One, two, three, many

Creating quantum systems one atom at a time

Selim Jochim, Universität Heidelberg

One, two, three, many

Creating quantum systems one atom at a time

Selim Jochim, Universität Heidelberg

One, two, three, many

Creating quantum systems one atom at a time

Selim Jochim, Universität Heidelberg
interacting singlet

Ground state of the Helium atom:
No analytic solution available, we learn how to apply powerful numerical techniques: Hartree Fock method.

Define quantities like the Fermi energy, density, pressure
... apply local density approximation ...

But when are such approximations justified?

This is an ancient problem!

Sorites Paradox

How many grains make a heap?

- 1 grain of sañ̊ does not make a heap.
- If 1 grain does not make a heap then 2 grains of sand do not.
- If 2 grains do not make a heap then 3 grains do not.
- ...
- If 9,999 grains do not make a heap then 10,000 do not. From Stanford Encyclopedia of Philosophy: http://plato.stanford.edulent

Ultracold neutral atoms

Bose Einstein condensates of large samples of atoms: Macroscopic wave function: Number of particles is so large that a constant density of atoms is observed in experiments:

Measure: $n(\boldsymbol{r})=\left\langle\widehat{\Psi}^{\dagger}(\boldsymbol{r}) \widehat{\Psi}(\boldsymbol{r})\right\rangle$
http://jila.colorado.edu/bec/images/bec.png
Removing one single atom does not make a difference!

Our approach

Reduce the complexity of a system as much as possible
until only the essential parts remain!

In most physical systems:

Range of interaction

significantly complicates the description

Ultracold atoms are an ideal tool ...

The interactions between ultracold atoms can be effectively pointlike (contact interaction)
van der Waals interaction: range of $r_{v d W} \sim 1 \mathrm{~nm}$
In the experiments we have:

- extremely low density (interparticle spacing $\sim 1 \mu \mathrm{~m}$)
- extremely low momentum, such that $\lambda_{d B}=\frac{h}{\sqrt{2 \pi m k T}} \gg r_{v d W}$

Ultracold atoms are an ideal tool ...

- extremely low momentum, such that $\lambda_{d B}=\frac{h}{\sqrt{2 \pi m k T}} \gg r_{v d W}$
(This is the opposite limit desired in collision experiments: shorter wavelength enhances resolution)

Here:

- If $\lambda_{d B}$ is sufficiently large, all the information about internal structure of the atom is hidden in a single quantity, the scattering length \boldsymbol{a}
- We can even tune the scattering length to any desired value by simply applying a magnetic field (Feshbach resonances).

The ${ }^{6} \mathrm{Li}$ atom

UniversitäT Heidelberg

${ }^{6}$ Li ground state

magnetic field [G]

Tuning interactions: Feshbach resonance in ${ }^{6} \mathrm{Li}$

NO interaction between identical particles

$S=1 / 2, I=1$

\rightarrow half-integer total angular momentum
$\rightarrow{ }^{6} \mathrm{Li}$ is a fermion

Tunability of ultracold systems

Feshbach resonance: Magneticfield dependence of s-wave scattering length

Two-body system: Tune the binding energy of a weakly bound molecule:

We have prepared such molecules up to $\sim 1 \mu \mathrm{~m}$ in size!

Outline

- How do we prepare our samples?
- How many particles do we need to form a heap?
- Controlling the motion of two particles in a double well

A picture from the lab

A container for ultracold atoms

We need to isolate the atoms from the environment:

... here we use the focus of a laser beam:

Optical dipole trap depth: $U \propto I(\boldsymbol{r})$

This might still work for liquid nitrogen

Evaporative cooling

UniversitäT

 Heidelberg... and for our cold atoms:
Cool from $\sim 1 \mathrm{mK}$ down to below $1 \mu \mathrm{~K}$

For our cup of coffee ...
It just works the same:

Just reduce the trap depth, i.e. laser power

Ultracold gas of fermions

About 50000 atoms @ $250 \mathrm{nK}, \mathrm{T}_{\mathrm{F}} \sim 1 \mu \mathrm{~K}$

$\sim 100 \mu \mathrm{~m}$

Absorption imaging of ultracold clouds:

Single atom detection

1-10 atoms can be distinguished with high fidelity > 99\%
one atom in a MOT 1/e-lifetime: 250s Exposure time 0.5 s

Towards a finite gas ...

