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0.1. The result.

Proposition 0.1. Let s, τ be non-negative real numbers such that s is not an integer.
If α ∈ Td belongs to DC(τ), and ϕ belongs to Cs+d+τ0 (Td), then the equation

ψ ◦Rα − ψ = ϕ

has a solution ψ ∈ Cs0(Td).
Moreover, with α ∈ DC(γ, τ), one has

||ψ||Cs 6 Cγ−1||ϕ||Cs+d+τ .

I am not sure about the correct reference. I am essentially following Herman in his
Asterisque book, Volume 1.

0.2. Smoothing operators and Hadamard convexity inequalities. Let χ̂ ∈ C∞(Rd) be
a non-negative even function with support in [−1, 1]d, equal to 1 on [− 1

2 ,
1
2 ]d. Let χ be the

inverse Fourier transform of χ̂ and define χt(x) = tdχ(tx) for t > 0. For t > 1, let S(t)
be the convolution operator S(t)ϕ = ϕ ∗ χt from C0(Td) to C∞(Td). Then, we have, for
n ∈ Zd

Ŝ(t)ϕ(n) = ϕ̂(n)χ̂(
n

t
).

One has the following estimates, for real numbers s 6 r and t > 1:

||S(t)ϕ||Cr 6 Ctr−s||ϕ||Cs ,

||S(t)ϕ− ϕ||Cs 6 Cts−r||ϕ||Cr ,
with constants C depending on r, s only.

From these estimates one gets Hadamard convexity inequalities: let r0 6 r1, u ∈ [0, 1],
ru = ur1 + (1− u)r0. One has

||ϕ||Cru 6 C||ϕ||1−uCr0 ||ϕ||
u
Cr1 .

0.3. Littlewood-Paley decomposition. Let ϕ ∈ C0(Td). We define

∆0ϕ := S(1)ϕ =

∫
T
ϕ(x) dx,

∆nϕ = (S(2n)− S(2n−1))ϕ, for n > 0.

Observe that ∆nϕ is a trigonometric polynomial of degree 1 < 2n, and that the series∑
n ∆nϕ converge formally to ϕ. From the estimates above, we have, for ϕ ∈ Cr(Td):

||∆nϕ||C0 6 C2−rn||ϕ||Cr ,
so the convergence is uniform as soon as r > 0. Conversely

1A trigonometric polynomial Φ has degree < D if Φ̂(k) = 0 for ||k||∞ > D
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Lemma 0.2. Let r > 0 be a real number which is not an integer, and (ϕn) a sequence of
trigonometric polynomials such that the degree of ϕn is < 2n. Assume that

sup
n

2rn||ϕn||C0 =: A < +∞.

Then the series
∑
n ϕn converge uniformly to a function ϕ which belongs to Cr(Td) and

we have
||ϕ||Cr 6 CA.

Proof. Clearly the series
∑
n ϕn converge uniformly to a function ϕ ∈ C0(Td). We first

deal with the case 0 < r < 1. Observe that ϕn = S(2n+1)ϕn, hence

||ϕn||C1 6 C2(1−r)nA.

Let x, y ∈ Td, and let N > 0 s.t. 2−N−1 6 ||x− y|| 6 2−N . For n > N , we just write

|ϕn(x)− ϕn(y)| 6 2||ϕn||C0 6 21−rnA.

For n 6 N , we write

|ϕn(x)− ϕn(y)| 6 ||x− y||||Dϕn||C0 6 C2−N2(1−r)nA.

Summing over n, we get

|ϕ(x)− ϕ(y)| 6 C2−rNA 6 C||x− y||rA,

which proves the result for 0 < r < 1.

In the general case, we write r = m+ r′ with an integer m and 0 < r′ < 1. We have

||ϕn||Cm 6 C2(n+1)m2−rn 6 C2−r
′n.

This proves that ϕ ∈ Cm(Td). Then, as 0 < r′ < 1, the previous case shows that
Dmϕ ∈ Cr′(Td). This concludes the proof. �

0.4. Proof of proposition. Let r = s + d + τ , ϕ ∈ Cr0(Td). We write ϕ =
∑
n>0 ∆nϕ

and solve
ψn ◦Rα − ψn = ∆nϕ,

where ψn is a trigonometric polynomial of mean value zero. We want to apply the lemma
to show that ψ =

∑
n>0 ψn belongs to Cs(Td). The Fourier coefficients of ψn are given

by:

ψ̂n(k) = (exp(2πi < k, α >)− 1)−1∆̂nϕ(k),
1

4
2n < ||k||∞ < 2n.

From this, we get, by Cauchy-Schwartz inequality

||ψn||C0 6
∑
k

|ψ̂n(k)| 6
√
S||∆nϕ||L2 ,

where
S :=

∑
2n−2<||k||∞<2n

| exp(2πikα)− 1|−2.

Lemma 0.3. Assume that α ∈ DC(γ, τ). Then

S 6 Cγ−222n(d+τ).
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Proof. As | exp(2πix)− 1| > 4||x||T, it is sufficient to deal with

S′ =
∑

0<||k||∞<2n

|| < k, α > ||−2T .

Let u := γ2−(n+1)(d+τ). As α ∈ DC(γ, τ), we have || < k, α > ||T > u for 0 <
||k||∞ < 2n+1; therefore, for each j > 0, there is at most one k ∈ Zd with 0 < ||k||∞ <
2n such that {< k, α >} ∈ [ju, (j + 1)u) and at most one such that 1 − {< k, α >} ∈
[ju, (j + 1)u). We have therefore

S′ 6 2u−2
∑
j>0

j−2 6 cu−2.

�

On the other hand, we have

||∆nϕ||L2 6 ||∆nϕ||C0 6 C2−nr||ϕ||Cr ,
hence we get from the lemma

||ψn||C0 6 Cγ−12n(1+τ)2−nr||ϕ||Cr 6 Cγ−12−ns||ϕ||Cr .
Thus we obtain

sup
n

2ns||ψn||C0 6 Cγ−1||ϕ||Cr .

Applying Lemma 0.2 allows to conclude that ψ ∈ Cs(Td) with

||ψ||Cs 6 Cγ−1||ϕ||Cr .
The proof is complete. �


