

One, two, three, many Creating quantum systems one atom at a time

Selim Jochim, Universität Heidelberg

One, two, three, many Creating quantum systems one atom at a time

Selim Jochim, Universität Heidelberg

One, two, three, many Creating quantum systems one atom at a time

Selim Jochim, Universität Heidelberg

PHYSIKALISCHE

ΙΝSΤΙ

interacting singlet

Ground state of the Helium atom:

No analytic solution available, we learn how to apply powerful numerical techniques: Hartree Fock method.

Define quantities like the Fermi energy, density, pressure

... apply local density approximation ...

But when are such approximations justified?

This is an ancient problem!

Sorites Paradox

How many grains make a heap?

- 1 grain of sand does not make a heap.
- If 1 grain does not make a heap then 2 grains of sand do not.
- If 2 grains do not make a heap then 3 grains do not.

 If 9,999 grains do not make a heap then 10,000 do not.
 From Stanford Encyclopedia of Philosophy: <u>http://plato.stanford.edu/entries/sorites-paradox/</u>

http://commons.wikimedia.org/wiki/File%3ASossusvlei_Dune_Namib_Desert_Namibia_Luca_Galuzzi_2004.JPG

Bose Einstein condensates of large samples of atoms: Macroscopic wave function: Number of particles is so large that a constant density of atoms is observed in experiments:

Measure: $n(\boldsymbol{r}) = \langle \widehat{\Psi}^{\dagger}(\boldsymbol{r}) \widehat{\Psi}(\boldsymbol{r}) \rangle$

PHYSIKALISCHE

NS

http://jila.colorado.edu/bec/images/bec.png

Removing one single atom does not make a difference!

Reduce the complexity of a system as much as possible

until only the essential parts remain!

In most physical systems:

Range of interaction

significantly complicates the description

The interactions between ultracold atoms can be effectively pointlike (contact interaction)

van der Waals interaction: range of $r_{vdW} \sim 1$ nm

In the experiments we have:

- extremely low density (interparticle spacing ~ 1µm)
- extremely low momentum, such that $\lambda_{dB} = \frac{h}{\sqrt{2\pi m kT}} \gg r_{vdW}$

• extremely low momentum, such that $\lambda_{dB} = \frac{h}{\sqrt{2\pi m kT}} \gg r_{vdW}$

(This is the opposite limit desired in collision experiments: shorter wavelength enhances resolution)

Here:

- If λ_{dB} is sufficiently large, all the information about internal structure of the atom is hidden in a single quantity, **the scattering length** *a*
- We can even tune the scattering length to any desired value by simply applying a magnetic field (**Feshbach resonances**).

The ⁶Li atom

S=1/2, I=1

 \rightarrow half-integer total angular momentum \rightarrow ⁶Li is a fermion

NO interaction between identical particles

PHYSIKALISCHES INSTITUT

Tunability of ultracold systems

INS

Feshbach resonance: Magneticfield dependence of s-wave scattering length Two-body system: Tune the binding energy of a weakly bound molecule:

G. Zürn et al., PRL 110, 135301 (2013)

How do we prepare our samples?

• How many particles do we need to form a heap?

• Controlling the motion of two particles in a double well

A picture from the lab ...

ΙΝSΤ

10⁹ laser cooled atoms at ~1mK

We need to isolate the atoms from the environment:

... here we use the focus of a laser beam:

Optical dipole trap depth: $U \propto I(r)$

This might still work for liquid nitrogen

Evaporative cooling

For our cup of coffee ...

Just reduce the trap depth, i.e. laser power

PHYSIKALISCHES INSTITUT

Single atom detection

one atom in a MOT 1/e-lifetime: 250s Exposure time 0.5s

Fluorescence normalized to atom number

Towards a finite gas ...

Universität Heidelberg

The challenge:

- achieve $\hbar\omega\gg kT$

Creating a finite gas of fermions

- 2-component mixture in reservoir
- superimpose microtrap (~1.8 µm waist)

switch off reservoir

+ magnetic field gradient in axial direction

Spilling the atoms

Universität Heidelberg

PHYSIKALISCHES

Т

INS

- We can control the atom number with exceptional precision!
- Note aspect ratio 1:10: 1-D situation
- So far: Interactions tuned to zero ...

F. Serwane et al., Science **332**, 336 (2011)

Let's study the interacting system!

Radio Frequency spectroscopy

RF – transition with interaction

vary the number of majority particles:

Universität Heidelberg

vary the number of majority particles:

Interaction energy in dimensionless units

PHYSIKALISCHES

ΙΝSΤ

Interaction energy in dimensionless units

INS

Interaction energy in dimensionless units

Universität Heidelberg

ΙΝSΤΙ

A. Wenz et al., Science 342, 457 (2013)

... with very few particles (in a one-dimensional system)

Interesting things to look at:

- Polaron physics in various dimensions
- The Kondo problem
- Anderson's orthogonality catastrophe

A. Wenz et al., Science 342, 457 (2013)

..... with similar fidelity and control?

Basic building blocks of matter!

The setup

A tunable double well

PHYSIKALISCHES

Τ

INSTI

initial spatial wave function:

$$|\Psi(t=0)
angle = |L
angle_1 |L
angle_2 = |LL
angle$$

spin wave function (stationary)

$$|\chi\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle_1 |\downarrow\rangle_2 - |\downarrow\rangle_1 |\uparrow\rangle_2) = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

Universität Heidelberg

$$\begin{split} |\Psi(t)\rangle &= |\psi(t)\rangle_1 \, |\psi(t)\rangle_2 \\ |\psi(t)\rangle_1 &= \frac{1}{2}((|L\rangle_1 + |R\rangle_1) + (|L\rangle_1 - |R\rangle_1)e^{-i\Delta Et/\hbar}) \end{split}$$

PHYSIKALISCHES INSTITUT

Two interacting atoms

Universität Heidelberg

PHYSIKALISCHES

Т

INS

Interaction leads to entanglement:

 $|\Psi(t)
angle
eq |\psi(t)
angle_1 |\psi(t)
angle_2$

In a balanced double well, they can only tunnel together!

We can compensate for the interaction energy by applying a tilt!

tilt [J]

-5

0

B=740G

-10

Two strongly interacting atoms

-15

Universität

Heidelberg

• Observe number statistics in the right well (time averaged)

two atoms

PHYSIKALISCHES

ΙΝ S Τ

UNIVERSITÄT

Heidelberg

PHYSIKALISCHES INSTITUT

• Observe number statistics in the right well (time averaged)

two atoms

Universität

Heidelberg

Preparing stationary states

• If we ramp on the second well slowly enough, the system will remain in its ground state:

Eigenstates of a symmetric DW

Preparing stationary states

• Number statistics for the balanced case depending on the interaction strength:

Single occupancy

PHYSIKALISCHES

Preparing stationary states

Number statistics for the balanced case depending on the interaction strength:

Single occupancy

Universität

Heidelberg

PHYSIKALISCHES INSTITUT

Measuring energies

Universität Heidelberg

PHYSIKALISCHES

ΤU

INSTI

Trap modulation spectroscopy

Measuring energies

Universität Heidelberg

PHYSIKALISCHES

ΤU

INSTI

Trap modulation spectroscopy

Measuring energies

Universität Heidelberg

Super exchange energy! responsible for spin ordering in the many body ground state

PHYSIKALISCHES INSTITUT

Universität

Heidelberg

PHYSIKALISCHES

ΙN

S

How to go to a many-body system?

• Inspired by a top-down approach: D. Greif et al., Science 340, 1307-1310 (2013) (ETH Zürich)

Dimerize a lattice filled with spin-1/2 fermions to observe spin correlations

Outlook

Combination of multiple double wells

 Preparation of ground states in separated double wells

Combination to larger system

Can this process be done adiabatically ? Can it be extended to larger systems ?

Dhruv

Kedar

Mathias Neidig

Sebastian Pres

Puneet Murthy

Andrea Bergschneider

Selim Jochim Gerhard Zürn Vincent Klinkhamer

Simon Murmann

Thank you for your attention!

Martin Ries

Funding:

Center for Quantum Dynamics

