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Theorem 0.1. Let α : I → Rn a map which is (a, b) non-planar at each point of I . Let
τ > n(n− 2). There exists a constant C = C(τ) such that, for all γ > 0, one has

Leb{t ∈ I, α(t) /∈ HDC(γ, τ)} < C(1 +
b

a
|I|)

(γ
a

)1/(n−1)
.

We will first prove the following

Proposition 0.2. Let n > 1 and let α : I → R a Cn map on a compact interval I . Assume
that there exist constants b > a > 0 such that, for any t ∈ I , one has

b ≥ max
0≤m≤n

|Dmα(t)| ≥ a.

Then one has, for any γ > 0

Leb{t ∈ I, |α(t)| < γ} < C(1 +
b

a
|I|)

(γ
a

)1/n
,

where the constant C depends only on n.

Proof. Replacing α, γ, b by α/a, γ/a, b/a, we may assume that a = 1. We may also
assume thatCbγ1/n < 1: otherwise, the right-hand side in the inequality of the proposition
is > |I| and there is nothing to prove. Denote by I(γ) the open set {t ∈ I, |α(t)| < γ}.

Lemma 0.3. The open set I(γ) has at most finitely many components.

Proof. Otherwise, there would exist ε ∈ {−1,+1} and a sequence (xj) of points of I ,
converging to a limit x∗, such that α(xj) = εγ for all j ≥ 0. Then we have also α(x∗) =
εγ. By Taylor’s formula (or Rolle’s theorem), we must have Dmα(x∗) = 0 for all 1 ≤
m ≤ n. This contradicts the hypothesis of the proposition. �

Lemma 0.4. Each connected component of I(γ) has length ≤ C0(n)γ
1/n.

Proof. Assume that x0 < x1 < . . . < x2n−1 are points of I(γ) with xj+1−xj = 2γ1/n for
all 0 6 j < 2n − 1. By the mean value theorem, there exists, for every 0 6 j 6 2n−1 − 1,
a point x(1)j ∈ (x2j , x2j+1) such that

|Dα(x(1)j )| = |α(x2j+1)− α(x2j)|
xj+1 − xj

< γ
n−1
n .

We also have x(1)j+1 − x
(1)
j > 2γ1/n for 0 6 j < 2n−1 − 1. Proceeding in the same way,

we construct, for each 1 ≤ m ≤ n, a sequence x(m)
j , 0 6 j 6 2n−m − 1 such that

• x0 < x
(m)
j < x2n−1;

• |Dmα(x
(m)
j )| < γ

n−m
n ;

• x(m)
j+1 − x

(m)
j > 2γ1/n for 0 6 j < 2n−m − 1.
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Let x∗ := x
(n)
0 . We have |Dnα(x∗)| < 1, hence, from the hypothesis of the propo-

sition, there exists 0 6 m < n such that |Dmα(x∗)| > 1. On the other hand, we have
|Dmα(x

(m)
0 )| < γ

n−m
n . This is not compatible with |x∗−x(m)

0 | < 2nγ1/n, |Dm+1α| 6 b,
Cbγ1/n < 1 when C is large enough. �

Lemma 0.5. Let J0 = (x0, y0), . . . , Jn = (xn, yn) be n+ 1 consecutive connected com-
ponents of I(γ). We have xn − y0 ≥ 1

2b
−1.

Proof. One has α(yi) = α(xi+1) for 0 ≤ i < n. By Rolle’s theorem, there exists zi ∈
(yi, xi+1) such that Dα(zi) = 0. In the same way, we find, for each 1 6 m 6 n,
(n + 1 − m) distinct zeroes of Dmα in (y0, xn). In particular, let x∗ be a zero of Dnα
in (y0, xn). By the hypothesis of the proposition, there exists 0 ≤ m < n such that
|Dmα(x∗)| ≥ 1. On the other hand, there exists y∗ ∈ [y0, xn] such that |Dmα(y∗)| ≤ γ.
As |Dm+1α| ≤ b (and we may assume γ < 1/2), we must have xn − y0 ≥ |x∗ − y∗| ≥
1
2b
−1. �

We can now prove the proposition. By Lemma 0.3, the open set I(γ) has finitely many
connected components. Let Ji = (xi, yi), 0 6 i 6 N , be those components, written in
ascending order. From Lemma 0.4, we have |Ji| ≤ C0(n)γ

1/n for every i ∈ [0, N ]. On
the other hand, from Lemma 0.5, we have xi+n − xi ≥ 1

2b
−1 for 0 6 i < i + n 6 N . If

N < n, we have |I(γ)| ≤ n C0(n)γ
1/n. If N ≥ n, we have |I| ≥ bNn c

1
2b
−1, hence

|I(γ)| ≤ N C0(n)γ
1/n ≤ 2nbN

n
cC0(n)γ

1/n ≤ 4nC0(n)b|I|γ1/n.

The proof of the proposition is complete. �

We will now prove Pyartli’s theorem. We use the Euclidean operator norm in the defi-
nition of non-planarity. Let τ > n(n− 2) and let γ > 0.

Let k ∈ Zn, k 6= 0. Define αk(t) :=< k
‖k‖ , α(t) >, and1

Ik := {t ∈ I, |αk(t)| 6 γ‖k‖−n−τ}.

