)\right| \geq \gamma\|k\|^{-n-\tau_{0}}$ if $C \varepsilon<\gamma\|k\|^{-n-\tau_{0}}$. Therefore E_{k} does not intersect the ball $\{\|x\|<\varepsilon\}$ when $\|k\|<\rho_{0} \varepsilon^{-\frac{1}{n+\tau_{0}}}$, with $\rho_{0}:=\left(\frac{\gamma}{C}\right)^{\frac{1}{n+\tau_{0}}}$.

On the other hand, one has from Proposition 0.2, as in the proof of Pyartli's theorem, for every $t^{\prime} \in\left[-\varepsilon_{0}, \varepsilon_{0}\right]^{m-1}$

$$
\operatorname{Leb}\left\{t \in\left[-\varepsilon_{0}, \varepsilon_{0}\right], g\left(t, t^{\prime}\right) \in E_{k}\right\} \leq \rho_{1}\|k\|^{-\frac{n+\tau_{1}}{n-1}}
$$

with ρ_{1} depending on γ, a, b, ν. By Fubini's theorem, one gets

$$
\operatorname{Leb}\left(E_{k} \cap\{\|x\|<\varepsilon\}\right)<\rho_{2}\|k\|^{-\frac{n+\tau_{1}}{n-1}}
$$

Summing over $\|k\| \geq \rho_{0} \varepsilon^{-\frac{1}{n+\tau_{0}}}$ gives
$\operatorname{Leb}\left\{x \in \mathbb{R}^{m},\|x\|<\varepsilon, \alpha(x) \notin H D C\left(\gamma, \tau_{1}\right)\right\} \leqslant \rho_{3} \varepsilon^{\frac{1}{n+\tau_{0}}\left(\frac{n+\tau_{1}}{n-1}-n\right)}$.
When τ_{1} is large enough, the exponent of ε is $>M$.

[^0]: ${ }^{1}$ We used the sup norm on \mathbb{Z}^{n} in the definition of the diophantine condition $H D C(\gamma, \tau)$. Here, it is more practical to use the Euclidean norm. This changes γ by a constant depending only on n and τ.

