Les interactions entre atomes dans les gaz quantiques

Cours 2 Eléments de théorie de la diffusion

Jean Dalibard Chaire *Atomes et rayonnement* Année 2020-21

COLLÈGE DE FRANCE _____1530____

Le but de ce cours

Potentiel d'interaction entre deux atomes neutres (état électronique fondamental)

Comment traiter une collision entre deux atomes interagissant via ce potentiel ?

- Formalisme général : aujourd'hui
- Simplifications émergeant à basse énergie : cours suivant

L'invariance par rotation

Si on néglige l'interaction dipôle-dipôle magnétique, le potentiel d'interaction vérifie :

$$V(\mathbf{r}_A, \mathbf{r}_B) = V(r_{AB})$$

Conservation du moment cinétique relatif, associé au nombre quantique ℓ

Traitement via un développement en ondes partielles :

Un canal de collision (découplé des autres) par valeur de ℓ Caractérisation par le déphasage $\delta_{\ell}(k)$ (k : nombre d'onde relatif)

Simplifie la prise en compte de l'indiscernabilité

Bosons sans spin (ou polarisés) : ℓ pair

Fermions polarisés : ℓ impair

1.

Les états stationnaires de diffusion

 $\psi_k(\mathbf{r})$: états propres particuliers de l'hamiltonien total associés à un vecteur d'onde incident \mathbf{k}

Le problème à deux corps (classique ou quantique)

Hamiltonien:
$$H_{\text{tot}} = \frac{\boldsymbol{p}_A^2}{2m} + \frac{\boldsymbol{p}_B^2}{2m} + V(|\boldsymbol{r}_A - \boldsymbol{r}_B|)$$

Séparation "centre de masse - variable relative"

$$R = \frac{1}{2}(r_A + r_B)$$

$$r = r_A - r_B$$

$$p = p_A + p_B$$

$$p = \frac{1}{2}(p_A - p_B)$$

respecte les crochets de Poisson ou les commutateurs $[\hat{r}_{\alpha}, \hat{p}_{\beta}] = i\hbar \delta_{\alpha\beta}$

Réécriture de l'hamiltonien total : $H_{tot} = H_{cdm} + H_{rel}$

$$H_{\rm cdm} = \frac{\boldsymbol{P}^2}{4m}$$

mouvement libre d'une particule de masse 2*m*

$$H_{\rm rel} = \frac{p^2}{2m_{\rm r}} + V(r)$$

mouvement à étudier d'une particule de masse $m_{\rm r} = m/2$

Etats de diffusion vs. états liés

E > 0: états de diffusion, les deux atomes sont asymptotiquement libres

Spectre continu : on posera
$$E = \frac{\hbar^2 k^2}{2m_r}$$
 où $k > 0$ est un nombre d'onde

E < 0: états liés, formation d'un dimère

Spectre discret, noté E_n , où chaque n correspond à un état de vibration

Etats d'énergie bien définie

On cherche les états propres de l'hamiltonien relatif d'énergie positive

$$\hat{H} \psi(\mathbf{r}) = E \psi(\mathbf{r}) \quad \text{avec} \quad \hat{H} \equiv \hat{H}_{\text{rel}} = -\frac{\hbar^2}{2m_{\text{r}}} \nabla^2 + V(\mathbf{r})$$

En posant $E = \frac{\hbar^2 k^2}{2m_{\text{r}}}$, on obtient
 $\frac{\hbar^2}{2m_{\text{r}}} \left(\nabla^2 + k^2 \right) \psi(\mathbf{r}) = V(\mathbf{r}) \psi(\mathbf{r})$

considérée comme une équation différentielle avec le second membre $V(\mathbf{r}) \psi(\mathbf{r})$

On commence par s'intéresser d'abord à l'équation sans second membre ("libre") :

$$\frac{\hbar^2}{2m_{\rm r}} \left(\nabla^2 + k^2\right) \psi(\mathbf{r}) = 0$$

Solutions particulières : ondes planes $e^{ik \cdot r}$

Utilisation de la fonction de Green libre

Equation intégrale de la diffusion (Lippmann-Schwinger)

Le terme source est ici $S(\mathbf{r}) = V(\mathbf{r}) \psi(\mathbf{r})$:

$$\psi_{k}^{(+)}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} + \int \mathscr{G}_{0}^{(+)}(\mathbf{r} - \mathbf{r}') \ V(\mathbf{r}') \ \psi_{k}^{(+)}(\mathbf{r}') \ d^{3}r'$$

état stationnaire de diffusion

Equation implicite mais dont l'intérêt est bien réel dès que V(r) a une portée limitée

Relie la valeur de ψ en un point \mathbf{r} arbitraire aux valeurs de $\psi(\mathbf{r}')$ en des points \mathbf{r}' où $V(\mathbf{r}')$ prend des valeurs significatives

- Equation de Fredholm du second type : solution unique
- L'ensemble des $\psi_{k}^{(+)}$ ainsi obtenu est orthonormé
- On peut faire la même chose avec $\mathscr{G}_0^{(-)}$ et définir l'ensemble des $\psi_k^{(-)}$

Forme asymptotique d'un état stationnaire de diffusion

$$\begin{split} \psi_{k}(\mathbf{r}) &= e^{i\mathbf{k}\cdot\mathbf{r}} + \int \mathscr{G}_{0}^{(+)}(\mathbf{r} - \mathbf{r}') \ V(\mathbf{r}') \ \psi_{k}(\mathbf{r}') \ d^{3}r' \\ &= e^{i\mathbf{k}\cdot\mathbf{r}} - \frac{m_{r}}{2\pi\hbar^{2}} \int \frac{e^{ik|\mathbf{r} - \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|} \ V(\mathbf{r}') \ \psi_{k}(\mathbf{r}') \ d^{3}r' \end{split}$$

Développement aux grands r

$$\frac{\mathrm{e}^{\mathrm{i}k|\boldsymbol{r}-\boldsymbol{r}'|}}{|\boldsymbol{r}-\boldsymbol{r}'|} \sim \frac{\mathrm{e}^{\mathrm{i}kr}}{r} \,\mathrm{e}^{-\mathrm{i}k\,\boldsymbol{u}_f\cdot\boldsymbol{r}'} \quad \text{pour } \boldsymbol{r} \to \infty$$

onde sphérique

sortante

10

L'approximation de Born

Développement perturbatif en puissances du potentiel $V(\vec{r})$

$$\psi_{k}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} + \int \mathscr{G}_{0}^{(+)}(\mathbf{r} - \mathbf{r}') \ V(\mathbf{r}') \ \psi_{k}(\mathbf{r}') \ d^{3}\mathbf{r}'$$
ordre 0
ordre 0
ordre 2

Si on se limite à l'ordre 1 inclus en V, on a:

$$\psi_{k}(\boldsymbol{r}) = \mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}} + \int \mathscr{G}_{0}^{(+)}(\boldsymbol{r} - \boldsymbol{r}') \ V(\boldsymbol{r}') \ \mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}'} \ \mathrm{d}^{3}\boldsymbol{r}'$$

que l'on peut itérer pour aller à des ordres arbitrairement élevés :

11

Critères de convergence subtils... A basse énergie, une condition nécessaire est l'absence d'états liés dans le potentiel $V(\mathbf{r})$

2.

La formulation opératorielle

Formulation qui permet de traiter également des problèmes dépendant du spin, la diffusion de photons par des atomes ou de phonons par des défauts cristallins

L'opérateur de Green \hat{G}_0

Formulation opératorielle pour la résolution de $(\hat{H}_0 + \hat{V}) |\psi\rangle = E |\psi\rangle$: $\frac{\hbar^2}{2m_r} (\nabla^2 + k^2) \psi(\mathbf{r}) = V(\mathbf{r}) \psi(\mathbf{r}) \qquad \longleftrightarrow \qquad (E - \hat{H}_0) |\psi\rangle = \hat{V} |\psi\rangle$ avec $\hat{H}_0 = \hat{p}^2/2m_r$

Etat stationnaire de diffusion :

$$\begin{split} \psi_{k}^{(+)}(\mathbf{r}) &= \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} + \int \mathscr{G}_{0}^{(+)}(\mathbf{r}-\mathbf{r}') \ V(\mathbf{r}') \ \psi_{k}^{(+)}(\mathbf{r}') \ \mathrm{d}^{3}\mathbf{r}' \quad \longleftrightarrow \quad |\psi_{k}^{(+)}\rangle \\ &= |\mathbf{k}\rangle + \hat{G}_{0}^{(+)}(E)\hat{V}|\psi_{k}^{(+)}\rangle \\ &\text{avec}: \quad \langle \mathbf{r} \,|\, \hat{G}_{0}^{(+)}|\,\mathbf{r}'\rangle = \mathscr{G}_{0}^{(+)}(\mathbf{r}-\mathbf{r}') \qquad \qquad \hat{G}_{0}^{(+)}(E) = \frac{1}{E - \hat{H}_{0} + \mathrm{i}0_{+}} \end{split}$$

La limite 0_+ est à comprendre au sens des distributions :

$$\frac{1}{x - x_0 + \mathrm{i}0_+} = \mathscr{P}\mathscr{P}\left(\frac{1}{x - x_0}\right) - \mathrm{i}\pi\delta(x - x_0)$$
13

L'opérateur de Green \hat{G}

Passage de
$$\hat{H}_0 = \hat{p}^2 / 2m_r$$
 à $\hat{H} = \hat{H}_0 + \hat{V}$
 $\hat{G}_0^{(+)}(E) = \frac{1}{E - \hat{H}_0 + i0_+}$ $\hat{G}^{(+)}(E) = \frac{1}{E - \hat{H} + i0_+}$

Algèbre très simple :

$$\hat{G} = \hat{G}_0 + \hat{G}\hat{V}\hat{G}_0 = \hat{G}_0 + \hat{G}_0\hat{V}\hat{G}$$

relations implicites entre opérateurs

Ces relations peuvent être itérées à l'infini:

$$\hat{G} = \hat{G}_0 + \hat{G}_0 \hat{V} \hat{G}_0 + \hat{G}_0 (\hat{V} \hat{G}_0)^2 + \dots$$

à la base du développement de Born

$|\psi_k\rangle = |k\rangle + \hat{G}_0 \hat{V} |\psi_k\rangle$

La matrice de transfert $\hat{T}(E)$

En terme opératoriel, le développement de Born s'écrit

$$|\psi_{\boldsymbol{k}}\rangle = |\boldsymbol{k}\rangle + \hat{G}_{0}\hat{V}|\boldsymbol{k}\rangle + (\hat{G}_{0}\hat{V})^{2}|\boldsymbol{k}\rangle + (\hat{G}_{0}\hat{V})^{3}|\boldsymbol{k}\rangle + \dots$$

On introduit l'opérateur $\hat{T}(E) = \hat{V} + \hat{V}\hat{G}_0(E)\hat{V} + \hat{V}(\hat{G}_0(E)\hat{V})^2 + ...$ de sorte que : $|\psi_k\rangle = |k\rangle + \hat{G}_0\hat{T}|k\rangle$

On a transféré le problème de la resommation de la série infinie de $\ket{\psi_k}$ à \hat{T}

La relation itérative entre \hat{G} et \hat{G}_0 $\hat{G} = \hat{G}_0 + \hat{G}_0 \hat{V} \hat{G}_0 + \hat{G}_0 (\hat{V} \hat{G}_0)^2 + \dots$ $\hat{G}(E) = \frac{1}{E - \hat{H} + i0_+}$ conduit à $\hat{T}(E) = \hat{V} + \hat{V} \hat{G}(E) \hat{V}$

pôle de $\hat{G}(E)$ (*i.e.* état lié de \hat{H}) \longrightarrow pôle de $\hat{T}(E) \longrightarrow$ pôle de l'amplitude de diffusion

 $E = \frac{\hbar^2 k^2}{2m_r}$

Une série d'expressions utiles

Le point de départ pour un état stationnaire de diffusion

 $\hat{G}_0 \equiv \hat{G}_0(E) = \frac{1}{E - \hat{H}_0 + i0_+}$ $|\psi_k\rangle = |k\rangle + \hat{G}_0 \hat{V} |\psi_k\rangle$ peut être transformé en $\hat{T} \equiv \hat{T}(E) = \hat{V} + \hat{V}\hat{G}(E)\hat{V}$ $|\psi_k\rangle = |k\rangle + \hat{G}_0 \hat{T} |k\rangle$ $\hat{G} \equiv \hat{G}(E) = \frac{1}{E - \hat{H} + i0}$ $|\psi_{k}\rangle = |k\rangle + \hat{G}\hat{V}|k\rangle$

Pas de miracle ! Chacune de ces expressions contient un terme difficile à évaluer...

et

3.

L'amplitude de diffusion et le théorème optique

Retour sur la forme d'un état stationnaire de diffusion

On considère un potentiel diffusant V invariant par rotation : V(r)

$$\psi_{k_i}(\mathbf{r}) \sim \mathrm{e}^{\mathrm{i}k_i \cdot \mathbf{r}} + f(k,\theta) \frac{\mathrm{e}^{\mathrm{i}kr}}{r}$$

$$\sim \psi^{(inc)} + \psi^{(dif)}$$

amplitude de diffusion : $f(k, \theta) =$

$$f(k,\theta) = -\frac{m_{\rm r}}{2\pi\hbar^2} \int e^{-ik_f \cdot \mathbf{r}'} V(r') \psi_{k_i}(\mathbf{r}') \, \mathrm{d}^3 r'$$
$$= -\frac{m_{\rm r}}{2\pi\hbar^2} \langle k_f | \, \hat{T} \, | \, k_i \rangle$$

Section efficace de diffusion

Flux incident dans la direction k_i particules/(m² x seconde)

Flux sortant autour d'un angle solide Ω donné particules/seconde

Rapport des deux flux (surface): $\frac{d\sigma}{d\Omega}(\Omega)$

Flux évalués à partir du courant de probabilité pour l'état $\psi_k(\mathbf{r}) \sim \psi^{(\mathrm{inc})} + \psi^{(\mathrm{dif})}$

formule générale :
$$J(r) = \frac{\hbar}{m} \operatorname{Im} \left\{ \psi^*(r) \nabla [\psi(r)] \right\}$$

 $J^{(\operatorname{inc})}(r) = \frac{\hbar k_i}{m_r}$
 $J^{(\operatorname{dif})}(r) = \frac{\hbar k}{m_r} |f(k,\theta)|^2 \frac{u}{r^2}$
 $\longrightarrow \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\Omega) = |f(k,\theta)|^2$

Le théorème optique

On a donné la forme asymptotique de l'état de diffusion

$$\psi_k(\mathbf{r}) \sim \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} + f(\mathbf{k},\theta) \frac{\mathrm{e}^{\mathrm{i}\mathbf{k}\mathbf{r}}}{r}$$

mais toute fonction complexe $f(k, \theta)$ n'est pas éligible !

Une contrainte forte provient de l'unitarité de toute évolution quantique

Conservation de la probabilité :
$$\nabla \cdot J + \frac{\partial \rho}{\partial t} = 0$$
 $\rho = |\psi|^2$

Pour un état propre de l'hamiltonien (état stationnaire): $\nabla \cdot J = 0$

$$\psi_k(\mathbf{r}) \sim \psi^{(\text{inc})} + \psi^{(\text{dif})}$$

$$J(\mathbf{r}) = \frac{\hbar}{m} \operatorname{Im} \left\{ \psi^*(\mathbf{r}) \nabla \left[\psi(\mathbf{r}) \right] \right\}$$

$$J = J^{(\text{inc})} + J^{(\text{dif})} + J^{(\text{interf})}$$

Après un calcul relativement long : $0 + \frac{k}{4\pi}\sigma_{tot} - \text{Im}\left[f(k,\theta=0)\right] = 0$ $\sigma_{tot} = \int \frac{d\sigma}{d\Omega} d^2\Omega = 2\pi \int_0^{\pi} |f(k,\theta)|^2 \sin\theta \, d\theta \qquad \text{section efficace totale}$

Signification du théorème optique

$$\frac{k}{4\pi}\sigma_{\rm tot} = {\rm Im}\left[f(k,\theta=0)\right]$$

Rien ne se perd, rien ne se crée...

$$\psi_{\mathbf{k}_i}(\mathbf{r}) \sim \mathrm{e}^{\mathrm{i}\mathbf{k}_i \cdot \mathbf{r}} + f(\mathbf{k}, \theta) \frac{\mathrm{e}^{\mathrm{i}\mathbf{k}\mathbf{r}}}{r}$$

Les particules diffusées dans des directions $k_f \neq k_i$ sont prélevées sur le faisceau incident, qui est donc atténué

Cette atténuation semble absente de l'expression de ψ_k , mais elle se cache dans l'interférence (destructive) "vers l'avant", c'est-à-dire pour $\theta = 0$

$$\operatorname{Im}\left[f(k,\theta=0)\right] = \frac{k}{4\pi}\sigma_{\text{tot}}$$

Le théorème optique dans le cas isotrope

On suppose que $f(k, \theta) = f(k)$, ce qui est bien vérifié à basse énergie [cf. cours 3]

$$\sigma_{\text{tot}} = 2\pi \int_0^{\pi} |f(k)|^2 \sin\theta \, d\theta = 4\pi |f(k)|^2$$

Le théorème optique s'écrit alors : Im $[f(k)] = k |f(k)|^2$

ou encore :
$$\operatorname{Im}\left[\frac{1}{f(k)}\right] = -k \longrightarrow \frac{1}{f(k)} = \operatorname{fonction} \operatorname{reelle}(k) - ik$$

Impose une borne supérieure à la section efficace :

$$\frac{1}{|f(k)|} \ge k \qquad \Rightarrow \qquad \sigma_{\text{tot}} = 4\pi |f(k)|^2 \le \frac{4\pi}{k^2}$$

limite unitaire

4.

La symétrie de rotation

La conservation du moment cinétique

Si $V(\mathbf{r}) = V(|\mathbf{r}|)$, alors \hat{H} et \hat{L}_i (avec i = x, y, z) commutent on peut diagonaliser simultanément \hat{H} , \hat{L}^2 , \hat{L}_z

Imposer à $\psi(r, \theta, \varphi)$ d'être état propre de \hat{L}^2 , \hat{L}_z détermine sa partie angulaire :

Deux nombres quantiques : $\ell \ge 0$, $m \in \{-\ell, -\ell + 1, ..., \ell\}$ $\hat{L}^2 \psi = \hbar^2 \ell (\ell + 1) \psi$ $\hat{L}_z \psi = \hbar m \psi$

Un cas particulier important : les états "s" tels que $\ell = m = 0$ correspondent à $Y_{0,0}$ constante, donc un état $\psi(\mathbf{r})$ isotrope

L'équation radiale

On injecte $\psi(r, \theta, \varphi) = \chi(r) Y_{\ell,m}(\theta, \varphi)$ dans l'équation de Schrödinger

 $\hat{\boldsymbol{p}}^2 \boldsymbol{\psi} = -\frac{\hbar^2}{r} \frac{\partial^2}{\partial r^2} (r \boldsymbol{\psi}) + \frac{1}{r^2} \hat{\boldsymbol{L}}^2 \boldsymbol{\psi}$

$$\left(\frac{\hat{p}^2}{2m_{\rm r}} + V(r)\right)\psi(r) = E \ \psi(r)$$

en utilisant

On obtient une équation pour la fonction d'onde radiale réduite
$$u(r) = r \chi(r)$$

$$-\frac{\hbar^2}{2m_{\rm r}}\frac{{\rm d}^2}{{\rm d}r^2}u(r) + \left[V(r) + \frac{\hbar^2\ell(\ell+1)}{2m_{\rm r}r^2}\right] u(r) = E u(r)$$

Equation de Schrödinger effective sur la demi-droite $[0, +\infty)$ avec u(0) = 0

Canaux de diffusion

$$-\frac{\hbar^2}{2m_{\rm r}}\frac{{\rm d}^2}{{\rm d}r^2}u(r) + \left[V(r) + \frac{\hbar^2\ell(\ell+1)}{2m_{\rm r}r^2}\right] u(r) = E u(r)$$

Pour chaque valeur de ℓ , on a un problème de diffusion 1D dans le potentiel effectif