LetA(t) be the n×nmatrix whose columns areα(t), Dα(t), . . . Dn−1α(t). From ‖A(t)‖ ≤
b, ‖A(t)−1‖ ≤ a−1, we get, for every t ∈ I

a√
n
≤ 1√

n
(

n−1∑
0

Dmαk(t)
2)1/2 ≤ max

0≤m≤n−1
|Dmαk(t)| ≤ (

n−1∑
0

Dmαk(t)
2)1/2 ≤ b

From Proposition 0.2 we may therefore estimate the measure of Ik:

|Ik| 6 C(1 +
√
n
b

a
|I|)

(√
n
γ

a

)1/(n−1)
‖k‖−

n+τ
n−1 .

As τ > n(n− 2), we have n+τ
n−1 > n and we can sum over k ∈ Zn, k 6= 0, the estimate

above to get the inequality in Pyartli’s theorem. �

We will now explain how to obtain the two corollaries.

1We used the sup norm on Zn in the definition of the diophantine condition HDC(γ, τ). Here, it is more
practical to use the Euclidean norm. This changes γ by a constant depending only on n and τ .
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Corollary 0.6. Let K be a compact subset of Rm and let α be a C∞ map, defined in
a neighborhood of K, taking values in Rn. Let τ > n(n − 2). Assume that there are
constants b > a > 0 such that α is (a, b) weakly non degenerate at each point of K. Then,
for each γ > 0, one has

Leb{t ∈ K, α(t) /∈ HDC(γ, τ)} < C
b

a

(γ
a

)1/(n−1)
,

with a constant C = C(K,n, τ).

Proof. Let x0 ∈ K. Let ν : (R, 0) → (Rm, x0) be a C∞ map such that α ◦ ν is (a, b)
non planar at 0. The vector Dν(0) is different from 0. Let ` : Rm−1 → Rm a linear
map whose image supplements RDν(0) in Rm. Then the differential at (0, 0) of the map
g : (t, t′) 7→ ν(t) + `(t′) is invertible. Let ε0 > 0 be small enough to have

• the map g is a diffeomorphism from [−ε0, ε0]m onto a neighborhood V (x0) of x0;
• for each t′ ∈ [−ε0, ε0]m−1, the map t 7→ α ◦ g(t, t′) is (a2 , 2b) non planar at each
t ∈ [−ε0, ε0].

From Pyartli’s theorem, there existsC0 = C(x0, n, τ) such that, for each t′ ∈ [−ε0, ε0]m−1,
each γ > 0, one has

Leb{t ∈ [−ε0, ε0], α ◦ g(t, t′) /∈ HDC(γ, τ)} < C
b

a

(γ
a

)1/(n−1)
.

From Fubini’s theorem, one gets

Leb{x ∈ V (x0), α(x) /∈ HDC(γ, τ)} < C1
b

a

(γ
a

)1/(n−1)
.

One concludes observing that the compact subset K is contained in a finite union of
neighborhoods V (xi). �

Corollary 0.7. Let γ > 0, τ0 ≥ 0, M > m. There exists τ1, depending only on n,M, τ0,
such that, for any germ α : (Rm, 0) → Rn which is weakly non degenerate at 0 and
satisfies α(0) ∈ HDC(2γ, τ0), one has, for small ε > 0

Leb{x ∈ Rm, ‖x‖ < ε, α(x) /∈ HDC(γ, τ1)} = O(εM ).

Proof. Let b > a > 0 be constants such that α is (a, b) weakly non degenerate at 0. Let
ν : (R, 0)→ (Rm, 0), ` : Rm−1 → Rm, g(t, t′) := ν(t) + `(t′), ε0 > 0 be as in the proof
of Corollary 0.6. Let ε1 > 0 be small enough so that the ball {‖x‖ < ε1} is contained in
g([−ε0, ε0]m). For k ∈ Zn, k 6= 0, denote αk(x) :=< k

‖k‖ , α(x) >. With τ1 ≥ τ0 to be

chosen later, define

Ek := {x ∈ Rm, |αk(x)| ≤ γ‖k‖−n−τ1}.
Let ε < ε1. For ‖x‖ < ε, one has |αk(x)− αk(0)| ≤ Cε and |αk(0)| ≥ 2γ‖k‖−n−τ0 .

This implies |αk(x)| ≥ γ‖k‖−n−τ0 if Cε < γ‖k‖−n−τ0 . Therefore Ek does not intersect

the ball {‖x‖ < ε} when ‖k‖ < ρ0ε
− 1
n+τ0 , with ρ0 :=

(
γ
C

) 1
n+τ0 .

On the other hand, one has from Proposition 0.2, as in the proof of Pyartli’s theorem,
for every t′ ∈ [−ε0, ε0]m−1

Leb{t ∈ [−ε0, ε0], g(t, t′) ∈ Ek} ≤ ρ1‖k‖−
n+τ1
n−1 ,

with ρ1 depending on γ, a, b, ν. By Fubini’s theorem, one gets

Leb(Ek ∩ {‖x‖ < ε}) < ρ2‖k‖−
n+τ1
n−1 .
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Summing over ‖k‖ ≥ ρ0ε−
1

n+τ0 gives

Leb{x ∈ Rm, ‖x‖ < ε, α(x) /∈ HDC(γ, τ1)} 6 ρ3 ε
1

n+τ0
(
n+τ1
n−1 −n).

When τ1 is large enough, the exponent of ε is > M . �


