THE LINEARIZED EQUATION IN THE HÖLDER CLASSES

JEAN-CHRISTOPHE YOCCOZ

0.1. The result.

Proposition 0.1. Let s, τ be non-negative real numbers such that s is not an integer. If $\alpha \in \mathbb{T}^d$ belongs to $DC(\tau)$, and φ belongs to $C_0^{s+d+\tau}(\mathbb{T}^d)$, then the equation

$$\psi \circ R_{\alpha} - \psi = \varphi$$

has a solution $\psi \in C_0^s(\mathbb{T}^d)$.

Moreover, with $\alpha \in DC(\gamma, \tau)$, one has

$$||\psi||_{C^s} \leqslant C\gamma^{-1} ||\varphi||_{C^{s+d+\tau}}.$$

I am not sure about the correct reference. I am essentially following Herman in his Asterisque book, Volume 1.

0.2. Smoothing operators and Hadamard convexity inequalities. Let $\hat{\chi} \in C^{\infty}(\mathbb{R}^d)$ be a non-negative even function with support in $[-1, 1]^d$, equal to 1 on $[-\frac{1}{2}, \frac{1}{2}]^d$. Let χ be the inverse Fourier transform of $\hat{\chi}$ and define $\chi_t(x) = t^d \chi(tx)$ for t > 0. For $t \ge 1$, let S(t)be the convolution operator $S(t)\varphi = \varphi * \chi_t$ from $C^0(\mathbb{T}^d)$ to $C^{\infty}(\mathbb{T}^d)$. Then, we have, for $n \in \mathbb{Z}^d$

$$\widehat{S(t)\varphi}(n) = \widehat{\varphi}(n)\widehat{\chi}(\frac{n}{t}).$$

One has the following estimates, for real numbers $s \leq r$ and $t \geq 1$:

$$||S(t)\varphi||_{C^r} \leq Ct^{r-s} ||\varphi||_{C^s},$$

$$|S(t)\varphi - \varphi||_{C^s} \leq Ct^{s-r} ||\varphi||_{C^r},$$

with constants C depending on r, s only.

 Λ

From these estimates one gets Hadamard convexity inequalities: let $r_0 \leq r_1, u \in [0, 1]$, $r_u = ur_1 + (1 - u)r_0$. One has

$$||\varphi||_{C^{r_u}} \leq C ||\varphi||_{C^{r_0}}^{1-u} ||\varphi||_{C^{r_1}}^u.$$

0.3. Littlewood-Paley decomposition. Let $\varphi \in C^0(\mathbb{T}^d)$. We define

$$\Delta_0 \varphi := S(1)\varphi = \int_{\mathbb{T}} \varphi(x) \, dx,$$
$$\omega_n \varphi = (S(2^n) - S(2^{n-1}))\varphi, \quad \text{for } n > 0.$$

Observe that $\Delta_n \varphi$ is a trigonometric polynomial of degree $1 < 2^n$, and that the series $\sum_n \Delta_n \varphi$ converge formally to φ . From the estimates above, we have, for $\varphi \in C^r(\mathbb{T}^d)$:

$$||\Delta_n \varphi||_{C^0} \leqslant C 2^{-rn} ||\varphi||_{C^r}$$

so the convergence is uniform as soon as r > 0. Conversely

¹A trigonometric polynomial Φ has degree < D if $\widehat{\Phi}(k) = 0$ for $||k||_{\infty} \ge D$

Lemma 0.2. Let r > 0 be a real number which is not an integer, and (φ_n) a sequence of trigonometric polynomials such that the degree of φ_n is $< 2^n$. Assume that

$$\sup 2^{rn} ||\varphi_n||_{C^0} =: A < +\infty$$

Then the series $\sum_n \varphi_n$ converge uniformly to a function φ which belongs to $C^r(\mathbb{T}^d)$ and we have

$$||\varphi||_{C^r} \leqslant CA.$$

Proof. Clearly the series $\sum_n \varphi_n$ converge uniformly to a function $\varphi \in C^0(\mathbb{T}^d)$. We first deal with the case 0 < r < 1. Observe that $\varphi_n = S(2^{n+1})\varphi_n$, hence

$$\|\varphi_n\|_{C^1} \leqslant C2^{(1-r)n} A.$$

Let $x, y \in \mathbb{T}^d$, and let $N \ge 0$ s.t. $2^{-N-1} \le ||x-y|| \le 2^{-N}$. For n > N, we just write

$$|\varphi_n(x) - \varphi_n(y)| \leq 2||\varphi_n||_{C^0} \leq 2^{1-rn}A$$

For $n \leq N$, we write

$$|\varphi_n(x) - \varphi_n(y)| \leq ||x - y|| ||D\varphi_n||_{C^0} \leq C2^{-N} 2^{(1-r)n} A$$

Summing over n, we get

$$|\varphi(x) - \varphi(y)| \leqslant C2^{-rN}A \leqslant C||x - y||^{r}A,$$

which proves the result for 0 < r < 1.

In the general case, we write r = m + r' with an integer m and 0 < r' < 1. We have

$$||\varphi_n||_{C^m} \leq C 2^{(n+1)m} 2^{-rn} \leq C 2^{-r'n}.$$

This proves that $\varphi \in C^m(\mathbb{T}^d)$. Then, as 0 < r' < 1, the previous case shows that $D^m \varphi \in C^{r'}(\mathbb{T}^d)$. This concludes the proof.

0.4. Proof of proposition. Let $r = s + d + \tau$, $\varphi \in C_0^r(\mathbb{T}^d)$. We write $\varphi = \sum_{n>0} \Delta_n \varphi$ and solve

$$\psi_n \circ R_\alpha - \psi_n = \Delta_n \varphi,$$

where ψ_n is a trigonometric polynomial of mean value zero. We want to apply the lemma to show that $\psi = \sum_{n>0} \psi_n$ belongs to $C^s(\mathbb{T}^d)$. The Fourier coefficients of ψ_n are given by:

$$\widehat{\psi}_n(k) = (\exp(2\pi i < k, \alpha >) - 1)^{-1} \widehat{\Delta_n \varphi}(k), \qquad \frac{1}{4} 2^n < ||k||_{\infty} < 2^n.$$

From this, we get, by Cauchy-Schwartz inequality

$$||\psi_n||_{C^0} \leqslant \sum_k |\widehat{\psi}_n(k)| \leqslant \sqrt{S} ||\Delta_n \varphi||_{L^2},$$

where

$$S := \sum_{2^{n-2} < ||k||_{\infty} < 2^n} |\exp(2\pi i k\alpha) - 1|^{-2}.$$

Lemma 0.3. Assume that $\alpha \in DC(\gamma, \tau)$. Then

$$S \leqslant C \gamma^{-2} 2^{2n(d+\tau)}.$$

Proof. As $|\exp(2\pi i x) - 1| \ge 4||x||_{\mathbb{T}}$, it is sufficient to deal with

$$S' = \sum_{0 < ||k||_{\infty} < 2^{n}} || < k, \alpha > ||_{\mathbb{T}}^{-2}.$$

Let $u := \gamma 2^{-(n+1)(d+\tau)}$. As $\alpha \in DC(\gamma, \tau)$, we have $|| < k, \alpha > ||_{\mathbb{T}} \ge u$ for $0 < ||k||_{\infty} < 2^{n+1}$; therefore, for each j > 0, there is at most one $k \in \mathbb{Z}^d$ with $0 < ||k||_{\infty} < 2^n$ such that $\{< k, \alpha >\} \in [ju, (j+1)u)$ and at most one such that $1 - \{< k, \alpha >\} \in [ju, (j+1)u)$. We have therefore

$$S' \leq 2u^{-2} \sum_{j>0} j^{-2} \leq cu^{-2}.$$

On the other hand, we have

$$||\Delta_n \varphi||_{L^2} \leqslant ||\Delta_n \varphi||_{C^0} \leqslant C 2^{-nr} ||\varphi||_{C^r},$$

hence we get from the lemma

$$||\psi_n||_{C^0} \leqslant C\gamma^{-1} 2^{n(1+\tau)} 2^{-nr} ||\varphi||_{C^r} \leqslant C\gamma^{-1} 2^{-ns} ||\varphi||_{C^r}.$$

Thus we obtain

$$\sup_{n} 2^{ns} ||\psi_{n}||_{C^{0}} \leq C\gamma^{-1} ||\varphi||_{C^{r}}.$$

Applying Lemma 0.2 allows to conclude that $\psi \in C^s(\mathbb{T}^d)$ with

$$||\psi||_{C^s} \leqslant C\gamma^{-1} ||\varphi||_{C^r}.$$

The proof is complete.