
A PROOF OF JAKOBSON’S THEOREM
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ABSTRACT. We give a proof of Jakobson’s theorem: with positive probability on the
parameter, a real quadratic map leaves invariant an absolutely continuous ergodic invariant
probability measure with positive Lyapunov exponent.
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1. INTRODUCTION

1.1. Statement of the theorem. In the 1960’s, Sinai, Ruelle and Bowen developed the
ergodic theory of uniformly hyperbolic dynamical systems. In the simplest setting of a uni-
formly expanding map of a torus, one obtains a unique ergodic invariant probability mea-
sure absolutely continuous w.r.t. the Lebesgue measure. In the 1970’s, a systematic study
of unimodal maps of the interval was initiated. The quadratic family Pc(x) = x2 + c ap-
peared as a central object, from the point of view of real as well as complex 1-dimensional
dynamics. When the critical point escapes to infinity, the same is true for almost all orbits.
When Pc has an attractive periodic orbit, it attracts almost all non escaping orbits. Does
there exist, for a typical parameter c, another kind of dynamical behavior?

Jakobson [J] provided a positive answer:

Theorem 1.1. There exists a set Λ of positive Lebesgue measure such that, for c ∈ Λ,
the quadratic polynomial Pc has an ergodic invariant absolutely continuous probability
measure with positive Lyapunov exponent, supported on the interval [Pc(0), P 2

c (0)]. One
has actually

lim
ε→0

ε−1Leb(Λ ∩ [−2,−2 + ε]) = 1.

After Jakobson’s original paper, a number of different proofs appeared [BC1] [Ry].
Jakobson’s theorem was the subject of my lectures at Collège de France in 1997-98. A
first handwritten version of the following notes was produced at the time, and was made
available over the years to those who asked me. It is perhaps not too late for a most
systematic diffusion effort.

1.2. Some facts about quadratic polynomials. We refer to [DH] and [M] as general
references for the results in this subsection, with the exception of the last paragraph.

For a complex parameter c, we denote by Pc the complex quadratic polynomial Pc(z) =
z2+c. Recall that the filled-in Julia setK(c) is the set of points in C which have a bounded
orbit under iteration of Pc. It is a non-empty full compact subset of the complex plane
invariant under Pc. Its boundary is the Julia set J(c). When c is real, we define KR(c) to
be the intersection K(c) ∩ R. Similarly, we define JR(c) := J(c) ∩ R.

The Mandelbrot set M is the set of parameters c such that the critical point 0 of Pc
belongs to K(c). By a theorem of Douady-Hubbard, this happens iff K(c) is connected.
The Mandelbrot set is a non-empty full compact subset of the complex plane. When the
parameter c does not belong to M, K(c) = J(c) is a Cantor set and the restriction of Pc to
Kc is an expanding map conjugated to the full unilateral shift on two symbols.

In the rest of this subsection, we only consider real parameters. The intersection of M
with the real line is equal to the interval [−2, 1/4]. For c > 1/4, the Julia set is disjoint
from the real line. When c < −2, the Julia set is contained in the real line.

For c = 1/4, Pc has a single fixed point at z = 1/2, which is parabolic in the sense that
DPc(1/2) = 1. For c < 1/4, the two fixed points of Pc are real. It is customary to denote
the larger one by β := 1

2 (1 +
√

1− 4c) and the smaller one by α := 1
2 (1−

√
1− 4c). The

fixed point β is repulsive for all c < 1/4. The fixed point α is attractive for 1/4 > c >
−3/4, repulsive for c < −3/4, with a flip bifurcation occurring at c = −3/4. The real
filled-in Julia set KR(c) is equal to the interval [−β, β] for c ∈ [−2, 1/4].
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The basin of any attractive periodic orbit must contain the critical point. Therefore there
is at most one attractive periodic orbit. Let A be the set of real parameters c such that Pc
has an attractive periodic orbit. It is an open subset of (−2, 1/4). When c ∈ A, the real
Julia set JR(c) is an expanding invariant Cantor set equal to the complement in KR(c) of
the basin of the attractive periodic orbit. Conversely, a parameter c ∈ [−2, 1/4] such that
the real Julia set is expanding belongs to A.

A deep theorem conjectured by Fatou and proved independently by Graczyk-Swiatek
([GS1], [GS2]) and Lyubich ([L1]), asserts that the open set A is dense in [−2, 1/4]. Their
result is posterior to Jakobson’s theorem. Observe that Jakobson’s theorem implies that
A does not have full Lebesgue measure in [−2, 1/4]. More recently, Lyubich has shown
([L2]) that almost all parameters in [−2, 1/4] either belong to A or satisfy the conclusions
of Jakobson’s theorem.

1.3. Plan of the proof. We describe now the content of the rest of this paper.
In Section 2, we introduce some of the main concepts for the proof of Jakobson’s theo-

rem. Denote by A the central interval whose endpoints are the negative fixed point α and
its inverse image −α. An interval J is regular of order n > 0 if there is a branch gJ of
P−nc which is a diffeomorphism on some fixed combinatorially defined neighborhood Â
of A and sends A onto J . A parameter c is regular if the central interval is covered by
regular intervals of order 6 n, except for a set of exponentially small measure.

Regular parameters satisfy the conclusions of Jakobson’s theorem. One uses the max-
imal regular intervals contained in the central interval to define on A a Bernoulli map T
which is a return map for P (but not the first return map). It is very classical that such a
map has a unique absolutely continuous invariant probability measure with analytic den-
sity. As the return time relating T to Pc is integrable, one is able to spread the T -invariant
measure on A into a P -invariant measure supported on [Pc(0), P 2

c (0)]. This measure is
still absolutely continuous. Its density w.r.t. the Lebesgue measure is integrable but not
square-integrable. The Lyapunov exponent of this measure is positive.

In the last three sections of the paper, we assume that the parameter c is very close to
−2 (and > −2). This amounts to say that the return time M of the critical point in the
central interval A is large. In the first part of Section 3, the first iterates of Pc for such
a parameter are considered. It is shown in particular that , for 2 6 n 6 M − 2, there
are a couple of maximal regular intervals C±n of order n contained in A. These intervals
are called the simple regular intervals. Their union covers A except for a small symmetric
interval around 0 of approximate size 2−M .

To go further, we introduce the main definition of the paper: a parameter c is said to
be strongly regular if the postcritical orbit can be decomposed into regular returns into the
central interval A, and if most of these returns occur in the simple regular intervals C±n .
More specifically we ask that the fraction of total time spent in non simple returns is at
most 2−

√
M (to compare with the approximate size 2−M of the gap left out by the simple

regular intervals). For a strongly regular parameter, the derivatives of the iterates along the
postcritical orbit grow exponentially fast in a very controlled way.

In Section 4, we prove that strongly regular parameters are regular, and thus satisfy the
conclusions of Jakobson’s theorem. For n > 0, an interval J is said to be n-singular if
J is contained in A, its endpoints are consecutive elements of P−n−1

c (α), and J is not
contained in a regular interval of order 6 n. One has to show that, if c is a strongly
regular parameter, the union of all n-singular intervals has exponentially small Lebesgue
measure. This is done by induction on n, the starting point being provided by the estimates
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on simple regular intervals of Section 3. We divide the n-singular intervals into several
classes: peripheral , lateral, and central. The central ones are so close to 0 that the crudest
estimate of the Lebesgue measure of their union is sufficient. On the other hand, each
peripheral or lateral n-singular interval J is dynamically related to a m-singular interval
J∗ with m < n. The control on the postcritical orbit (Section 3) allows to conclude the
induction step.

In the last Section, we prove that, in the parameter interval (c(M), c(M−1)) where the
return time of 0 in A is exactly equal to M , most parameters are strongly regular. More
precisely, for any θ < 1/2, the set of non strongly regular parameters in (c(M), c(M−1))
has relative Lebesgue measure O(2−θM ).

We first transfer to parameter space the "puzzle" structure of phase space. In order to
do this we estimate the variation w.r.t. the parameter of the relevant inverse branches of
the iterates of Pc. The next step is to transfer to parameter space the measure estimates of
Section 4 on the measure of n-singular intervals. There is a rather subtle point here: while
it is easy to transfer estimates for single intervals, for sets which are union of many disjoint
components, we need to control the sum of the maximal measure (w.r.t. the parameter) of
the components rather than the maximal measure of the set itself. Fortunately, the com-
binatorial nature of the arguments of Section 4 allows this control, except for the central
n-singular intervals where a rough but sufficient control of the number of components is
used.

The last part of the proof is an easy and classical large deviation argument: once we
know that the order of a given regular return of the postcritical orbit in A is > n with
exponentially small probability, it is easy to control the measure of non strongly regular
parameters.

2. REGULAR PARAMETERS AND BERNOULLI MAPS

2.1. Regular points and regular parameters. Consider a parameter c ∈ [−2, 0) for the
real quadratic family. The polynomial Pc has two fixed points α, β which verify −β <
α < 0. The critical value c = Pc(0) satisfies −β 6 Pc(0) < α .

Therefore, there exists α(1) ∈ (−β, α) such that P−1c(−α) = {α(1),−α(1)}. We
define

A := [α,−α] , Â := (α(1),−α(1)) .

Definition 2.1. Let c be a parameter in [−2, 0), and let n be a positive integer. A point
x ∈ [−β, β] is n-regular if there exists an integer m, with 0 < m 6 n, and an open
interval Ĵ with x ∈ Ĵ , such that the restriction of Pmc to Ĵ is a diffeomorphism onto Â and
Pmc (x) ∈ A.

Definition 2.2. A parameter c ∈ [−2, 0) is regular if there exist θ, C > 0 such that, for
every n > 0 :

Leb{x ∈ A, x is not n−regular} 6 C e−θn.

The set of regular parameters is denoted by R.

Theorem 2.3. The set of regular parameters has positive Lebesgue measure. More pre-
cisely, we have

lim
ε→0

ε−1Leb(R ∩ [−2,−2 + ε]) = 1 .

Before proving Theorem 2.3, we will in the next subsections describe the dynamics of
Pc for c ∈ R. The classical formulation of Jakobson’s theorem (Theorem 1.1) will then be
an immediate consequence of Theorem 2.3.
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2.2. The special parameter c = −2. The polynomial P := P−2 is a Tchebycheff poly-
nomial :

P (2 cos θ) = 2 cos 2θ .

Define h(x) = (4− x2)−1/2, for x ∈ (−2, 2).

We have α = −1, β = 2, DP (β) = 4, P (0) = −β and :

|DP (x)| = 2
h(x)

h(P (x))

for 0 < |x| < 2. This implies

|DPn(x)| = 2n
h(x)

h(Pn(x))

for all n > 0, x ∈ (−2, 2) such that Pn(x) ∈ (−2, 2).

For later reference, we describe the first return map R to the interval A = [−1, 1].
For n > 0, put

α(n) = −2 cos
π

3.2n
, α̃(n+1) = −2 sin

π

3.2n+1
.

We then have α = α(0) = α̃(1) and

P (±α(n)) = −α(n−1), P (±α̃(n)) = α(n−1), ∀n > 0.

FIGURE 1

The sequence (αn))n>0 is decreasing and converges to −2. The sequence (α̃n))n>1 is
increasing and converges to 0.

The return map R to A is given by (see Fig. )

• R(±α) = P (±α) = α ;
• for n > 1, the restriction of R to (α̃(n−1), α̃(n)] and to [−α̃(n),−α̃(n−1)) is
Pn, with Pn(±α̃(n)) = −α, Pn(±α̃(n−1)) = α. The restriction of Pn to
[α̃(n−1), α̃(n)](resp.[−α̃(n),−α̃(n−1)]) is an orientation preserving (resp. orientation-
reserving) diffeomorphism onto A.
• the critical point 0 does not come back to A, as P (0) = −β.
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We also observe that the restriction of Pn to [α̃(n−1), α̃(n)] (or [−α̃(n),−α̃(n−1)]) ex-
tends to an open neighbourhood of this interval to give a diffeomorphism onto (−β, β).
Therefore, for n > 1, the set of n-regular points in A is exactly [α, α̃(n)] ∪ [−α̃(n),−α].
The complement inA is (α̃(n),−α̃(n)). The Lebesgue measure of this interval is 2|α̃(n)| =
4 sin π

3.2n . Hence c = −2 is a regular parameter.

2.3. Regular intervals. Let c be a parameter in [−2, 0) and let n be a nonnegative integer.

Definition 2.4. A compact interval J ⊂ [−β, β] is regular of order n if there exists an
open interval Ĵ ⊃ J such that the restriction of Pnc to Ĵ is a diffeomorphism onto Â, with
Pnc (J) = A. The integer n and the interval Ĵ are uniquely determined by this property.
We write n = ord(J) for the order of J , and gJ : Â → Ĵ for the diffeomorphism inverse
to Pnc /Ĵ .

For n > 0, let
∆n = P−nc ({−α,+α}) = P−(1+n)

c ({α}) .
We have

∆0 = {−α,+α}, ∆1 = {±α,±α(1)}.

Proposition 2.5. Let J = [γ−, γ+] be a regular interval of order n. Let Ĵ = (γ̂−, γ̂+) the
associated neighborhood.

(1) γ− < γ+ are consecutive points of ∆n.
(2) γ̂− < γ− < γ+ < γ̂+ are consecutive points of ∆n+1.
(3) If n > 0 , Pc(J) is regular of order (n− 1).
(4) If J ⊂ A, then Ĵ ⊂ Â ; if J ⊂ int A, then Ĵ ⊂ int A.
(5) Let J ′ is another interval, regular of order n′. If J ⊂ A, the interval J ′′ = gJ′(J)

is regular of order n′′ = n+ n′, with Ĵ ′′ = gJ′(Ĵ), gJ′′ = gJ′ ◦ gJ .
(6) If J ′ is another regular interval, either J ⊂ J ′ holds , or J ′ ⊂ J , or int(J) ∩

int(J ′) = ∅.

Proof. (1) No point of int J is sent by Pnc to ∆0.
(2) No point of Ĵ , except from γ±, is sent by Pnc to ∆1.
(3) Clear.
(4) If α 6 γ− < γ+ 6 −α (resp. α < γ− < γ+ < −α), then the inequalities

α(1) 6 γ̂+ < γ̂− 6 −α(1) (resp. α 6 γ̂+ < γ̂− 6 −α) hold by part (2).
(5) From part (4), the inverse branch gJ′ ◦ gJ is defined on Â.
(6) Assume for instance that the order n′ of J ′ is > n. The endpoints of Pnc (J ′) are

consecutive points of ∆n′−n, hence this interval is either contained inA or disjoint
from intA. In the first case, J ′ is contained in J . In the second case, J ′ is disjoint
from int J .

�

The set of n-regular points is exactly the union of regular intervals with order in (0, n].

2.4. The Bernoulli map associated to a regular parameter. Let c ∈ [−2, 0) be a regular
parameter. Let J be the family of intervals J which are contained in A, regular of positive
order, and maximal with these two properties.These intervals have disjoint interiors.
Let

W =
⋃
J

int J.



A PROOF OF JAKOBSON’S THEOREM 7

As c is regular, we have Leb(A−W ) = 0. Define N : W → N and T : W → A by:

N(x) = ord(J), T (x) = P ord(J)
c (x), for x ∈ int J, J ∈ J.

For every J ∈ J, the restriction of T to int J is a diffeomorphism onto intA, with inverse
gJ .

We can identify the disjoint union

J(∞) =
⊔
m>0

Jm

with the family of all regular intervals contained in A. Indeed, let

J = (J1, . . . , Jm) ∈ Jm.

The composition gJ1
◦ · · · ◦ gJm is the inverse branch associated to a regular interval that

we will also denote by J . For m = 0, we have J = A and ord(J) = 0; otherwise, we
have J ⊂ J1.

2.5. Schwarzian derivative.

Definition 2.6. For aC3 diffeomorphism f from an interval I onto its image, the Schwarzian
derivative Sf is defined by

Sf = D2 log |Df | − 1

2
(D log |Df |)2

=
D3f

Df
− 3

2

(
D2f

Df

)2

= −2|Df |1/2D2(|Df |−1/2).

The composition rule for the Schwarzian derivative is:

S(f ◦ g) = Sf ◦ g.(Dg)2 + Sg.

In particular, if Sf and Sg have the same constant sign, the same holds for S(f ◦ g).
We have also

S(f−1) = −Sf ◦ f−1(Df−1)2.

The Schwarzian derivative Sf vanishes on I iff f is the restriction to I of a Möbius
transformation x 7→ ax+b

cx+d , ad− bc 6= 0.
If 0 /∈ I , and f has the form f(x) = a|x|α + b for some α 6= 0, a 6= 0, then

Sf(x) =
1− α2

2
x−2.

Therefore, for any c ∈ R, n > 0, the Schwarzian derivative S(Pnc ) is negative on any
interval on which Pnc is a diffeomorphism. In particular,

Lemma 2.7. For any regular interval J , the inverse branch gJ satisfies SgJ > 0 on Â.

2.6. Bounded distortion. Let f : I → R be a C3-diffeomorphism onto its image. As-
sume that Sf > 0 on I . Then we have, for all x ∈ I

|D log |Df |(x)| > 2 d(x,R− I)−1.

Taking for f the inverse branch gJ associated to some regular interval J , we obtain

Lemma 2.8. For any regular interval J , the inverse branch gJ satisfies

|D log |DgJ |(x)| 6 C0,

with C0 = 2|α− α(1)|−1.
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Let g : J → J ′ be a C2 diffeomorphism between bounded intervals. Assume that g
satisfies, for some C > 0, any x ∈ J

(2.1) |D log |Dg|(x)
∣∣∣ 6 C.

Then the derivative has bounded distortion:

(2.2) max
J
|Dg| 6 eC|J|min

I
|Dg|.

It follows that, for any measurable subset E of J ,

(2.3)
Leb(E)

|J |
e−C|J| 6

Leb(g(E))

|J ′|
6

Leb(E)

|J |
eC|J|.

In our setting, let J = (J1, . . . , Jm) ∈ Jm be a regular interval of positive order con-
tained in A. Let J ′ = (J1, . . . , Jm−1).

Proposition 2.9. One has

1− |J |
|J ′|

> e−C0|A|(1− |Jm|
|A|

),

|J | 6 (1− c1)m|A|,
|DTm(x)| > e−C0|A|(1− c1)−m,

for all x ∈ J . In these inequalities, the constant C0 is the same than in Lemma 2.8 and

c1 := e−C0|A|(1− maxJ |J |
|A|

).

Proof. The first inequality is (2.3), with g = gJ′ and E = A−Jm. taking into account the
definition of c1, the second inequality follows. As the mean value ofDTm on J is |A|/|J |,
the last inequality is a consequence of the second one and (2.2). �

2.7. The transfer operator. Let µ be a finite measure on A, which is absolutely contin-
uous with respect to the Lebesgue measure on A. We write dµ = h(x)dx, with density
h ∈ L1(A). The image T∗µ is still absolutely continuous with respect to the Lebesgue
measure; its density Lh is given by the image of h under the transfer operator:

Lh =
∑
J

h ◦ gJ |DgJ |.

More generally, for m > 0, the density Lmh of Tm∗ µ is given by

Lmh =
∑
Jm

h ◦ gJ |DgJ |.

We will actually consider the operator L on a much smaller subspace.
Let U = (C \ R) ∪ Â. For any n > 0, the critical values of Pnc are real. Therefore,

if J is a regular interval, the associated inverse branch gJ extends to a univalent map, still
denoted by gJ , from U to C, which satisfies

gJ(C \ R) ⊂ C \ R, gJ(Â) = Ĵ .

For a regular interval J , we denote by εJ the sign of DgJ on Â and define
ḡJ := εJ

|A|
|J| (gJ − gJ(0)). The action of L on holomorphic functions on U is defined

by
Lϕ :=

∑
J

ϕ ◦ gJ . εJ DgJ .
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The family (ḡJ)J∈J(∞) is a normal family on U : it is formed by univalent functions
vanishing and with uniformly bounded derivative at 0 (from the bounded distortion prop-
erty).

Let m be a nonnegative integer. As
∑

Jm |J | = |A|, the series

hm := Lm1 =
∑
Jm

εJDgJ

defines a holomorphic function hm on U . From (2.2), it satisfies

e−C0|A| 6 hm(x) 6 eC0|A| , ∀x ∈ A.
The family (hm)m>0, lying in the closed convex hull of a normal family, is still normal.

Therefore, we can extract from the sequence

h(m) =
1

m

m−1∑
0

hk, m > 0

a subsequence converging uniformly on compact subsets of U to some limit hT . The
function hT is holomorphic on U and still satisfies

(2.4) e−C0|A| 6 hT (x) 6 eC0|A| , ∀x ∈ A.
From the relation

Lh(m) = h(m) +
1

m
(hm − 1),

one obtains at the limit

(2.5) hT (z) =
∑
J

hT ◦ gJ(z). εJ DgJ(z), ∀z ∈ U.

2.8. Absolutely continuous invariant measure for T . Considering only the restriction
of hT to A, define on A the measure dµT := hT (x)dx.

Proposition 2.10. The positive measure µT is invariant under T , ergodic, equivalent to
the Lebesgue measure on A, and has total mass |A|.

Proof. The transfer operator preserves positivity and the L1-norm of positive functions,
hence µT has total mass |A|. The other statements are immediate except for the ergodicity
of µT which is proved by the following standard argument.

Let E be a T -invariant measurable subset of positive measure of A. Let x0 ∈ E =
∩m>0T

−m(E) be a point of density of E. Let ε > 0; as m increases to∞, the length of
the interval J (m) ∈ Jm which contains x0 goes to 0 (Proposition 2.9). As x0 is a point of
density of E, we have, for m large enough

Leb(J (m) ∩ E) > (1− ε) |J (m)|.
Applying (2.3) to gJ(m) gives

Leb(E) > (1− ε eC0|A|) |A|.
As ε is arbitrary, we have proved that µT (A− E) = 0.

�

Recall that T is related to Pc by:

T (x) = PN(x)
c (x), for x ∈W.
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Lemma 2.11. The functions N and log |DT | belong to Lp(µT ) for all 1 6 p <∞.

