THE LINEARIZED EQUATION IN THE HÖLDER CLASSES

JEAN-CHRISTOPHE YOCCOZ

0.1 . The result.

Proposition 0.1. Let s, τ be non-negative real numbers such that s is not an integer. If $\alpha \in \mathbb{T}^{d}$ belongs to $D C(\tau)$, and φ belongs to $C_{0}^{s+d+\tau}\left(\mathbb{T}^{d}\right)$, then the equation

$$
\psi \circ R_{\alpha}-\psi=\varphi
$$

has a solution $\psi \in C_{0}^{s}\left(\mathbb{T}^{d}\right)$.
Moreover, with $\alpha \in D C(\gamma, \tau)$, one has

$$
\|\psi\|_{C^{s}} \leqslant C \gamma^{-1}\|\varphi\|_{C^{s+d+\tau}} .
$$

I am not sure about the correct reference. I am essentially following Herman in his Asterisque book, Volume 1.
0.2. Smoothing operators and Hadamard convexity inequalities. Let $\widehat{\chi} \in C^{\infty}\left(\mathbb{R}^{d}\right)$ be a non-negative even function with support in $[-1,1]^{d}$, equal to 1 on $\left[-\frac{1}{2}, \frac{1}{2}\right]^{d}$. Let χ be the inverse Fourier transform of $\widehat{\chi}$ and define $\chi_{t}(x)=t^{d} \chi(t x)$ for $t>0$. For $t \geqslant 1$, let $S(t)$ be the convolution operator $S(t) \varphi=\varphi * \chi_{t}$ from $C^{0}\left(\mathbb{T}^{d}\right)$ to $C^{\infty}\left(\mathbb{T}^{d}\right)$. Then, we have, for $n \in \mathbb{Z}^{d}$

$$
\widehat{S(t) \varphi}(n)=\widehat{\varphi}(n) \widehat{\chi}\left(\frac{n}{t}\right)
$$

One has the following estimates, for real numbers $s \leqslant r$ and $t \geqslant 1$:

$$
\begin{gathered}
\|S(t) \varphi\|_{C^{r}} \leqslant C t^{r-s}\|\varphi\|_{C^{s}} \\
\|S(t) \varphi-\varphi\|_{C^{s}} \leqslant C t^{s-r}\|\varphi\|_{C^{r}}
\end{gathered}
$$

with constants C depending on r, s only.
From these estimates one gets Hadamard convexity inequalities: let $r_{0} \leqslant r_{1}, u \in[0,1]$, $r_{u}=u r_{1}+(1-u) r_{0}$. One has

$$
\|\varphi\|_{C^{r_{u}}} \leqslant C\|\varphi\|_{C^{r_{0}}}^{1-u}\|\varphi\|_{C^{r_{1}}}^{u} .
$$

0.3. Littlewood-Paley decomposition. Let $\varphi \in C^{0}\left(\mathbb{T}^{d}\right)$. We define

$$
\begin{gathered}
\Delta_{0} \varphi:=S(1) \varphi=\int_{\mathbb{T}} \varphi(x) d x \\
\Delta_{n} \varphi=\left(S\left(2^{n}\right)-S\left(2^{n-1}\right)\right) \varphi, \quad \text { for } n>0
\end{gathered}
$$

Observe that $\Delta_{n} \varphi$ is a trigonometric polynomial of degree ${ }^{1}<2^{n}$, and that the series $\sum_{n} \Delta_{n} \varphi$ converge formally to φ. From the estimates above, we have, for $\varphi \in C^{r}\left(\mathbb{T}^{d}\right)$:

$$
\left\|\Delta_{n} \varphi\right\|_{C^{0}} \leqslant C 2^{-r n}\|\varphi\|_{C^{r}}
$$

so the convergence is uniform as soon as $r>0$. Conversely

[^0]Lemma 0.2. Let $r>0$ be a real number which is not an integer, and $\left(\varphi_{n}\right)$ a sequence of trigonometric polynomials such that the degree of φ_{n} is $<2^{n}$. Assume that

$$
\sup _{n} 2^{r n}\left\|\varphi_{n}\right\|_{C^{0}}=: A<+\infty
$$

Then the series $\sum_{n} \varphi_{n}$ converge uniformly to a function φ which belongs to $C^{r}\left(\mathbb{T}^{d}\right)$ and we have

$$
\|\varphi\|_{C^{r}} \leqslant C A
$$

Proof. Clearly the series $\sum_{n} \varphi_{n}$ converge uniformly to a function $\varphi \in C^{0}\left(\mathbb{T}^{d}\right)$. We first deal with the case $0<r<1$. Observe that $\varphi_{n}=S\left(2^{n+1}\right) \varphi_{n}$, hence

$$
\left\|\varphi_{n}\right\|_{C^{1}} \leqslant C 2^{(1-r) n} A .
$$

Let $x, y \in \mathbb{T}^{d}$, and let $N \geqslant 0$ s.t. $2^{-N-1} \leqslant\|x-y\| \leqslant 2^{-N}$. For $n>N$, we just write

$$
\left|\varphi_{n}(x)-\varphi_{n}(y)\right| \leqslant 2\left\|\varphi_{n}\right\|_{C^{0}} \leqslant 2^{1-r n} A
$$

For $n \leqslant N$, we write

$$
\left|\varphi_{n}(x)-\varphi_{n}(y)\right| \leqslant\|x-y\|\left\|D \varphi_{n}\right\|_{C^{0}} \leqslant C 2^{-N} 2^{(1-r) n} A
$$

Summing over n, we get

$$
|\varphi(x)-\varphi(y)| \leqslant C 2^{-r N} A \leqslant C\|x-y\|^{r} A
$$

which proves the result for $0<r<1$.
In the general case, we write $r=m+r^{\prime}$ with an integer m and $0<r^{\prime}<1$. We have

$$
\left\|\varphi_{n}\right\|_{C^{m}} \leqslant C 2^{(n+1) m} 2^{-r n} \leqslant C 2^{-r^{\prime} n}
$$

This proves that $\varphi \in C^{m}\left(\mathbb{T}^{d}\right)$. Then, as $0<r^{\prime}<1$, the previous case shows that $D^{m} \varphi \in C^{r^{\prime}}\left(\mathbb{T}^{d}\right)$. This concludes the proof.
0.4. Proof of proposition. Let $r=s+d+\tau, \varphi \in C_{0}^{r}\left(\mathbb{T}^{d}\right)$. We write $\varphi=\sum_{n>0} \Delta_{n} \varphi$ and solve

$$
\psi_{n} \circ R_{\alpha}-\psi_{n}=\Delta_{n} \varphi
$$

where ψ_{n} is a trigonometric polynomial of mean value zero. We want to apply the lemma to show that $\psi=\sum_{n>0} \psi_{n}$ belongs to $C^{s}\left(\mathbb{T}^{d}\right)$. The Fourier coefficients of ψ_{n} are given by:

$$
\widehat{\psi}_{n}(k)=(\exp (2 \pi i<k, \alpha>)-1)^{-1} \widehat{\Delta_{n} \varphi}(k), \quad \frac{1}{4} 2^{n}<\|k\|_{\infty}<2^{n}
$$

From this, we get, by Cauchy-Schwartz inequality

$$
\left\|\psi_{n}\right\|_{C^{0}} \leqslant \sum_{k}\left|\widehat{\psi}_{n}(k)\right| \leqslant \sqrt{S}\left\|\Delta_{n} \varphi\right\|_{L^{2}}
$$

where

$$
S:=\sum_{2^{n-2}<\|k\|_{\infty}<2^{n}}|\exp (2 \pi i k \alpha)-1|^{-2} .
$$

Lemma 0.3. Assume that $\alpha \in D C(\gamma, \tau)$. Then

$$
S \leqslant C \gamma^{-2} 2^{2 n(d+\tau)}
$$

Proof. As $|\exp (2 \pi i x)-1| \geqslant 4\|x\|_{\mathbb{T}}$, it is sufficient to deal with

$$
S^{\prime}=\sum_{0<\|k\|_{\infty}<2^{n}}\|<k, \alpha>\|_{\mathbb{T}}^{-2} .
$$

Let $u:=\gamma 2^{-(n+1)(d+\tau)}$. As $\alpha \in D C(\gamma, \tau)$, we have $\|<k, \alpha>\|_{\mathbb{T}} \geqslant u$ for $0<$ $\|k\|_{\infty}<2^{n+1}$; therefore, for each $j>0$, there is at most one $k \in \mathbb{Z}^{d}$ with $0<\|k\|_{\infty}<$ 2^{n} such that $\{<k, \alpha>\} \in[j u,(j+1) u)$ and at most one such that $1-\{<k, \alpha>\} \in$ $[j u,(j+1) u)$. We have therefore

$$
S^{\prime} \leqslant 2 u^{-2} \sum_{j>0} j^{-2} \leqslant c u^{-2}
$$

On the other hand, we have

$$
\left\|\Delta_{n} \varphi\right\|_{L^{2}} \leqslant\left\|\Delta_{n} \varphi\right\|_{C^{0}} \leqslant C 2^{-n r}\|\varphi\|_{C^{r}}
$$

hence we get from the lemma

$$
\left\|\psi_{n}\right\|_{C^{0}} \leqslant C \gamma^{-1} 2^{n(1+\tau)} 2^{-n r}\|\varphi\|_{C^{r}} \leqslant C \gamma^{-1} 2^{-n s}\|\varphi\|_{C^{r}}
$$

Thus we obtain

$$
\sup _{n} 2^{n s}\left\|\psi_{n}\right\|_{C^{0}} \leqslant C \gamma^{-1}\|\varphi\|_{C^{r}}
$$

Applying Lemma 0.2 allows to conclude that $\psi \in C^{s}\left(\mathbb{T}^{d}\right)$ with

$$
\|\psi\|_{C^{s}} \leqslant C \gamma^{-1}\|\varphi\|_{C^{r}}
$$

The proof is complete.

[^0]: ${ }^{1}$ A trigonometric polynomial Φ has degree $<D$ if $\widehat{\Phi}(k)=0$ for $\|k\|_{\infty} \geqslant D$