The challenge:

Creating a finite gas of fermions

Fermi-Dirac dist.

- 2-component mixture in reservoir
- superimpose microtrap ($\sim 1.8 \mu \mathrm{~m}$ waist)

Creating a finite gas of fermions

- switch off reservoir

Spilling the atoms

- We can control the atom number with exceptional precision!
- Note aspect ratio 1:10: 1-D situation
- So far: Interactions tuned to zero ...
F. Serwane et al., Science 332, 336 (2011)

Let's study the interacting system!

Precise energy measurements

Radio Frequency spectroscopy

„bare" RF - transition

RF - transition with interaction

Measure the interaction energy

vary the number of majority particles:

Measure the interaction energy

vary the number of majority particles:

Interaction energy in dimensionless units

_ Analytic solution of the two particle problem T.Busch et al., Found. Phys. 28, 549 (1998)

- Analytic solution for an infinite number of majority particles J. McGuire, J. Math. Phys. 6,432 (1965) (local density approximation)

Interaction energy in dimensionless units

_ Analytic solution of the two particle problem T.Busch et al., Found. Phys. 28, 549 (1998)

- Analytic solution for an infinite number of majority particles J. McGuire, J. Math. Phys. 6,432 (1965) (local density approximation)

Interaction energy in dimensionless units

A. Wenz et al., Science 342, 457 (2013)
... with very few particles (in a one-dimensional system)

Interesting things to look at:

- Polaron physics in various dimensions
- The Kondo problem
- Anderson's orthogonality catastrophe

..... with similar fidelity and control?

Basic building blocks of matter!

Light intensity distribution

A tunable double well

initial spatial wave function:
$|\Psi(t=0)\rangle=|L\rangle_{1}|L\rangle_{2}=|L L\rangle$
spin wave function (stationary)

$$
|\chi\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{1}|\downarrow\rangle_{2}-|\downarrow\rangle_{1}|\uparrow\rangle_{2}\right)=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)
$$

A tunable double well

- Interactions switched off:

$$
\begin{aligned}
|\Psi(t)\rangle & =|\psi(t)\rangle_{1}|\psi(t)\rangle_{2} \\
|\psi(t)\rangle_{1} & =\frac{1}{2}\left(\left(|L\rangle_{1}+|R\rangle_{1}\right)+\left(|L\rangle_{1}-|R\rangle_{1}\right) e^{-i \Delta E t / \hbar}\right)
\end{aligned}
$$

Two interacting atoms

Interaction leads to entanglement:

$|\Psi(t)\rangle \neq|\psi(t)\rangle_{1}|\psi(t)\rangle_{2}$

In a balanced double well, they can only tunnel together!

We can compensate for the interaction energy by applying a tilt!

Two strongly interacting atoms

- Observe number statistics in the right well (time averaged)
two atoms

Two strongly interacting atoms

- Observe number statistics in the right well (time averaged)

Two strongly interacting atoms

- Observe number statistics in the right well (time averaged)

Preparing stationary states

- If we ramp on the second well slowly enough, the system will remain in its ground state:

Eigenstates of a symmetric DW

Preparing stationary states

UniversitäT

 Heidelberg- Number statistics for the balanced case depending on the interaction strength:

Single occupancy

Preparing stationary states

- Number statistics for the balanced case depending on the interaction strength:

Single occupancy

Double occupancy

Measuring energies

Trap modulation spectroscopy

Measuring energies

Trap modulation spectroscopy

Measuring energies

Super exchange energy!
responsible for spin ordering in the many body ground state

How to go to a many-body system?

- Inspired by a top-down approach: D. Greif et al., Science 340, 1307-1310 (2013) (ETH Zürich)

- Dimerize a lattice filled with spin-1/2 fermions to observe spin correlations

Outlook

Combination of multiple double wells

- Preparation of ground states in separated double wells

- Combination to larger system

Can this process be done adiabatically ? Can it be extended to larger systems?