Proof. Both functions are defined on W . As the parameter c is regular, W has full
Lebesgue measure in A and there exist θ, C > 0 such that, for all n > 0

Leb{x ∈W, N(x) > n) 6 Ce−θn.

Therefore the function N belongs to Lp(µT ) for all 1 6 p <∞.
The function log |DT | is bounded from below by Proposition 2.9. For c ∈ [−2, 0),

we have β 6 2 and |DPc| 6 4 on [−β, β]. This implies log |DT (x)| 6 N(x) log 4 for
x ∈W . Therefore log |DT | belongs to Lp(µT ) for all 1 6 p <∞.

�

Define

NT =
1

|A|

∫
NdµT , λT =

1

|A|

∫
log |DT |dµT , λP =

λT
NT

.

The Birkhoff sum

Nk(x) =

k−1∑
j=0

N(T j(x)), for x ∈
⋂
j<k

T−j(W ) .

is related to the iteration of T through

T k(x) = PNk(x)
c (x) .

Proposition 2.12. One has NT > 2, λT > 2λP > 0 and, for Lebesgue almost every
x ∈ A

lim
k→+∞

1

k
Nk(x) = NT ,

lim
k→+∞

1

k
log |DT k(x)| = λT ,

lim
k→+∞

1

n
log |DPnc (x)| = λP .

Proof. The return time to A is everywhere > 2 hence NT > 2. The inequality λT >
log(1− c1)−1 > 0 is a consequence of Proposition 2.9. As µT is ergodic and equivalent to
the Lebesgue measure onA, the assertions aboutNk and log |DT k| follow from Birkhoff’s
ergodic theorem. They imply, for almost all x ∈ A

lim
k→+∞

1

Nk(x)
log |DPNk(x)

c (x)| = λP .

As |DPc| 6 4 on [−β, β], the intermediate derivatives are controlled by

log |DPNk+1
c | − (Nk+1 − n) log 4 6 log |DPnc | 6 log |DPNkc |+ (n−Nk) log 4

for Nk 6 n 6 Nk+1. As

lim
k→+∞

Nk+1(x)

Nk(x)
= 1

holds for almost all x ∈ A, the last assertion of the proposition is proven.
�
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2.9. Absolutely continuous invariant measure for P . From the T -invariant measure µT
on A, we construct a Pc-invariant measure µP on [−β,+β].

Let ϕ be a continuous function on [−β,+β]. For x ∈W , define

Sϕ(x) =
∑

06j<N(x)

ϕ(P jc (x)) .

As |Sϕ(x)| 6 ‖ϕ‖∞ N(x) , the function Sϕ belongs Lp(µT ) for 1 6 p < ∞. The
formula ∫

ϕ dµP =

∫
Sϕ dµT

defines a positive linear form on C0([−β,+β]), hence a finite positive measure µP on
[−β,+β].

Proposition 2.13. The positive measure µP has total mass NT |A|. Its support is the inter-
val [Pc(0), P 2

c (0)]. It is invariant under Pc and ergodic. It is equivalent to the Lebesgue
measure on [Pc(0), P 2

c (0)]. The density hP is given by

hP (x) =
∑
J∈J

∑
06n<ord(J)

1Pnc (J) hT ◦ (Pnc |J)−1 |D((Pnc |J)−1)|.

The density is bounded from below on [Pc(0), P 2
c (0)], integrable but not square-integrable.

Proof. The assertion on the total mass follows immediately from the definition.
As the parameter c is regular, we have Pc(0) < α(1) (otherwise there is no regular

interval of positive order contained in A) and P 2
c (0) > −α, hence⋃

n>0

Pnc (A) = [Pc(0), P 2
c (0)] = Pc(A) ∪ P 2

c (A) .

It follows that the support of µP is the interval [Pc(0), P 2
c (0)].

From
S(ϕ ◦ Pc) = Sϕ+ ϕ ◦ T − ϕ ;

and the invariance of µT under T , one deduces the invariance of µP under Pc.
The measure µP is ergodic: if ϕ is a measurable function invariant under Pc, its re-

striction to A is T -invariant, hence almost everywhere constant on A, and then ϕ is almost
everywhere constant on [Pc(0), P 2

c (0)].
The formula defining µP shows that it is absolutely continuous with respect to the

Lebesgue measure, the density hP being given by the formula of the proposition:

hP (x) =
∑
J∈J

∑
06n<ord(J)

1Pnc (J) hT ◦ (Pnc |J)−1 |D((Pnc |J)−1)|.

The density is integrable as µP has finite mass.
Considering successively the terms with n = 0, 1, 2 in the sum defining hP , we obtain

from (2.4) in subsection 2.7

hP (x) > e−C0|A| a.e. on A ,

hP (x) > 1
2e
−C0|A|(x− Pc(0))−1/2 a.e. on [Pc(0), α] ,

hP (x) > 1
8e
−C0|A|(P 2

c (0)− x)−1/2 a.e. on [−α, P 2
c (0)].

Thus the density hP is bounded from below and not square-integrable. �
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Remark 2.14. For c = −2, we have

hP (x) =
6

π
(4− x2)−1/2, hT = hP |[−1,1].

3. STRONGLY REGULAR PARAMETERS

3.1. The sequence c(m). For c ∈ [−2, 0), we define (cf. subsection 2.2) a sequence
α(m) = α(m)(c) of preimages of the fixed point α of Pc by α(0) := α and

Pc(±α(m)) = −α(m−1), α(m) < 0,

for m > 0.
The sequence (α(m))m>0 is decreasing and converges to −β.

Proposition 3.1. (1) For c ∈ [−2,− 3
2 ], the preimage α(m)(c) belongs to [−2,− 3

2 ]

for m > 0 and satisfies 1/3 6 ∂α(m)/∂c 6 1/2 for m > 0.
(2) For m > 1, the equation Pc(0) = c = α(m−1)(c) has a unique root c(m) in

[−2,− 3
2 ]. This root is simple. The sequence (c(m))m>1 is decreasing. For c ∈

(c(m+1), c(m)), the critical valuePc(0) belongs to the interval (α(m)(c), α(m−1)(c)).
(3) The sequence (c(m))m>1 converges to −2. More precisely, one has, for some

constant C > 0 and all m > 1

C−14−m 6 c(m) + 2 6 C 4−m.

Proof. (1) One has α(m)(c) > −β > −2 for all m > 0, c ∈ [−2, 0).

The fixed point α = α(0) satisfies ∂α/∂c = (1 − 4c)−1/2 ∈ [ 1
3 ,

1
2 ] for c ∈

[−2,− 3
2 ].

From the inductive definition of α(m)(c), one obtains the recurrence relation

(3.1) ∂α(m)/∂c = − 1

2α(m)
(1 + ∂α(m−1)/∂c).

As α(m) ∈ [−2, 0), we obtain inductively that ∂α(m)/∂c > 1/3 for all m > 0.

Therefore, for all m > 0, c ∈ [−2,− 3
2 ], the inequalities α(m)(c) 6 α(1)(c) 6

α(1)(− 3
2 ) hold. For c = −3/2, the preimage α(1) satisfies

(α(1))2 =
3

2
− α = 1 +

1

2

√
7 >

9

4
.

This proves that α(m)(c) 6 −3/2 for all m > 0, c ∈ [−2,− 3
2 ]. This inequality in

turn allows to see inductively from (3.1) that ∂α(m)/∂c 6 1/2 for all m > 0.
(2) The function c 7→ Pc(0) − α(1)(c) takes a negative value at c = −2, a positive

value at c = −3/2 and its derivative on [−2,− 3
2 ] belongs to [ 1

2 ,
2
3 ]. Therefore it

has a unique zero c(2) in [−2,− 3
2 ]. This zero is simple. The critical value Pc(0)

belongs to [−2, α(1)(c)] for c ∈ [−2, c(2)].
For m > 2, the induction step is similar. Consider the function c 7→ Pc(0) −

α(m−1)(c) on the interval [−2,− 3
2 ]. Its derivative belongs to [ 1

2 ,
2
3 ]. Its value at−2

is negative. Its value at c(m−1) is α(m−2)(c(m−1))−α(m−1)(c(m−1)) > 0. There-
fore it has a unique zero c(m) in [−2,− 3

2 ], which belongs to (−2, c(m−1)) and is
simple. The critical value Pc(0) belongs to [−2, α(m−1)(c)] for c ∈ [−2, c(m)].
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(3) The function c 7→ Pc(0) − α(m−1)(c) takes the value −2 − α(m−1)(−2) =
−4 sin2 π

3.2m at c = −2 (cf. subsection 2.2). It vanishes at c(m) and its deriv-
ative in between belongs to [ 1

2 ,
2
3 ]. This implies the estimate of the proposition.

�

3.2. Simple regular intervals. Let M be a large integer. In the rest of the paper, we let
the parameter c vary in the interval (c(M), c(M−1)). The first points of the postcritical orbit
satisfy

α(M−1) < Pc(0) < α(M−2)

−α(M−n−1) < Pnc (0) < −α(M−n), for 1 < n < M,

α < PMc (0) < −α.
Thus M is the first return time of 0 in A.
We define for 1 6 n < M preimages α̃(n) ∈ ∆n by the conditions

Pc(± α̃(n)) = α(n−1), α̃(n) < 0.

The finite sequence defined by these conditions verifies α̃(1) = α and α̃(n) < α̃(n+1)

for 1 6 n < M − 1).
We also define, for 1 < n < M :

C+
n = [α̃(n−1), α̃(n)],

C−n = [−α̃(n),−α̃(n−1)].

Proposition 3.2. For any c ∈ (c(M), c(M−1)), the intervals [α(n), α(n−1)], [−α(n−1),−α(n)]
are regular of order n for any n > 0; the intervals C+

n , C−n are regular of order n for
1 < n < M − 1.

Proof. The restriction of Pnc to [α(n), α(n−1)] is a diffeomorphism onto A. Let θn be the
preimage of 0 by this diffeomorphism, and define also θ0 = 0. The restriction of Pnc to the
neighborhood (−β, θn−1) of [α(n), α(n−1)] is a diffeomorphism onto (Pc(0), β), which
contains Â for M > 2. This shows that [α(n), α(n−1)] is regular of order n. By symmetry,
[−α(n−1),−α(n)] is also regular of order n.

Consider now C±n for 1 < n < M − 1. The restriction of Pn−1
c to the neighborhood

(α(n), θn−2) of [α(n−1), α(n−2)] = Pc(C
±
n ) is a diffeomorphism onto (Pc(0),−α(1)). As

n < M − 1, the critical value is 6 α(n). The two components of P−1
c (α(n), θn−2) are

neighborhoods of C±n and are sent diffeomorphically by Pnc onto (Pc(0),−α(1)) ⊃ Â.
Therefore C+

n and C−n are regular of order n.
�

Definition 3.3. The intervals C±n , for 1 < n < M − 1 are called the simple regular
intervals.

In the rest of the paper, we use the letter C to denote various positive constants inde-
pendent of M . The dependance on M in the estimates will always be explicit.

Proposition 3.4. For c ∈ (c(M), c(M−1)), the following estimates hold:

C−14−M 6 β(c) + Pc(0) 6 C4−M ,

C−14−n 6 α(n)(c)− Pc(0) 6 C4−n, for 0 6 n < M − 2,

C−12−n 6 |α̃(n)(c)| 6 C2−n, for 0 < n < M − 1.
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Proof. One has ∂β/∂c ∈ [− 1
2 ,−

1
3 ] for c ∈ [−2,− 3

4 ], hence the derivative of the function
c 7→ β(c) + Pc(0) belongs to [ 1

2 ,
2
3 ]. It vanishes at c = −2. Thus the first estimate is a

consequence of Proposition 3.1, part (3).
For the bound from below in the second estimate, we have

α(n)(c)− Pc(0) > α(n)(c)− α(n+1)(c) > 4−n−1|A|

as Pn+1
c ([α(n+1)(c), α(n)(c)]) = A and |DPc| 6 4 on [−β, β]. For the bound from

above, the function c 7→ α(n)(c) − Pc(0) has a negative derivative and its value at −2 is
4 sin2 π

3.2n+1 (cf. subsection 2.2).
Finally, the third estimate is an immediate consequence of the second.

�

For c ∈ (c(M), c(M−1)), x ∈ [−β(c), β(c)] we define (cf. subsection2.2)

hc(x) := (β2 − x2)−1/2.

Proposition 3.5. (1) The derivative of Pc satisfies

|DPc(x)| = 2
hc(x)

hc(Pc(x))

(
1 +

β + c

x2

)−1/2

.

(2) For n > 0, x ∈ [α(n), α(n−1)]∣∣∣ log |DPnc (x)| − log 2n
hc(x)

hc(Pnc (x))

∣∣∣ 6 C n 4−M .

(3) For 1 < n < M − 1, x ∈ C±n∣∣∣ log |DPnc (x)| − log 2n
hc(x)

hc(Pnc (x))

∣∣∣ 6 C4n−M .

Proof. (1) The formula for |DPc(x)| is a simple calculation using that β is a fixed
point. Observe that β + c � 4−M from the previous proposition.

(2) In view of the chain rule for derivatives , we have to control log(1+(β+c)(Pmc (x))−2)
for 0 6 m < n. As Pmc (x) is bounded away from 0 under our hypotheses, we
obtain the estimate of the proposition.

(3) Here also we have to control log(1 + (β + c)(Pmc (x))−2) for 0 6 m < n. For
1 < n < M − 1, x ∈ C±n , Pmc (x) is again bounded away from 0 except for
m = 0. In this case, the last estimate in Proposition 3.4 gives the required result.

�

3.3. Strongly regular parameters. We define a new condition on the parameter c ∈
(c(M), c(M−1)), called strong regularity. It will later be shown that strongly regular param-
eters are regular, and that the relative measure of strongly regular parameters in (c(M), c(M−1))
goes to 1 as M goes to +∞.

For any parameter c ∈ (c(M), c(M−1)), regular or not, we may still denote, as in sub-
section 2.4, by:

• J the family of regular intervals, of positive order, contained in A, and maximal
with these properties;

• W the union
⊔

J int J ;
• N : W → N>1 the function equal to the order of J in int J , for all J ∈ J;
• T : W → A the map whose restriction to J ∈ J is equal to P ord(J)

c .
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Lemma 3.6. For every n ∈ [2,M−2], C±n are the two elements of J of order n. Any other
element of J has order > M .

Proof. Let J be an element of J distinct from the C±n , 2 6 n 6 M − 2. Its inte-
rior is disjoint from the C±n , hence it is contained in (α̃(M−2),−α̃(M−2)). For points in
(α̃(M−2),−α̃(M−2)), the return time toA is (M−1) (forC±M−1) orM (for (α̃(M),−α̃(M))).
The order of J is therefore at least (M − 1).

If the order of J was M − 1, J should be equal to C+
M−1 or C−M−1. But Pc(C±M−1)

is equal to the regular interval J = [α(M−2), α(M−3)]. The corresponding inverse branch
satisfies gJ(−α(1)) = α(M−1) < Pc(0). Therefore C+

M−1 and C−M−1 are not regular.
If the order of J was M , J should be contained in [α̃(M),−α̃(M)], because the minimal

return time to intA is 2. But the image PMc ([α̃(M),−α̃(M)]) is equal to [α, T (0)] which
is strictly contained in A.

We conclude that the order of J is > M . �

The first return time of the critical point in A is equal to M . Although 0 is obviously
not contained in any regular interval of positive order, we still define

N(0) := M, T (0) := PMc (0).

Assume that T (0) ∈
⋂

06k<K T
−k(W ) for some integer K > 0. This allows to define

T k+1(0) := T k(T (0)) for 0 6 k 6 K. For 0 < k 6 K, we denote by J(k) the element
of J such that T k(0) ∈ intJ(k). For 0 < k 6 K + 1, we denote by Nk the Birkhoff sum

Nk =

k−1∑
0

N(T `(0)).

We thus have T k(0) = PNkc (0) for 0 < k 6 K + 1.
We can now formulate the main definition of this paper.

Definition 3.7. A parameter c ∈ (c(M), c(M−1)) is strongly regular if T (0) ∈
⋂
k>0 T

−k(W )

and the sequence (N(T k(0)))k>0 satisfies, for all k > 1

(3.2)
∑

0<`6k
N(T `(0))>M

N(T `(0)) 6 2−
√
M

∑
0<`6k

N(T `(0)).

In vague words, the postcritical orbit is a concatenation of regular returns to A, and the
non simple regular returns fill only a very small proportion of total time.

We also need this definition for a finite initial piece of the postcritical orbit.

Definition 3.8. A parameter c ∈ (c(M), c(M−1)) is strongly regular up to levelK if T (0) ∈⋂
06k<K T

−k(W ) and inequality (3.2) holds for 1 < k 6 K.

Remark 3.9. Let c be a strongly regular parameter. Then N(T k(0)) > M holds iff T k(0)
belongs to the central interval (α̃(M−2),−α̃(M−2)) of size � 2−M , and we have in this
case from (3.2) that

N(T k(0)) 6
2−
√
M

1− 2−
√
M

(Nk −M).

In particular, one must have Nk > 2
√
M M . All returns to A of the postcritical orbit are

simple up to time 2
√
M M .
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When T (0) ∈
⋂

06k<K T
−k(W ) , we construct for 0 < k 6 K + 1 a decreasing

sequence B(k) of regular intervals containing the critical value. We define B(1) :=
[α(M−1), α(M−2)] , which is regular of order (M−1) by Proposition 3.2. For 1 6 k 6 K,
B(k + 1) is defined inductively by its inverse branch:

gB(k+1) = gB(k) ◦ gJ(k).

By Proposition 2.5, part (5), B(k + 1) is regular of order Nk+1 − 1.

3.4. Derivatives along the postcritical orbit. Strong regularity implies a strong form of
the Collet-Eckmann condition.

Proposition 3.10. Assume that c ∈ (c(M), c(M−1)) is strongly regular up to level K. Then
we have, for 1 6 k 6 K + 1 and all x ∈ A

| log(|DgB(k)(x)|
hc(gB(k)(x))

hc(x)
) + (Nk − 1) log 2| 6 CM−1Nk.

Proof. Proposition 3.5, part (2), provides the initial step of the induction: for x ∈ A

(3.3) | log(|DgB(1)(x)|
hc(gB(1)(x))

hc(x)
) + (M − 1) log 2| 6 CM 4−M .

The same proposition, part (3), provides a control of the simple regular returns: when J(k)
is simple, for x ∈ A

(3.4) | log(|DgJ(k)(x)|
hc(gJ(k)(x))

hc(x)
) + ord(J(k)) log 2| 6 C 4ord(J(k))−M .

We need a similar control (with a worst error term!) for non simple regular returns.

Lemma 3.11. For all J ∈ J, x ∈ A, one has

(3.5) | log(|DgJ(x)| hc(gJ(x))

hc(x)
) + ord(J) log 2| 6 ord(J) log 2 + C.

Proof. First observe that, as x, gJ(x) belong to A, the term log hc(gJ (x))
hc(x) is bounded. The

derivative DgJ satisfies |DgJ | > 4−ord(J) because |DPc| 6 4 on [−β, β], and also
|DgJ | 6 C from general univalent function theory and gJ(A) ⊂ A. This gives the es-
timate of the lemma. �

Applying the chain rule to gB(k) now gives, for 1 6 k 6 K + 1, x ∈ A

| log(|DgB(k)(x)|
hc(gB(k)(x))

hc(x)
) + (Nk − 1) log 2| 6 R0 +Rs +Rns.

Here, the error term R0 is associated to B(1) and equal to CM 4−M from (3.3). The
error term Rs is associated to the simple J(`), 0 6 ` < k. From (3.4), we obtain

Rs 6 C4−M
M−2∑
n=2

4n#{`, ord(J(`)) = n}

6 C4−M
M−2∑
n=2

4n
Nk
n

6 CM−1Nk.
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Finally, the error term Rs is associated to the non simple J(`), 0 6 ` < k. From (3.5)
and the strong regularity condition, we have

Rns 6
∑

0<`<k
N(T `(0))>M

(C +N(T `(0)))

6 (1 + CM−1) 2−
√
M (Nk −M).

We have indeed R0 +Rs +Rns 6 CM−1Nk. �

4. STRONGLY REGULAR PARAMETERS ARE REGULAR

This paragraph is the central part of the proof. It is devoted to the key measure estimate
needed to prove that strongly regular parameters are regular.

4.1. Intermediate neighborhoods for regular intervals. To every regular interval J of
order n is associated a neighborhood Ĵ which is sent onto Â = (α(1),−α(1)) by Pnc . For
technical reasons, we will need some combinatorially defined intermediate neighborhood
J̆ with J b J̆ b Ĵ .

For n odd (resp. even), let α̂(n) be the element of ∆n which is immediately to the left
(resp. to the right) of α. One has

α̂(0) = −α , α̂(1) = α(1) , α̂(2) = α̃(2) , Pc(α̂
(n+1)) = α̂(n) for n > 0 .

We define Ă := (α̂(3),−α̂(3)). It satisfies A b Ă b Â. For a regular interval J of order n,
we denote by J̆ the image gJ(Ă). The left endpoint of J̆ is the point in ∆n+3 immediately
to the left of the left endpoint of J . Similarly for the right endpoints.

FIGURE 2

4.2. Singular intervals. Let c ∈ (c(M), c(M−1)), and let n > 1. Consider an interval
J ⊂ A which have for endpoints two consecutive points of ∆n. By Proposition 2.5, if
intJ intersects some regular interval of positive order m 6 n, J is contained in such an
interval.

Definition 4.1. Let n > 1. An interval J ⊂ A bounded by two consecutive points of ∆n

is n-singular if it is not contained in a regular interval of positive order 6 n. The set of
n-singular intervals is denoted by E(n).
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The complement in A of the set of n-regular points, whose measure we need to control
in order to prove that c is regular, is equal to the (disjoint) union of the n-singular intervals.

For 2 6 n 6M−2, [α̃(n),−α̃(n)] is the only n-singular interval. For n = M−1 or n =
M , there are three n-singular intervals which are C+

M−1, C−M−1 and [α̃(M−1),−α̃(M−1)].
To analyze inductively the set E(n), we introduce two sequences of combinatorially

defined neighborhoods of the critical point 0. For k > 1, define

A(k) := P−1
c (B(k)), Ă(k) := P−1

c (B̆(k)).

The intervalA(k) belongs to E(Nk): it is equal to the connected component ofA\∆Nk

which contains 0. The left (resp. right) endpoint of Ă(k) is the point immediately to the
left (resp. to the right) of the left (resp. right) endpoint of A(k) in ∆Nk+3.

Let n > M + 3. We assume that the parameter c is strongly regular up to a level K
such that NK + 3 6 n < NK+1 + 3. We divide the set E(n) into several subclasses.

Definition 4.2. An interval J ∈ E(n) is central if J is contained in Ă(K), peripheral if J
and Ă(1) have disjoint interiors, lateral otherwise.

Peripheral PeripheralCentralLateral Lateral

FIGURE 3

We will relate peripheral and lateral elements of E(n) to singular intervals of lower
order, providing the basis of an inductive argument in the end of this section. In the next
proposition, we denote by B0 the regular interval (of order (M − 2)) [α(M−2), α(M−3)].

Proposition 4.3. Let J ∈ E(n) be a peripheral interval. Then J+ := Pc(J) is either of the
form J+ = gB0

(J∗), for some J∗ ∈ E(n−M + 1), or of the form J+ = gB0
◦ gC−2 (J∗),

for some J∗ ∈ E(n−M − 1).

Proof. The interval J is contained in [α̃(M−2),−α̃(M−2)], but disjoint from [α̃(M−1),−α̃(M−1)] =
A(1), hence it is contained in C+

M−1 or C−M−1. Its image J+ is therefore contained in
B0. The image PM−2

c (J+) is bounded by two consecutive points of ∆n−M+1 in A. If
PM−2
c (J+) is (n−M +1)-singular, we take J∗ := PM−2

c (J+) and have J+ = gB0(J∗).
In the other case, PM−2

c (J+) is contained in some J0 ∈ J. The only possibility is in fact
J0 = C−2 : otherwise the points P jc (0), 0 6 j 6M − 1 do not belong to Ĵ0, and the com-
ponent of P−1

c (gB0(J0)) containing J would be a regular interval containing J . Recalling
that J does bot intersect intĂ(1), PM−2

c (J+) is in fact contained in [−α̃(2),−α̂(4)], hence
J∗ := PMc (J+) is contained in [α̃(2),−α].
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Peripheral

FIGURE 4

We claim that J∗ is (n −M − 1)-singular: indeed it is bounded by two consecutive
points of ∆n−M−1 in A, it is not contained in C+

2 , and for any J0 ∈ J distinct from C+
2

the image gB0
◦ gC−2 (Ĵ0) does not contain the critical value; hence the two components of

P−1
c (gB0

◦ gC−2 (J0)) are regular intervals. This shows that J∗ is not contained in J0 and
proves the claim. Therefore J+ = gB0

◦ gC−2 (J∗) has the required form. �

Consider now a lateral interval J ∈ E(n) . For each 1 6 k 6 K, the endpoints of
Ă(k) belong to ∆Nk+3, with Nk + 3 6 n. Therefore either J is contained in Ă(k) or it is
disjoint from int Ă(k). Let k = k(J) be the largest integer such that J ⊂ Ă(k). As J is
neither central nor peripheral, we have 1 6 k < K and J ∩ int Ă(k + 1) = ∅.

Definition 4.4. The integer k(J) is the level of J . The level is stationary if A(k) =
A(k + 1).

Remark 4.5. One never has B(k) = B(k + 1), but these two intervals may have the
same right endpoint, in which case one has A(k) = A(k + 1). This happens exactly
when J(k) = C−2 if gB(k) preserves the orientation, or J(k) = C+

2 if gB(k) reverses the
orientation.

In the next proposition, D+ is the interval [α̂(3), α], which is regular of order 3.

Proposition 4.6. Assume that J ∈ E(n) is lateral of stationary level k, and that gB(k)

reverses the orientation. Then there is an interval J∗ ∈ E(n − Nk − 3), contained in
[α̃(2),−α], such that J+ := Pc(J) is equal to gB(k) ◦ gD+(J∗).

There is a similar statement, replacing D+ by D− := −D+, when gB(k) preserves the
orientation. The precise formulation of this statement and its proof are left to the reader.

Proof. In view of Remark 4.5, we can write J+ = gB(k)(J
′) for some interval J ′ ⊂

[α̂(3), α̂(5)] bounded by two consecutive points of ∆n−Nk . We claim that J∗ := P 3
c (J ′) ⊂

[α̃(2),−α] is (n−Nk−3)-singular. Indeed, otherwise J∗ is contained in an interval J0 ∈ J
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FIGURE 5

distinct fromC+
2 . The image gB(k)◦gD+(Ĵ0) does not contain the critical value. Therefore

one of the two components of P−1
c (gB(k)◦gD+(J0) is a regular interval containing J . This

proves the claim and the proposition. �

Proposition 4.7. Assume that J ∈ E(n) is lateral of non stationary level k, and that gB(k)

reverses (resp. preserves) the orientation. Then

• either there is an interval J∗ ∈ E(n − Nk) such that J+ := Pc(J) is equal to
gB(k)(J

∗);
• or there exist an integer n0 ∈ [2, ord(J(k))+1] and an interval J∗ ∈ E(n−Nk−
n0) such that J+ = gB(k) ◦ gJ0

(J∗), where J0 is the regular interval of order n0

whose right (resp. left) endpoint is immediately to the left (resp. right) of PNkc (0)
in ∆n0 .

When J(k) is simple, the only possible occurrence of the second case is that J0 is the
simple regular interval adjacent to the left (resp. right) endpoint of J(k).

Proof. We assume that gB(k) reverses the orientation, the other case being similar. As
the level k is non stationary, the interval J(k) is distinct from C+

2 . The interval J ′ :=

PNk−1
c (J+) is contained in the left component of Â \ Ĵ(k). We claim that J ′ is actually

contained in A.
Otherwise, J ′ would be contained in D+ = [α̂(3), α], which is regular of order 3. The

image gB(k)(D̂
+) does not contain the critical value, hence one of the two components of

P−1
c (gB(k)(D

+)) would be a regular interval containing J . The claim is proved.
The interval J ′ is bounded by two consecutive points of ∆n−Nk . If J ′ is (n − Nk)-

singular, we define J∗ := J ′ and the first case of the proposition occurs.
For the rest of the proof, we assume that J ′ is not singular. It is therefore contained in

regular intervals of positive order. We choose the smallest such interval J0, with largest
order n0 and define J∗ := Pn0

c (J ′) ⊂ A.
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FIGURE 6

The interval J? is (n −Nk − n0)-singular: it is bounded by two consecutive points of
∆n−Nk−n0

, and for any regular interval of positive order J1 containing J∗ , the image
gJ0

(J1) would contain J ′, be regular of positive order and strictly smaller than J0.
We have shown that J+ has the required form, except for the properties of J0 and n0.
The point PNkc (0) belongs to Ĵ0 − J0: if PNkc (0) was not in Ĵ0, the two components

of P−1
c (gB(k)(J0)) would be regular and J would not be singular. On the other hand,

PNkc (0) belongs to J(k), which is disjoint from J ′. If we had PNkc (0) ∈ J0, J(k) would be
contained in and strictly smaller than J0, contradicting the maximality property of elements
of J.

Write J0 = [γ−, γ+], Ĵ0 = (γ̂−, γ̂+). The points γ+, γ̂+ are consecutive points of
∆n0+1 (Proposition 2.5, part (1)) and PNkc (0) belongs to (γ+, γ̂+). This proves the asser-
tion about the right endpoint of J0.

We have n0 > 2 because 2 is the minimal order of a regular interval contained in A.
Assume that n0 > ord(J(k)). As J0 is not contained in J(k), these two intervals have
disjoint interior. Moreover, the left endpoint of J(k) is equal to the right endpoint of J0.
The left endpoint of J̆(k) belongs to ∆m with m = ord(J(k)) + 3. The same point must
belong to the interior of J0, because J ′ ⊂ J0 is disjoint from the interior of J̆(k). As the
interior of J0 does not intersect ∆n0+1 (Proposition 2.5, part (2)), we have n0 + 1 < m.

Finally, assume that J(k) is a simple regular interval. From the properties of n0, J0

seen above, it is clear that we must have J0 = C+
n if J(k) = C+

n+1 (for 2 6 n < M − 2)
and J0 = C−n if J(k) = C−n−1 (for 2 < n 6M − 2).

�

The next result about the number central n-singular intervals will be useful in the next
section (Proposition 5.9).

Proposition 4.8. (1) When J(K) is simple, there are at most 9 central n-singular
intervals.
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(2) When J(K) is not simple, there are at most 2 C 2−
√
MNK central n-singular inter-

vals.

Proof. Recall that 3 6 n−NK 6 ord J(K) + 2.

(1) The proof is by direct inspection of the different cases. The worst case, assuming
that gB(K) preserves orientation, is when J(K) = C+

M−3 or C+
M−2 and n =

ordJ(K) + 2. Details are left to the reader.
(2) The images by PNKc (a 2-to-1 map from Ă(K) into Ă) of the endpoints of the

central n-singular intervals belong to ∆n−NK . The cardinality of ∆m is at most
2m+1. Therefore, when J(K) is not simple, the cardinality of ∆n−NK is at most
2C 2−

√
MNK . This is also a bound (with a different constant C) for the number of

central n-singular intervals.

�

4.3. Measure estimates. From the combinatorial structure of the set of n-singular inter-
vals described in the previous subsection, we derive inductive estimates on the sum of the
lengths of n-singular intervals, which will be denoted by E(n).

The assumptions in this subsection are the same than in the previous one: n is an integer
>M+3, c is a parameter in (c(M), c(M−1)) which is strongly regular up to a levelK such
that NK + 3 6 n < NK+1 + 3.

The first result will control the total measure of central n-singular intervals.

Proposition 4.9. For 1 6 k 6 K + 1, the length of the interval Ă(k) satisfies

| log |Ă(k)|+ 1

2
(Nk +M) log 2| 6 CM−1Nk.

Proof. From general univalent function theory ([P]), the length of B̆(k) , and the length of
each component C of B̆(k) \B(k), are controlled by the length of B(k):

|B̆(k)| 6 C|B(k)|, |C| > C−1|B(k)|.

It follows that
C−1|B(k)|1/2 6 |Ă(k)| 6 C−1|B(k)|1/2.

The length of |B(k)| is controlled by the estimate of Proposition 3.10: for x ∈ A

| log(|DgB(k)(x)|
hc(gB(k)(x))

hc(x)
) + (Nk − 1) log 2| 6 CM−1Nk.

The function hc satisfies C−1 6 hc(x) 6 C for x ∈ A and C−12M 6 hc(y) 6 C 2M for
y ∈ B(k) (cf. Proposition 3.4). We obtain

(4.1) | log |B(k)|+ (Nk +M) log 2| 6 CM−1Nk,

which implies the estimate of the proposition. �

We next deal with the sum Ep(n) of the lengths of peripheral n-singular intervals.

Proposition 4.10. The total length of peripheral n-singular intervals satisfies

Ep(n) 6 C 2−ME(n−M − 1).
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Proof. Let J be a peripheral n-singular interval. According to Proposition 4.3, J+ :=
Pc(J) is either of the form gB0(J∗), for some J∗ ∈ E(n−M + 1), or gB0 ◦ gC−2 (J∗), for

some J∗ ∈ E(n−M − 1). Here, B0 is the interval [α(M−2), α(M−3)]. As J is peripheral,
any x ∈ J satisfies |x| > C−12−M (Proposition 4.9, with k = 1). We have therefore
|J | 6 C 2M |J+|. On the other hand, by Proposition 3.5, the derivatives of the inverse
branches involved satisfy, for x ∈ J+

|DgB0
(PM−2
c (x))| 6 C 4−M ,

in the first case, and
|D(gB0

◦ gC−2 )(PMc (x))| 6 C 4−M

in the second case. We obtain

Ep(n) 6 C 2−M (E(n−M + 1) + E(n−M − 1)) 6 C 2−ME(n−M − 1)

. �

Let 1 6 k < K. We denote by E`(n, k) the sum of the lengths of those n-singular
intervals which are lateral of level k.

The next proposition deals with the case of stationary level.

Proposition 4.11. Assume that k is stationary. The quantity E`(n, k) satisfies

E`(n, k) 6 C 2−1/2(Nk+M)2CM
−1NkE(n−Nk − 3).

Proof. The proof is very similar to the proof of the previous proposition. We assume for
instance that gB(k) reverses orientation. Let J be a n-singular interval which is lateral of
stationary level k. According to Proposition 4.6, the image J+ = Pc(J) is equal to gB(k) ◦
gD+(J∗), for some J∗ ∈ E(n −Nk − 3). Moreover, J∗ is contained in [α̃(2),−α] hence
gD+(J∗) is contained in [α̂(3), α̂(5)], while PNkc (0) belongs to [α, α̃(2)]. This implies
(using the bounded distortion property of univalent functions) that x − β > x − Pc(0) >
C−1|B(k)| for x ∈ J+. We obtain |J | 6 C|B(k)|1/2|J∗|. The length |B(k)| has been
estimated in (4.1). This estimate leads to the inequality of the proposition.

�

Finally we consider the case of a non stationary level.

Proposition 4.12. Assume that k is non stationary. The quantity E`(n, k) satisfies

E`(n, k) 6 C ord J(k) 2 ord J(k)2−1/2(Nk+M)2CM
−1NkE(n−Nk+1 − 1).

When ord J(k) < M , we get the better estimate

E`(n, k) 6 C 2−1/2(Nk+M)2CM
−1Nk(2

1
2 ord J(k)E(n−Nk)+2−

1
2 ord J(k)E(n−Nk+1−1)).

Proof. Let J be a n-singular interval which is lateral of non stationary level k. According
to Proposition 4.7, one may write J+ := Pc(J) = gB(k)(J

′), where either J ′ =: J∗

is (n − Nk)-singular or J ′ is of the form gJ0
(J∗) for some regular interval J0 uniquely

determined by its order n0 ∈ [2, ord J(k) + 1] , and some (n−Nk −n0)-singular interval
J∗.

As |DgJ0 | 6 C, the length of J+ satisfies in all cases |J+| 6 C maxA |DgB(k)| |J∗|.
On the other hand, as J does not intersect the interior of Ă(k + 1), one has, for x ∈ J+

x− Pc(0) > C−1|J(k)| |B(k)|.
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This gives |J | 6 C|J(k)|−1/2 |B(k)|1/2|J∗|. As |DPc| 6 4 we have |J(k)| >
4−ord J(k)|A|. Recalling the estimate for DgB(k) in Proposition 3.10, we obtain

|J | 6 C 2ord J(k)2−1/2(Nk+M)2CM
−1Nk |J∗|.

To deduce the inequality of the proposition, we have just to observe that the sequence
E(m) is non-increasing, and that there is only one choice of J0 for each order n0 ∈
[2, Nk+1 −Nk + 1].

When J(k) is simple, we use the better estimates |J(k)| > C−12−ord J(k), |DgJ0 | 6
C2−ord J(k) (Proposition 3.5). From Proposition 4.7 there is only one possibility for
(J0, n0). This implies the second inequality. �

4.4. Measure of non n-regular points. The size of all types of n-singular intervals is
now under control.

Proposition 4.13. (1) For 2 6 n 6M − 2, one has, for all c ∈ (c(M), c(M−1))

E(n) = |[α̃(n),−α̃(n)]| 6 4 sin
π

3.2n
.

(2) Assume that c ∈ (c(M), c(M−1)) is strongly regular up to level K. Let θ ∈ (0, 1
2 ).

If M >M0(θ) is large enough, one has, for all M − 2 < n < NK+1 + 3

E(n) 6 2−θn.

Proof. (1) For 2 6 n 6 M − 2, the only n-singular interval is [α̃(n),−α̃(n)]. Its
length for c = −2 is 4 sin π

3.2n (subsection 2.2). By Proposition 3.1, part (1),
the map c → α(n−1) − Pc(0) is decreasing on [−2, 3

2 ], hence the same is true of
c→ |α̂(n)|.

(2) For 2 6 n 6M − 2, by the first part of the proposition, one obtains

E(n) 6
4π

3
2−n 6 3.2−n/2.

For M − 2 < n 6 2M − 9, one gets

E(n) 6 E(M − 2) 6
16π

3
2−M 6 2

9
2−M 6 2−n/2.

We may now assume that n > 2M − 8. Replacing if necessary K by a smaller
integer, we may also assume that NK + 3 6 n < NK+1 + 3.

From Proposition 4.9, the sum Ec(n) of the length of central n-singular inter-
vals satisfies

Ec(n) 6 |Ă(k)| 6 2−1/2(NK+M)2CM
−1NK .

The right hand side is 6 1
42−θ(NK+1+2) 6 1

42−θn iff

θ(NK+1 −NK) 6 (1/2− θ − CM−1)NK +M/2− 2− 2θ.

IfNK+1−NK 6M−2, one has θ(NK+1−NK) 6M/2−2−2θ whenM is large
enough. IfNK+1−NK > M , one has θ(NK+1−NK) 6 (1/2−θ−CM−1)NK
from the strong regularity assumption (cf. Remark 3.9) if M is large enough. We
have shown that Ec(n) 6 1

4 2−θn.
From Proposition 4.10 and the induction hypothesis, the sum of the length of

peripheral n-singular intervals satisfies

Ep(n) 6 C 2−ME(n−M − 1) 6 C 2−M 2θ(M+1)2−θn,

which is 6 1
4 2−θn for large M .
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Let 1 6 k < K. Comparing Propositions 4.11 and 4.12 , we observe that
the bound for E`(n, k) in the non stationary case is worse than the bound in the
stationary case, hence may be used in all cases.

We estimate E(n −Nk) or E(n −Nk+1) by the induction hypothesis. When
ord J(k) > M , we obtain

2θnE`(n, k) 6 C 2θ 2−
M
2 ord J(k) 2 ord J(k)2(θ+CM−1−1/2)Nk .

For M large enough, we have θ+CM−1−1/2 < 1
2 (θ−1/2). The strong regu-

larity assumption (cf. Remark 3.9) implies ord J(k) 6 2−
√
M (1− 2−

√
M )−1Nk.

We obtain, for M large enough∑
16k<K,ord J(k)>M

E`(n, k) 6
1

4
2−θn.

When J(k) is simple, we use the second inequality in Proposition 4.12. From the
induction hypothesis, we have

2
1
2 ord J(k)E(n−Nk) + 2−

1
2 ord J(k)E(n−Nk+1 − 1) 6 3 2−θn 2

M
2 2θNk .

This implies
2θnE`(n, k) 6 C 2 (θ+CM−1−1/2)Nk ,

∑
16k<K,ord J(k)<M

E`(n, k) 6
1

4
2−θn.

The proof of the proposition is complete.
�

Corollary 4.14. For M large enough, strongly regular parameters in (c(M), c(M−1)) are
regular.

5. THE PARAMETER SPACE

5.1. A natural partition of parameter space. For n > 1, define

∆̃n = {c ∈ [−2, c(2)], Pnc (0) = ±α(c)} = {c ∈ [−2, c(2)], Pn+1
c (0) = α(c)}.

Each ∆̃n is a finite set, with ∆̃n ⊂ ∆̃n+1. From Proposition 3.1, part (2), one obtains

∆̃2 = {c(2)}, ∆̃3 = {c(2), c(3)}.

Moreover, c(n) is the lowest element of ∆̃n and c(n−1) is the next lowest (for n > 2).
In particular, (c(n), c(n−1)) is a component of R \ ∆̃n.
In the next proposition, n is an integer> 2, U denotes a bounded component of R\∆̃n,

and c0 is a parameter in U .

Proposition 5.1. (1) There is a unique continuous map (δ, c) 7→ δ(c) from
∆n(c0) × U to R which satisfies δ(c0) = δ for all δ ∈ ∆n(c0) and Pc(δ(c)) =
δ1(c) whenever Pc0(δ) = δ1.

(2) For each δ ∈ ∆n(c0) , the function c 7→ δ(c) is real-analytic on U , and extends
continuously on Ū .

(3) For c ∈ U , δ ∈ ∆n(c0), δ(c) is distinct from the critical point 0. If moreover
δ ∈ ∆n−1(c0), δ(c) is distinct from the critical value Pc(0).

(4) For each c ∈ U , the map δ 7→ δ(c) is injective, and its image is ∆n(c).
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(5) Let J = [γ−, γ+] be a regular interval of order k < n for Pc0 . Then, for any
c ∈ U , the interval [γ−(c), γ+(c)] is regular of order k for Pc.

Proof. (1) The functions c 7→ δ(c), for δ ∈ ∆k(c0), 0 6 k 6 n are constructed by
induction on k. For k = 0, the functions c 7→ ±α(c) have the required properties.
Assume that the functions c 7→ δ(c) have been constructed for δ ∈ ∆k(c0), for
some k < n. Let δ ∈ ∆k+1(c0). Consider δ1 := Pc0(δ) ∈ ∆k(c0). One has
δ1(c0) > Pc0(0) since δ2 + c0 = δ1. As U is connected and does not intersect
∆̃k+1, the inequality δ1(c) > Pc(0) holds for all c ∈ U . Then δ(c) is uniquely
determined by

δ(c0) = δ, δ2(c) = δ1(c)− Pc(0).

(2) Real-analyticity on U and continuity on Ū are obvious from the inductive con-
struction of the functions c 7→ δ(c).

(3) If one had δ(c) = 0 (resp. δ(c) = Pc(0)) for some c ∈ U and some δ in ∆n(c0)

(resp. in ∆n−1(c0)), one would have Pnc (0) = ±α(c) and c ∈ ∆̃n.
(4) Let c ∈ U . If the map δ 7→ δ(c) from ∆n(c0) to R is not injective, there is a

smaller integer k such that the restriction to ∆k(c0) is not injective. As α(c) < 0
for c < 0, the integer k is positive. Let δ, δ′ ∈ ∆k(c0) be distinct points such
that δ(c) = δ′(c). Then, Pc(δ(c)) = Pc(δ

′(c)). By the minimality of k, we have
Pc0(δ) = Pc0(δ′), hence δ′ = −δ. But, by part (3), δ and δ′ do not vanish in U ,
hence δ(c) = δ′(c) is impossible.

Obviously, for any δ ∈ ∆n(c0) and any c ∈ U , the point δ(c) belongs to ∆n(c).
Therefore the cardinality of ∆n(c) is at least equal to the cardinality of ∆n(c0).
As c0 was an arbitrary point of U , we conclude that this cardinality is constant in
U and that the image of the map δ 7→ δ(c) is equal to ∆n(c).

(5) Write Ĵ = (γ̂−, γ̂+). The points γ̂± belong to ∆k+1(c0). For any 0 6 j < k,
the interval P jc0(Ĵ) does not contain the critical point, hence by part (3) of this
proposition, the same is true for P jc ((γ̂−(c), γ̂+(c))). Moreover the endpoints of
this interval are±α(1)(c). This proves that [γ−(c), γ+(c)] is regular of order k for
Pc.

�

5.2. Strongly regular parameter intervals. Let M be a large integer, let n be an integer
>M , let U be a component of R− ∆̃n contained in (c(M), c(M−1)), and let c0 ∈ U .

Suppose that there exist integers M = N1 < · · · < NK+1 6 n, and , for each 1 6
k 6 K, a regular interval J(k) = [γ−k , γ

+
k ] of order Nk+1−Nk in J(c0) such that PNkc0 (0)

belongs to the interior of J(k). Then, for all c ∈ U , the interval [γ−k (c), γ+
k (c)] is regular

of the same order Nk+1 −Nk, belongs to J(c) and contains PNkc (0) in its interior.
If moreover c0 is strongly regular up to level K, the same is true for c.

Definition 5.2. Let c0 ∈ (c(M), c(M−1)) be a parameter which is strongly regular up to
level K. The component of c0 in R \ ∆̃NK+1

, denoted by U(K), is a strongly regular
parameter interval of level K.

The parameter interval (c(M), c(M−1)) = U(0) is strongly regular of level 0. Strongly
regular parameter intervals of the same level have disjoint interiors.

Let U(K) be a strongly regular parameter of level K. The sequence N1 = M <
· · · < NK+1 is the same for all c ∈ U(K). For k 6 K, there is exactly one strongly
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regular parameter interval of level k containing U(K), namely the component U(k) of
R− ∆̃Nk+1

containing U(K).

We explain how a strongly regular parameter interval U(K − 1) of level (K − 1) splits
into strongly regular parameter intervals of level K and bad parameter intervals.

Let N1 = M < · · · < NK be the sequence associated to U(K − 1). If some parameter
c ∈ U(K − 1) is strongly regular up to level K, then, according to Remark 3.9 the point
TKc (0) = PNKc (0) belongs to some regular interval J(K) ∈ J(c) of order 6 N ]

K with

N ]
K =

{
M − 2 if NK < 2

√
MM,

b2−
√
M (1− 2−

√
M )−1 (NK −M)c if NK > 2

√
MM.

Fix some c0 ∈ U(K − 1). Consider the partition of A into regular intervals in J(c0) of
order 6 N ]

K , and N ]
K-singular intervals. Denote by

∆](NK) = {α < α̃(2) < · · · < α̃(M−2) < · · · < −α̃(M−2) < · · · < −α̃(2) < −α}

the endpoints of the intervals in this partition. From Proposition 5.1, there is a real-
valued continuous map (γ, c) 7→ γ(c) on ∆](NK) × U(K − 1) such that, for each c ∈
U(K − 1), the points {γ(c), γ ∈ ∆](NK)} split A into regular intervals in J(c) of order
6 N ]

K , and N ]
K-singular intervals (for Pc).

Define

∆̃(U(K − 1)) = {c ∈ U(K − 1), ∃γ ∈ ∆](NK) s.t PNKc (0) = γ(c)}.

Let V be a component of U(K − 1) \ ∆̃(U(K − 1)). When c varies in V , the point
PNkc (0) stays in the same element J of the partition of A cut by ∆](NK).

Definition 5.3. When J isN ]
K-singular, V is a bad component ofU(K−1)\∆̃(U(K−1)).

No point of V is strongly regular up to level K.
When J is simple regular, V is a strongly regular parameter interval of level K, with

NK+1 = NK + ord J .
When J is regular non simple, V is a candidate interval. This case can only occur when

N ]
K > M , i.e NK > 2

√
MM .

When V is a candidate interval, one has also NK+1 = NK + ord(J). The parameter
interval V is strongly regular of level K iff

(1− 2−
√
M ) ord J +

∑
16k<K

Nk+1−Nk>M

(Nk+1 −Nk) 6 2−
√
M (NK −M).

5.3. Bounds for the variations w.r.t. the parameter. The first estimates extend those of
Proposition 3.1. Let c be a parameter in (c(M), c(M−1)).

Proposition 5.4. (1) For 0 < n < M , x ∈ Ă

| ∂
∂c

α(n)(c)− 1/3 | 6 Cn 4−n, | ∂
∂c

gB(1)(x)− 1/3 | 6 CM 4−M .

(2) For 2 6 n 6M − 2, x ∈ Ă

| ∂
∂c

α̃(n)(c)| 6 C 2n, | ∂
∂c

gC±n (x)| 6 C 2n.
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Proof. (1) Consider an inverse branch x0, · · · , xn, · · · for Pc with x2
n+1 + c = xn,

and xn+1 > 0. We take for x0 either x0 = −α(c) or x0 ∈ Ă independent of c.
We estimate ∂xn

∂c from the recurrence relation

(5.1)
∂xn+1

∂c
=

1

2xn+1
(
∂xn
∂c
− 1).

From this relation, we get
∂xn+1

∂c
+

1

3
=

1

2xn+1
(
∂xn
∂c

+
1

3
) +

2

3
(
1

2
− 1

xn+1
).

From Propositions 3.1 and 3.4, we get |xn − 2| � 4−n for 0 6 n < M . This
implies the first two inequalities in the proposition by induction on n.

(2) We have |α̃(n)| � 2−n for 2 6 n 6 M − 2 by Proposition 3.4. The last two
inequalities of the proposition are then immediately deduced from relation (5.1).

�

For the inverse branch associated to a general regular interval, the estimate is slightly
worse than in the simple case.

Proposition 5.5. Let J be a regular interval. The associated inverse branch satisfies, for
x ∈ Ă

| ∂
∂c
gJ(x)| 6 C 4 ord J .

Proof. Let x ∈ Ă. Write n := ord J . We take the derivative w.r.t. the parameter of the
identity Pnc ◦ gJ(x) = x. We obtain

D(Pnc ) ◦ gJ(x).
∂

∂c
gJ(x) + (

∂

∂c
Pnc ) ◦ gJ(x) = 0.

From general univalent function theory ([P]), we have |D(Pnc )| > C−1|J |−1 > C−1

on J̆ . On the other hand, the differential of the map (x, c) 7→ (Pc(x), c) has norm 6 4
(in the operator norm associated to the sup-norm on R2) on [−2, 2] × R. It follows that
| ∂∂cP

n
c | 6 4n on J̆ . This gives the estimate of the proposition. �

We are now able to get the crucial estimate.

Proposition 5.6. Let U ⊂ (c(M), c(M−1)) be a strongly regular parameter interval of level
K − 1. For any regular interval J of order 6 N ]

K , the endpoints γ± of gB(K)(J) satisfy,
for c ∈ U

| ∂
∂c

γ±(c)− 1

3
| 6 C 2−M .

Proof. Define J(K) := J , gB(K+1) := gB(K) ◦ gJ , NK+1 = NK + ordJ , so that γ± =
gB(K+1)(±α).

We first get rid of the dependence of α on c. We have
∂

∂c

[
gB(K+1)(±α(c))

]
=
( ∂
∂c

gB(K+1)

)
(±α)±DgB(K+1)(±α)

∂α

∂c
.

Here, ∂α∂c is bounded and the derivative of gB(K+1) satisfies

|DgB(K+1)(±α)| 6 C 2−(NK+1+M) 2CM
−1NK+1 .

The proof is exactly the same as for Proposition 3.10, using (3.4) when J is simple and
(3.5) when it is not.
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We now estimate ∂
∂c gB(k) by induction on k; for k = 1 this has been done in Proposition

5.4, part (1). The recurrence relation is
∂

∂c
gB(k+1) =

( ∂
∂c

gB(k)

)
◦ gJ(k) +DgB(k) ◦ gJ(k).

∂

∂c
gJ(k).

From Proposition 3.10, the derivative of gB(k) is controlled in A by

|DgB(k)| 6 2−(Nk+M) 2CM
−1Nk .

When J(k) is simple, we have from Proposition 5.4, part (2)

| ∂
∂c

gJ(k)| 6 C 2M .

When J(k) is not simple, we have from Proposition 5.5

| ∂
∂c

gJ(k)| 6 C 4ord J(k),

with ord J(k) 6 21−
√
mNk.

In both cases, we obtain

|DgB(k) ◦ gJ(k).
∂

∂c
gJ(k)| 6 C 2−Nk(1−CM−1).

Plugging this estimate in the recurrence relation gives the estimate of the proposition. �

5.4. Measure estimate in parameter space. We give more information on the parameter
space structure described in Subsection 5.2.

In the next proposition, K is a positive integer, U = (c−, c+) is a strongly regular
parameter interval of level K− 1 contained in (c(M), c(M−1)), c0 is a point in U , B(K) =
(γ−, γ+) is the regular interval of order (NK−1) which contains the critical value Pc0(0).
We still use the notation N ]

K for the integer defined in Subsection 5.2. Finally, J(c0) is
as above the set of regular intervals (for Pc0 ) of positive order contained in A which are
maximal with this property.

Proposition 5.7. (1) One has γ−(c−) = Pc−(0), γ+(c+) = Pc+(0).
(2) Let J ∈ J(c0) be a regular interval of order 6 N ]

K . Write gB(K)(J) = [γ−J , γ
+
J ].

There is an interval [c−J , c
+
J ] ⊂ U , either candidate or strongly regular of level K,

such that the critical value Pc(0) satisfies

Pc(0) < γ−J (c) for c− 6 c < c−J ,

Pc(0) = γ−J (c) for c = c−J ,

γ−J (c) < Pc(0) < γ+
J (c) for c−J < c < c+J ,

Pc(0) = γ+
J (c) for c = c+J ,

Pc(0) > γ+
J (c) for c+ > c > c+J .

Proof. By induction onK. ForK = 1, one hasU = (c(M), c(M−1)),B(1) = [α(M−1), α(M−2)].
From Proposition 3.1, part (2), the critical value is equal to α(M−1) for c = c(M), equal
to α(M−2) for c = c(M−1), and belongs to (α(M−1), α(M−2)) for c ∈ (c(M), c(M−1)).
Assume now that K > 1, and that U is a strongly regular parameter interval of level
K − 1 contained in (c(M), c(M−1)) satisfying γ−(c−) = Pc−(0), γ+(c+) = Pc+(0).
Let J ∈ J(c0) be a regular interval of order 6 N ]

K . From Proposition 5.6, we have
| ∂∂c γ

±
J (c) − 1

3 | 6 C 2−M . For large M , this implies the existence of c−J , c
+
J with the

properties of part (2) of the proposition. These properties imply that [c−J , c
+
J ] is either a
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candidate interval or a strongly regular parameter interval of level K. Finally, the first part
of the proposition at level K is implied by the second part at level K − 1. This completes
the induction step. �

With U as above, let n be an integer in [2, N ]
K ].Let

γ−0 = α < γ+
0 = α̃(2) 6 γ−1 < γ+

1 6 . . . 6 γ
−
r = −α̃(2) < γ+

r = −α
be the points in ∆n such that [γ−i , γ

+
i ], 0 6 i 6 r are exactly the regular intervals in J

of order 6 n. For 0 6 i < r, either γ+
i = γ−i+1 ( with adjacent intervals in J) or [γ+

i , γ
−
i+1]

is a union of consecutive n-singular intervals.
Assume for instance that gB(K) preserves the orientation. From Proposition 5.7, there

are parameter values

c−0 = c− < c+0 6 c
−
1 < c+1 6 . . . 6 c

−
r < c+r = c+

such that, for any c ∈ U , 0 6 i 6 r

PNkc (0) = γ±i (c) ⇐⇒ c = c±i ,

PNkc (0) > γ±i (c) ⇐⇒ c > c±i ,

PNkc (0) < γ±i (c) ⇐⇒ c < c±i .

Lemma 5.8. The size of the gaps (c+i , c
−
i+1) is controlled by

C−1 max
[c+i ,c

−
i+1]

(γ−i+1 − γ
+
i ) 6

c−i+1 − c
+
i

c+ − c−
6 C min

[c+i ,c
−
i+1]

(γ−i+1 − γ
+
i ),

Proof. From Proposition 5.6, the endpoints γ± of B(K) satisfy 1/4 6 ∂
∂cγ
± 6 1/2 for

c ∈ U . This implies, for any c∗ ∈ U
c+ − c− = γ+(c+)− γ−(c−)

= (γ+(c+)− γ+(c∗)) + (γ+(c∗)− γ−(c∗)) + (γ−(c∗)− γ−(c−))

6
1

2
(c+ − c−) + (γ+(c∗)− γ−(c∗))

We obtain c+ − c− 6 2(γ+ − γ−)(c∗), and similarly c+ − c− > 4
3 (γ+ − γ−)(c∗). In the

same way, we have, for any c∗ ∈ (c+i , c
−
i+1)

4

3
(gB(K) ◦ γ−i+1 − gB(K) ◦ γ+

i )(c∗) 6 c−i+1 − c
+
i 6 2(gB(K) ◦ γ−i+1 − gB(K) ◦ γ+

i )(c∗).

The bounded distortion property of gB(K) on A (for any c∗ ∈ (c+i , c
−
i+1)) implies the

inequalities of the lemma. �

To estimate the sum of the size of the gaps, we need a slight improvement on Proposition
4.13.

Let U be a parameter interval which is strongly regular of some level K > 1. Let n be
an integer such that M − 2 < n < NK+1 + 3.

Let J(c0) = (γ−(c0), γ+(c0)) be a n-singular interval for Pc0 , for some c0 ∈ U . Then
J(c) = (γ−(c), γ+(c)) is n-singular for Pc, for all c ∈ U . Define

||J ||U := max
c∈U
|J(c)|, E(n,U) :=

∑
J n−singular

||J ||U .
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Proposition 5.9. Let θ ∈ (0, 1
2 ). If M is large enough, one has E(n,U) 6 2−θn.

Remark 5.10. It is assumed in the proposition that n > M − 2. For 2 6 n 6 M − 2,
there is only one n-singular interval and the first part of Proposition 4.13 gives E(n,U) 6
4 sin π

3.2n .

Proof. We may assume that n 6M+3 as the number of n-singular intervals for n < M+3
is bounded and each of them has length 6 4 sin π

3.2M−2 .
We divide as before n-singular intervals into central, peripheral and lateral. We intro-

duce
Ec(n,U) :=

∑
J central n−singular

||J ||U ,

and similarly Ep(n,U), E`(n, k, U). The level k here varies from 1 to the largest integer
kmax such that n > Nk + 3.

Copying word for word the proof of Proposition 4.10, one obtains

(5.2) Ep(n,U) 6 C 2−ME(n−M − 1, U).

Similarly the proofs of Propositions 4.11 and 4.12 give

(5.3) E`(n, k, U) 6 C 2−1/2(Nk+M)2CM
−1NkE(n−Nk − 3, U).

for a stationary level k,
(5.4)
E`(n, k, U) 6 C 2−1/2(Nk+M)2CM

−1Nk(2
1
2 ord J(k)E(n−Nk, U)+2−

1
2 ord J(k)E(n−Nk+1−1, U)).

for a non stationary level k with J(k) simple, and

(5.5) E`(n, k, U) 6 C ord J(k) 2 ord J(k)2−1/2(Nk+M)2CM
−1NkE(n−Nk+1 − 1, U).

for a general non stationary level k.
The case of central n-singular intervals requires a little more care. From Proposition

4.9, any such interval J satisfies

||J ||U 6 2−1/2(Nkmax+M)2CM
−1Nkmax .

Proposition 4.8 provides a bound for the number of central n-singular intervals which can
be absorbed into the constant C in the last inequality, giving

(5.6) Ec(n,U) 6 2−1/2(Nkmax+M)2CM
−1Nkmax .

From (5.2)-(5.6), we derive the estimate of the proposition exactly as in the proof of Propo-
sition 4.13.

�

From Lemma 5.8 and the proposition, we deduce

Corollary 5.11. Let U ⊂ (c(M), c(M−1)) a strongly regular parameter interval of level
K − 1. For 2 6 n 6 N ]

K , the relative measure of parameters c ∈ U such that PNKc (0)
belongs to a regular interval in J of order 6 n is at least 1 − C 2−θn. In particular, the
sum of the lengths of the bad components contained in U (cf. Definition 5.3) is at most
C 2−θN

]
K |U |.
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5.5. The large deviation argument. From Corollary 5.11, we will deduce, through a
standard large deviation argument, that a large subset of (c(M), c(M−1)) is formed of
strongly regular parameters. Strongly regular parameters are regular (Corollary 4.14). Reg-
ular parameters exhibit a dynamical behavior described in Section 2, having in particular
an absolutely continuous ergodic invariant probability measure with positive Lyapunov
exponents. Therefore this argument will complete the proof of Jakobson’s theorem.

Proposition 5.12. Let θ? be any constant in (0, 1/2). WhenM is large enough, the relative
measure in (c(M), c(M−1)) of the subset of strongly regular parameters is at least 1 −
2−θ

?M .

Proof. We define on (c(M), c(M−1)) a sequence (Xk)k>1, of integer-valued "random"
variables by

• If c is not strongly regular up to level (k − 1), Xk(c) = 0.
• If c is strongly regular up to level (k−1), but PNkc (0) does not belong to a regular

interval in J of order 6 N ]
k, Xk(c) = N ]

k + 3 (> M).
• If c is strongly regular up to level (k−1), and PNkc (0) belongs to a regular interval
J(k) ∈ J of order 6 N ]

k, Xk(c) = ordJ(k).

If c is strongly regular up to level K > 0, the formula NK+1 = M +
∑K
k=1Xk holds.

On the other hand, If c is strongly regular up to level (K−1), but is not strongly regular
up to level K, one has ∑

16k6K,Xk>M

Xk(c) > 2−
√
M

∑
16k6K

Xk(c),

and also
∑

16k6K Xk(c) > 2K.

Define Yk := 1{Xk>M}Xk and SK =
∑K

1 Yk. We will bound the measure of {SK >
21−
√
MK}.

Let 0 < θ̄ < θ < 1/2 be constants such that θ − θ̄ > θ?. We assume that M is large
enough for the estimate of Corollary 5.11 to be valid. Define

I(K) :=

∫ c(M−1)

c(M)

2 θ̄ SK(c)dc

On an interval V of parameters which are not strongly regular up to level (K−1), we have
XK(c) = YK(c) = 0 hence∫

V

2 θ̄ SK(c)dc =

∫
V

2 θ̄ SK−1(c)dc.

On a strongly regular parameter interval U of level (K − 1), we have, from Corollary 5.11∫
U

2 θ̄ YK(c)dc 6 |U |+
∑
m>M

2θ̄m
∫
U

1{XK=m} dc

6 (1 + C
∑
m>M

2(θ̄−θ)m) |U |

6 (1 + C (θ − θ̄)−1 2(θ̄−θ)M ) |U | .

As SK−1 is constant on U , we also obtain∫
U

2 θ̄ SK(c)dc 6 (1 + C (θ − θ̄)−1 2(θ̄−θ)M )

∫
U

2 θ̄ SK−1(c)dc.



A PROOF OF JAKOBSON’S THEOREM 33

We conclude that

I(K) 6 (1 + C (θ − θ̄)−1 2(θ̄−θ)M )K(c(M−1) − c(M)).

It follows that

Leb{c ∈ (c(M), c(M−1)), SK(c) > 21−
√
MK}

c(M−1) − c(M)
6 uK ,

with

uK :=
(1 + C (θ − θ̄)−1 2(θ̄−θ)M )K − 1

2 θ̄ 21−
√
MK − 1

.

The relative measure of the complement of strongly regular parameters in (c(M), c(M−1))
is therefore bounded by

∑
K>1 uK . To bound this series, we observe that the quantities

uK satisfy, when M is large enough

• For K 6 θ̄−1 2
√
M ,

uK 6 C θ̄
−1 (θ − θ̄)−1 2(θ̄−θ)M+

√
M ,

as numerator and denominator of uK are controlled in this range by linear func-
tions of K.

• For θ̄−1 2
√
M 6 K 6 (θ − θ̄)2(θ−θ̄)M ,

uK 6 C K (θ − θ̄)−1 2(θ̄−θ)M2−θ̄ 21−
√
MK ,

as the numerator is still in the linear mode, while the denominator is in exponential
mode.

• For K > (θ − θ̄)2(θ−θ̄)M ,

uK 6 C ρ
K , ρ := (1 + C (θ − θ̄)−1 2(θ̄−θ)M )2−θ̄ 21−

√
M

,

as numerator and denominator are in exponential mode.

The sum of the uK in the first range is less than C θ̄−2 (θ − θ̄)−1 2(θ̄−θ)M+2
√
M . As

θ? < θ − θ̄, this is smaller than 1
32−θ

?M when M is large enough.

The sum of the uK in the third range is less than C (1−ρ)−1ρ(θ−θ̄)2(θ−θ̄)M
. As 1−ρ �

θ̄2−
√
M , this is smaller than 22−θ

?M

6 1
32−θ

?M when M is large enough.
In the second range, we group together for each j > 1 the terms such that j θ̄−1 2

√
M 6

K 6 (j + 1) θ̄−1 2
√
M . The sum of the uK in the second range is less than

C θ̄−2 (θ − θ̄)−1 22
√
M 2(θ̄−θ)M

∑
j>1

j 2−2j .

This is smaller than 1
32−θ

?M when M is large enough.
Thus the sum of the series

∑
K>1 uK is 6 2−θ

?M . The proof of the proposition is
complete.

�
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