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Dates of Lectures

Lecture 1 - February 4th

Lecture 2 - February 11th Thursday
Lecture 3 - February 18th
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All lectures will be at 11:00, salle 2 du College de
France.



But du cours

These lectures will focus on recent developments in quantum metrology.
The main questions to be answered are: What are the ultimate precision
limits in the estimation of parameters, according to classical mechanics
and quantum mechanics? Are there fundamental limits? Is quantum
mechanics helpful in reaching better precision? How to cope with the
deleterious effects of noise?

Our discussion is restricted to local quantum metrology: in this case, one
is not interested in an optimal globally-valid estimation strategy, valid
for any value of the parameter to be estimated, but one wants instead
to estimate a parameter confined to some small range. The techniques to
be developed are useful, for instance, for estimating parameters that
undergo small changes around a known value, like sensing phase changes
in gravitational detectors; or yet if one has some prior (eventually rough)
knowledge about the value of the parameter.



Summary of the lectures

The lectures will be organized as follows:

LECTURE 1. Examples of metrological tasks. Quantum metrology and optical
interferometers. Classical bounds on precision: Derivation of the Cramér-Rao
bound and introduction of the Fisher information.

LECTURE 2. Extension of Cramér-Rao bound and Fisher information to quantum
mechanics. Quantum Fisher information for pure states. The role of
entanglement. Application to atomic interferometry and weak-value amplification.

LECTURE 3. Noisy quantum-enhanced metrology: General framework for
evaluating the ultimate precision limit in the estimation of parameters. Quantum
channels. Application to optical interferometers, force estimation, and atomic
spectroscopy.

LECTURE 4. Quantum metrology and the energy-time uncertainty relation.
Quantum speed limit and the geometry of quantum states. Generalization to open
systems. Application to atomic decay and dephasing.
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I.1- General introduction:
parameter estimation and
classical limits on precision



Parameter estimation
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High-precision interferometry: Advanced LIGO
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Experiments: Parameter estimation beyond
classical physics in the XXI century
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Experiments: Parameter estimation beyond
classical physics in the XXI century
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Experiments: Parameter estimation beyond

classical physics in ’rhe XXI centur
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Parameter estimation and uncertainty relations

What is the meaning of

% Time-energy uncertainty relation?

AEAT 2 h/?2

% Number-phase uncertainty relation?

ANAG >1 /2

We shall see that quantum parameter estimation allows to understand
these relations in ferms of uncertainties in the estimation of parameters:
while Heisenberg uncertainty relations are associated with Hermitian
operators, the theory of parameter estimation allows one to obtain
uncertainty relations for parameters, like time or phase, with no need to
associate them to suitable Hermitian operators.



An example: optical interferometry
Aout
Gin #1 ——
bin 2 bout
Mach-Zender interferometer: a beam with complex amplitude ain is split on
a balanced beam splitter BS: and the two resulting beams acquire phases ¥1
and ¥2, interfering on the second beam splitter BSz. The photon numbers

n, .and n, are measured at the output ports. One could also have two
incident beams, with complex amplitudes ain and bin.

The outgoing fields are related to the incoming ones through the
transformation (note that acut=ain, bout=bin when ¢¥1 =¥2 =0, since
[BS1]X[BS:]=1) :

( )

out _ L 1 ( ei% 0 \L 1 —1 ain
b \/Eil\Oei%/\/E_il\bin)

\ out / y
BS: BS;




Optical interferometry (2)
a o _— Aout
%é:bm BS: o %BSZ —

Multiplying the matrices, and replacing the complex amplitudes by the
corresponding photon annihilation operators, one gets:

(

) [ - 4 )
o | _ ooy cos(¢/2) -sin(¢/2) | a, 0= -,
Do \ sin(@/2)  cos(¢/2) N\ b /’

where the operator a annihilates photons in mode a: a|N) = vV N|N — 1)
and |N)is the Fock state with N photons, with a'a|N) = N|N), where

a'a is the number operator. The overall phase above can be neglected.

We use now the Jordan-Schwinger transformation, which allows to analyze
the Mach-Zender interferometer in terms of the algebra of angular
momentum operators.

Q>

>




Optical intferferometry and Jordan-Schwinger transformation

PHYSICAL REVIEW A VOLUME 33, NUMBER 6 june 9s6 | Quantum limits in optical interferometry
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This has the advantage of providing a unified formalism, which can also be
applied to problems in atomic spectroscopy and magnetometry.

so these operators obey the angular momentum algebra.

Transformations of operators ¢ and b can be considered as rotations in
spin space: @' = UaU", b’ = UbU', with U = exp(—ifJ - i), where the
unit vector n is along the axis of rotation, and with the correspondence:

BS1— U = exp(—inJ;/2) Phase delay — U = exp(—i¢.J.)

BS; — U = exp(inJ, /2)



Angular momentum operators for optical
interferometry

Corresponding transformation for the operators J; (Heisenberg picturel):

The state transforms as W>out —

(

\
(

\

1
0
0

(

COSQ —sing 0 )

0 0
0 1 Sin @
-1 0 )N 0
cosp 0 sing
0 0
—singg 0 cos@

)

/

cosp O

1

/

—iJom /2 pid o p—i T /2 )

(10 0/~
0 0 -1 1| JV

Therefore, Mach-Zender

transformation amounts o a
rotation around y axis of the
angular momentum operators.

n

Based on this formalism, we derive now an expression for the
uncertainty in the estimation of the phase, for measurements of the
difference in photon numbers at the two outputs of the interferometer.



Precision of phase estimation

. 1 NiAl .
From J, = 5(&% — b'h), it is clear that 7, — ny, = 2.J..

On the other hand, the average of J, in the output state is equal to the
average of J"', given by the previous matrix expression, in the input state.

Therefore, | (J.)ous = cos ¢(J.)in — sin ¢(J,)in | while the variance is

A% J, — cos® p A%J,| +sin?¢ A%J ~ —2sinpcosy cov(Jy, J.) |

| in in

where the covariance cov is defined as

where Ay = /A2y is a standard deviation (same forA.J.).



Optical interferometry with Fock states

Consider first that a Fock state |V)is injected in port a, so that
V)in = |N)a|0)s | Since

N 1 A A N A ~ N 1 TN
Jo = S(a'b+bla), J, = %(b*& —afb), J. = S(ata—b'h)
J:|N, 0> — (N/2)\N,0>,

.| Also,

this initial state is an eingestate of J, and J?:|J

From <jz>out = COS go(jz>in — sin %in and

2 2 _
A?J, = o8 909% in+sm o A2 J, . 2 sin @ cos ¢ COV(J J)m
ohe gets
N AL\ N|singl/2 1
v ‘d<fj>out " Nlsingl/2 VN’
p

which is the standard (or shot-noise limit) for optical interferometry.



Geometrical interpretation

® Length of side of the cone:
Vi(G +1), with j=N/2

® Distance from apex to center of
base: eigenvalue of J, —> j=N/2

® Radius of The base of the cone:

Vi 2=
(a) Initial state
(b) Action of first beam splitter
(c) Phase delay

(d) Action of second beam splitter

Minimum detectable ¢ is of the
order of

Jioo1

Y _—

Pmin ~ — = -
j oV

2=



Optical interferometry with coherent states

Consider now that a coherent state |) is injected in port a, so that
V)in = [@)a|0)

Just to fix the notation (and also as a reminder...), a coherent state

is an eigenstate of the operator @, d|a) = ala), and the average number
of photons in the state is (a|N|a) = (alafala) = |al?.

Defining the quadrature operators as
1

A A G0 At A oA _ZA—ze At if : AA T
g = — +a'e o = /9 = ae —a'e” ) ,with |gp, po| = 1,
I =7 (ae Y, Do = Qonsa = 7 ( ) (o, Po]
. . Ap Amplitude
it follows that the corresponding Phase quadrature quadrature
standard deviations in the state |a) | o = |a|exp(id) SZEXEZ
are Apg = Agp = 1/v/2, and the
coherent state is a minimum A 4

|a|= <n>l12 g'.._ ................

uncertainty state: ApyAgy = 1/2

~
-
'f
o

OV

Real field



Optical interferometry with coherent states (2)
For the initial s’ra’re|¢>m = |a> 0}, , one has

A

Fr'Om <Jz>out = COS 90<jz>1n — Sin 90 Aac‘>’in Clnd

A?J, —=cos2p A%J,| +sin?¢ A%J,| —2sinpcosyp COV(J,,JZ)
out 1n in 4 in
ne gets A . out a|/2 L L
(0] S; QY = ~ —
d{.J.) ou al2[sinol/2 ~ lasin :
) | 3 t [ wl/ | 90‘ v/ ()| sin ¢
,\ / / Bound depends on

t incoming state and on
1 'maximum speed the operating point!

2n -3n/2 -m -n/2 0 n/2 n  3n/2 2n
360° -270° -180° -90° 90° 180° 270° 360°

The precision now depends on the operating point. The optimal operating
points are at ¢ = m/2 or ¢ = 37/2, )
These two points correspond to the maximum speed of variation of (J)out
with ¢, implying higher sensitivity of (J.)ous to changes in this parameter.



Interferometry with coherent + squeezed states

Important question: Can we do better, going beyond the shot-noise bound? This

can actually be achieved, by using special quantum features of the incoming state.
SQUEEZED VACUUM

Reminder on squeezed states

A squeezed state is a minimum-uncertainty state,
obtained from a coherent state by a scaling
transformation, which consists in squeezing a
quadrature and stretching the orthogonal one. |
More formally, it is obtained from a coherent Ap
state through the transformation

o, &) = S(&)|a), S(&) = exp [(£*a

where £ = rexp(i0) is an arbitrary complex number.

For £ = rreal (9 = 0), the uncertainties in g and p are:

Aq=e"’/\/§,Ap=e”/\/§ -
For metrology, the squeezed vacuum states are more relevant:||§) = S(£)[0).

The average humber of photons in state |£)is (N) = sinh®r: a squeezed
vacuum state has an average number of photons different from zero.



Interferometry with coherent + squeezed states (2)

Assume now that a coherent state is injected into one of the ports of a
Mach-Zender interferometer, and a vacuum squeezed state into the other

port. The initial state is then|a) ® |§)| This scheme was proposed by
Caves in 1981, and is implemented in gravitational-wave interferometers

(LIGO, GEO600).

Assuming for simplicity that § = r is real (this fixes a direction in phase
space), one has:

(N) = |a|? + sinh® r, (J,)in = (Ja|? —sinh?7)/2, (J)in = 0, col(Jy, J.)

. :()7

11

A?J, = [|a® + (1/2) sinh* 2r] /4, A%J, | [|a|? cosh 2r — Re(a?) sinh 2r + sinh” 7] /4.

1n

This term reduces variancAe/ )
Replacing these into the previous expressions for (J.)out and AZ%J,

and choosing « real, so as to minimize Azfx|_ (this
means that the coherent state is along the direction
of highest compression):

A — \/Cot2g0(|a|2—|—%Sinhzr)—|—|a|26_2r—|—sinh2kr .
L la]?—sinhZ r] \

’
out

Qv




Interferometry with coherent + squeezed states (3)

We now try to minimize the expression:

\/cot2 p(]a|?2+ 2 sinh? r)+|a|2e~27+sinh? r

Ap = || —sinh2 7
Optimal operation points: cot ¢ =0 = ¢ = 7/2, 37 /2.
Then: A — \/\a|26_2"'°—|—sinh2 r

¥ = T ([alP=sinhZr

A

Consider (N) > 1, with the squeezed vacuum carrying approximately

\/(N)/2 photons. Then the majority of photons belong ¢p
to the coherent state, and sinh?r ~ (1/4)e®” ~ 1/ (N)/2,
so that
| VIV/@VE) + VN2
lim  Agp ~ ~ | / ._.
(N)—oc (N) — /(N)/2 (N)3/4 ¢

implying that this scheme leads to precision better than shot noise, for the
same amount of resources — in this case, the average photon number (V).



General N-photon two-mode input state

PHYSICAL REVIEW A VOLUME 33, NUMBER 6 JUNE 1986

SU(2) and SU(1,1) interferometers

Bernard Yurke, Samuel L. McCall, and John R. Klauder
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 30 October 1985)

Using the angular momentum representation, a general N-photon two-mode
input state can be wri}"ren as

|w>in: Z Cm|jam>7

m=—j
where and |7, m) corresponds, in the mode-occupation notation, to
the state |j +m)|j — m). For m=j, one recovers the state|/V)|0) considered
before. Assuming that N is even, consider the state




General N-photon two-mode input state (2)

Replacing these into the previous expressions for (.j,),., and AZJ,
<jz>out — COS 90<jz>1n — sin §0<jx>1n

out

A2, = cos? o A%J,| +sin?p A?J,
out in in
one gefts -
J AT\ feos? o+ sin? pli(j + 1) — 1]
Ap === . —
| S | sin + cos w/j(j + 1)

which, for large j, has its optimal operating point at v = 0, yielding

1 2
ViG+1) N
For this choice of ¢, the contribution from (J.)in = 31/7(j + 1) is maximized
in the denominator, while that of A%2J,| = 2[7(j +1) — 2]is minimized in

the numerator.

This result is better than the one resulting from the coherent+squeezed
state input, but the incoming state is much harder to prepare.



General N-photon two-mode input state: Geometrical interpretation

(C)

(d)

State [, = (1,0) + 15 1)) is
close to the x-y plane, as shown
in (a), since (J.)i, = 1/2,and it is
represented by a flattened
cone, with width AJ, = 1/v/2.

The side of the cone has
length (Je)in = 5/5(5 +1) = j/2
so that ‘rhe two fla‘r’rened
cones in (d) become

distinguishable when
1

P~ 5
which corresponds to the
Heisenberg limit.




Other interferometric tasks

The same formalism can be applied to Ramsey interferometry: each atom
in an atomic beam is subjected to a 7/2 pulse, which transforms the initial
state into the an equal-weighted superposition of the states|e)and|g).
After evolving freely for a time t, the atom is subjected to another /2
pulse, so that, if the pulses are resonant with the atomic transition, the
atomic population is inverted. On the other hand, if the pulse is not
resonant with the atom, the state acquires a phase shifty = Awt. Final
state can be written as: |V out = €277/ 21 =i Tam/21))

[l | iS /2 ~iS, @12 S /2 L]
1) e * € ¥ € ' l




Other interferometric tasks

If one sends N independent atoms, we should expect the uncertainty in
the phase to scale like1/V'N, and this lower bound is related to the
fluctuation in the number of detected atoms, called projection noise (the
analog to the photonic shot noise). Of course, it does not make sense in
this case to talk about states with indefinite number of atoms, like the
coherent or squeezed states intfroduced before. It is possible, however,
to produce special atomic states, with entangled atoms, that lead to
Heisenberg scaling. This will be discussed in Lecture 2.



Other interferometric tasks

It is also possible to prepare squeezed atomic states, which lead to a 1/N
scaling. Starting with atoms in a ground state, squeezed atomic states are
obtained through the transformation

) = exp[(=£/2)(J3 — J2)]|g)®", Ereal
which is analogous to the corresponding transformation for electromagnetic
fields. The successive transformations, applied on the collective angular
momentum, are essentially the same as before — the squeezing reduces the final
variance of J,, thus increasing the precision in the estimation of the phase.

\ 7) .
e ey e BTRK
\J \ g | y vy U d
/2 pulse Free evolution: T /2 pulse

J. Ma, X. Wang, C. P. Sun, and F. Nori, arXiv:1011.2978 [quant-ph].



General estimation theory

We have shown that it is possible to win over the shot noise in optical
inferferometry, by using states with specific quantum features, like
states with well-defined number of photons or squeezed states. In these
examples, the estimation was obtained through measurement of the
difference of photon numbers in the outgoing arms of the interferometer.
It is not clear whether these are the best possible measurements, or
whether better bounds can be obtained by using other incoming states.

One may ask whether it is possible to find general bounds and
strategies for reaching them, which could be applied to many different
systems, and could eventually help us to identify which are the best
states and the best measurements for achieving the best possible
precision.

This is the aim of this series of lectures: to develop, and apply to
examples, a general estimation theory, capable not only to consider
unitary evolutions of closed systems, like the one described here for
the optical interferometer, but also open (noisy) systems.



Parameter estimation in classical and quantum physics

Initial State == Dynamical Process w=p Final State =P  Measurement =P Estimator

Q

1. Prepare probe in suitable initial state
2. Send probe through process to be investigated

3. Choose suitable measurement
4. Associate each experimental result j with estimation

—  Merit quantifier

5XE\/<[Xest(j)—X]2>j
(X )= Xine» d(X

est est

X=X

—“*rue

>/dX‘X=X =1 — Unbiased estimator

true ?

Then X% = A?X = ([Xest — (Xest>]2> — variance of Xest (average
is taken over all experimental results)
Estimator depends only on the experimental data.




Classical parameter estimation

C.R. ac; RA— Fisher

H. Cramer

Cramér-Rao bound for unbiased estimators:

dln[ ( )]

2

AX=1/ INFOXO,_, . EP

Fisher

N — Number of repetitions of the experiment

information
P.(X)— probability of getting an experimental result j

J

. Olnp(¢X)]”
or yet, for continuous measurements: F(X) = /dﬁp(g\X) { 5% }
where & are the measurement results

(Average over all experimental results)



Derivation of Cramér-Rao bound (1)

Let us consider first the probability distribution p(£|X)corresponding
to a single output, where X is a single continuous parameter. The
estimator is assumed unbiased, so that (X« (£)) = X. Differentiating
the trivial identity
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with respect to X, one gets
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Derivation of Cramér-Rao bound (2)
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The denominator of the last expression is the Fisher information, which
can be written in different forms:
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Derivation of Cramér-Rao bound (3)

If one has now several identical and independent measurements, so

that the probability distribution is p(g\X) =p(&|X) - -pEn|X),

where p(&;|X) is the probability distribution for result §;, if the value of
the parameter is X. Let F(X) be the Fisher information corresponding to
one of the measurements.

It is immediate then from
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This is the additivity property of the Fisher information. It follows from
this the Cramér-Rao bound for unbiased estimators:

where AX = \/A2X_




Is it possible to saturate the Cramér-Rao inequality?

Remember that the Cramér-Rao inequality was obtained by applying the Cauchy-
Schwarz inequality | (AB)|* < (A?)(B?)to the expression
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Equality in this equation is reached if and only if A(£, X) = ¢(X)B(&, X), where
c(X) does not depend on &, but may depend on X:

Olnp(ElX)
X = ¢(X)[Xest(§) — X

An unbiased estimator that attains the bound for all X can be found if and only if
this condition is satisfied, for some functions X (&) and c(X).




Is it possible to saturate the Cramér-Rao inequality?

Differentiating both sides of

O1np(|X)
0X

= c(X)[Xest (&) — X] [1]

with respect to X, taking the average over the measurement outputs, and using
that <Xest (£)> — X, one 961’5
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where F(X) is the Fisher information. Notice that a Gaussian p(&| X ), with width
AX = 1/c, ¢ > 0 constant, satisfies condition [1]. This implies that Gaussians

saturate the Cramér-Rao inequality, with F'=1/AX,



Is it possible to saturate the Cramér-Rao inequality? (2)

What if p(£|X) does not satisfy [1]? This question was answered by Fisher in
a very general way, by introducing the maximum likelihood estimator.

The maximum likelihood estimator is the value of X that maximizes the
probability distribution p(§|X), or equivalently In[p(£].X)] :

Xmr(§) = Argmax [p(£|X)] = Argmax {In|p(§]X)]}

In estimation theory, one assumes that the model-dependent mathematical
expression for p(£|X) is known as a function of the possible values of the

parameter X as well as of the possible experimental results {. Therefore,
it is possible, in principle, to calculate numerically the value of X leading

to the maximum of In[p(¢|X )] for a data set €.



The Maximum Likelihood Estimator and Bayes' law

Bayes' law allows a simple interpretation of this procedure. We use that
the joint probability p(&, X)) can be expressed in two different ways in

terms of conditional probabilities and a priori probabilities p(§) and p(X):
p(E.X) = plEX)p(X) = p(X[E)p(E) = p(xg) = PEZ )
pEX) o aE)
[ p(E| X)p(X)dX [ p(E|X)p(X)dX

where p(£|X) is the conditional probability that§ is obtained, if the
value of the parameter is X, and in the last step we have setp(X) =1,
which corresponds to the assumption that one does not know anything a
priori about X.

Therefore, the value of X that leads to the maximum of p(&|X)also
maximizes p(X|€): in this sense, it is the most probable value of X,
considering the obtained experimental results.



More on the Maximum Likelihood Estimator

From the maximization condition, Xy, is the solution ofalﬂgggl){) | _
X=XwmL

For N identical and independent measurements, with _
p(£1X) = p(&1|1X) -+ p(én|X), one can also write 8lngg§ X) —0,
X=XML
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so that, expanding Inp(£|X) around its maximum:
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In the limit of large N the sum becomes
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The Maximum Likelihood Estimator - Conclusion

Therefore,
Nliinoop(g\X) = p(&|Xnr) exp [N F(Xwr) (X — Xur)*/2]

Using Bayes' law, we get for p(X \g ), after normalization:
lim p(X|€) = \/NF(ZXML) o~ NF(Xue)(X - Xap)? /2
T

N — o0

This is a Gaussian, with (X) = Xum1 and variance

AT = (X = X)) = s

This implies that the Maximum Likelihood Estimator is an ideal estimator
in the limit of large N, since it saturates the Cramér-Rao bound.



Sommaire de la deuxieme lecon - 11 Février

In the next lecture, we discuss the quantum theory of
parameter estimation, which leads to the ultimate precision
bounds allowed by quantum mechanics, and may also lead to the
best measurement procedure for each incoming state of the
probe. For some problems, it may lead to analytical expressions
or good approximations for the best states. We emphasize the
role of entanglement in increasing the precision of estimation,
and apply the quantum theory of metrology to optical
interferometry, atomic spectroscopy, and weak-value
amplification.



