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0.1. The result.

Proposition 0.1. Let s, T be non-negative real numbers such that s is not an integer.
If o € T belongs to DC/(7), and  belongs to Cy ¥+ 7 (T4), then the equation

YoRy—1= ¥
has a solution ¢ € C§(T4).
Moreover, with o« € DC(,T), one has

1K

I am not sure about the correct reference. I am essentially following Herman in his
Asterisque book, Volume 1.
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Cs+d+r.

0.2. Smoothing operators and Hadamard convexity inequalities. Let Y € C*(R%) be
a non-negative even function with support in [—1, 1]%, equal to 1 on [—1, 2]%. Let x be the
inverse Fourier transform of ¥ and define y;(x) = t¢x(tx) for t > 0. For t > 1, let S(t)
be the convolution operator S(t)¢ = ¢ * x; from C°(T%) to C°°(T?). Then, we have, for
n € 74

- n

S(t)¢p(n) = @(n)x(3).

One has the following estimates, for real numbers s < rand t > 1:
1S ellor < Ct*|[ollos,

1S(®)¢ = ¢ellos < CE"leller,
with constants C' depending on 7, s only.

From these estimates one gets Hadamard convexity inequalities: let rg < 11, u € [0, 1],
ry = ury + (1 — u)rg. One has

llellor < Cllellgalellén -
0.3. Littlewood-Paley decomposition. Let o € C°(T9). We define

Ao = S(1)p = /T o(x) d,

Anp = (S(2") - S(2" ), for n > 0.
Observe that A, is a trigonometric polynomial of degree ! < 27, and that the series
>, An¢ converge formally to . From the estimates above, we have, for ¢ € C"(T%):

1Argllco < C27"[[ellcr,
so the convergence is uniform as soon as r > 0. Conversely

A trigonometric polynomial ® has degree < D if :I;(k) =0 for ||k||oo = D
1
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Lemma 0.2. Letr r > 0 be a real number which is not an integer, and (p,,) a sequence of
trigonometric polynomials such that the degree of ¢, is < 2™. Assume that

sup 2™ ||¢nllco =1 A < +00.
n

Then the series ) ., p, converge uniformly to a function @ which belongs to C" (T?) and
we have

ll¢ller < CA.

Proof. Clearly the series ), ¢, converge uniformly to a function ¢ € C O(T%). We first
deal with the case 0 < r < 1. Observe that ¢,, = S(2"*1)¢p,,, hence

lenllor < €207 A
Letz,y € T4 andlet N > 0s.t. 27V~ < ||z — y|| < 27N, Forn > N, we just write
|on(2) = @n(W)] < 2l¢nllco <217A.
For n < N, we write
ln(z) = eu(®)] < lle = ylll|Dgnllco < C27 V20774,
Summing over n, we get
o) = p(y)| < C27"NAL COllz — yl|" A,

which proves the result for 0 < r < 1.

In the general case, we write 7 = m + 7/ with an integer m and 0 < r’ < 1. We have

lonllom < C2HDmo=rn < cg=r'n,

This proves that ¢ € C™(T?). Then, as 0 < 7’ < 1, the previous case shows that
D™y e C"' (T4). This concludes the proof. d

0.4. Proof of proposition. Letr = s +d + 7, ¢ € C;(T%). We write ¢ = Y
and solve

>0 Bng

wn o Ra - wn = An@v
where 1, is a trigonometric polynomial of mean value zero. We want to apply the lemma
to show that ) = > _ 4, belongs to C*(T?). The Fourier coefficients of ¢,, are given
by:
~ —_— ]_
Yo (k) = (exp(2mi < k,a >) — 1) A, 0(k), 12 < [1k|]oo < 2.
From this, we get, by Cauchy-Schwartz inequality

[enllco < [n (k)] < VS||Ang|l L2,

k

where

S = > | exp(2mika) — 1|72,

21 =2 |k||oo <2™
Lemma 0.3. Assume that o € DC(v, 7). Then
S < C77222n(d+7).
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Proof. As |exp(2miz) — 1| > 4||z||r, it is sufficient to deal with
=Y l<ka>]g%
0<|[k|oo<2m

Let u := 42~ (+DE+7) As o € DCO(v,7), we have || < k,a > ||r > u for 0 <
||k||so < 27F1; therefore, for each j > 0, there is at most one k € Z? with 0 < |[k||oc <
2" such that {< k, >} € [ju, (§ + 1)u) and at most one such that 1 — {< k, a0 >} €
[fu, ( + 1)u). We have therefore

S < 2u? Zj72 <cu2
3>0

On the other hand, we have
1AnellL2 < [[Anellco < C27"|¢llor,
hence we get from the lemma
[$nlloo < Cy~12" D27 ol |or < Cy7R27 ™[]l
Thus we obtain
sup 2"°[[¢nlco < Cy~Hlgller.
Applying Lemma 0.2 allows to conclude that ¢» € C*(T¢) with

1¥lles < Oy Hleller
The proof is complete. ]