Recherche des fonctions propres sous la forme [à un $(-1)^{\ell}$ près]

$$u_{\ell}(r) \sim e^{-ikr} \mp e^{2i\delta_{\ell}} e^{+ikr}$$

Toute la physique est contenue dans les déphasages $\delta_{\mathcal{C}}(k)$

Lien entre déphasages et amplitude de diffusion

On décompose
$$\psi_k(r) \sim e^{ik \cdot r} + f(k, \theta) \frac{e^{ikr}}{r}$$
 sur les harmoniques sphériques
et on pose $f(k, \theta) = \sum_{\ell} (2\ell' + 1) \frac{P_{\ell}(\cos \theta) f_{\ell'}(k)}{\sqrt{r}}$ amplitude de
de Legendre diffusion du canal ℓ'
Après identification terme à terme : $e^{2i\delta_{\ell'}} = 1 + 2ikf_{\ell'} \longrightarrow \frac{1}{f_{\ell'}(k)} = \frac{k}{\tan \delta_{\ell'}(k)} - ik$
Section efficace totale : $\sigma_{tot} = \sum_{\ell'} \sigma_{\ell'}$ avec $\sigma_{\ell'} = \frac{4\pi}{k^2} (2\ell' + 1) \sin^2 [\delta_{\ell'}(k)]$
Le théorème optique $\frac{k}{4\pi} \sigma_{tot} = \operatorname{Im} [f(k, \theta = 0)]$ est bien satisfait !

 $e^{i(kr+2\delta_{\ell})}$

 e^{-ikr}

5.

Collision de particules indiscernables

Prise en compte du principe de Pauli

On suppose que les deux partenaires de collision sont dans le même état de spin

pour la partie orbitale : $\Psi(\mathbf{r}_A, \mathbf{r}_B) = \pm \Psi(\mathbf{r}_B, \mathbf{r}_A)$ + : bosons, - : fermions

Pour les variables "centre de masse - coordonnée relative"

$$R = \frac{1}{2}(r_A + r_B)$$

Dans l'échange $r_A \leftrightarrow r_B$, on a R inchangé et $r \leftrightarrow -r$
 $r = r_A - r_B$

La fonction d'onde de la variable relative doit donc satisfaire : $\psi(-\mathbf{r}) = \pm \psi(\mathbf{r})$

Particules indiscernables et moment cinétique relatif

Pour un potentiel invariant par rotation, on peut chercher ψ sous la forme

$$\psi(r, \theta, \varphi) = \chi(r) Y_{\ell, m}(\theta, \varphi)$$

La passage de r à -r se décrit en coordonnées sphériques par :

$$r \to r, \quad \theta \to \pi - \theta, \quad \varphi \to \varphi + \pi$$

et les harmoniques sphériques vérifient la propriété :

$$Y_{\ell,m}(\pi - \theta, \varphi + \pi) = (-1)^{\ell} Y_{\ell,m}(\theta, \varphi)$$

Bilan pour des particules indiscernables polarisées en spin :

- Pour des bosons, seules les valeurs paires de ℓ sont autorisées : $\ell = 0, 2, 4, ...$
- Pour des fermions, seules les valeurs impaires de ℓ sont autorisées : $\ell = 1,3,...$

 $\psi(-\boldsymbol{r}) = \pm \psi(\boldsymbol{r})$

Etat de diffusion pour des particules indiscernables

La forme "standard" utilisée jusqu'ici

$$\psi_{k}(\mathbf{r}) \sim \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} + f(\mathbf{k},\theta) \frac{\mathrm{e}^{\mathrm{i}\mathbf{k}\mathbf{r}}}{r}$$

devient après symétrisation

$$\psi_{k}(\mathbf{r}) \sim \frac{1}{\sqrt{2}} \left[e^{i\mathbf{k}\cdot\mathbf{r}} \pm e^{-i\mathbf{k}\cdot\mathbf{r}} \right] + \frac{1}{\sqrt{2}} \left[f(k,\theta) \pm f(k,\pi-\theta) \right] \frac{e^{ikr}}{r}$$

Section efficace différentielle :

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{2} \left| f(k,\theta) \pm f(k,\pi-\theta) \right|^2$$

possibilité d'interférences !

Exemple : pour des fermions polarisés et $\theta = \frac{\pi}{2}$, il ne peut pas y avoir de diffusion

Diffusion coulombienne d'ions carbone C⁺⁺

¹²C : noyau de spin nul (boson)

¹³C : noyau de spin 1/2 (fermion)

Section efficace différentielle pour la diffusion coulombienne :

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \propto \frac{1}{\sin^4(\theta/2)}$$

32

Barrière centrifuge et atomes froids

On modélise le potentiel obtenu dans le cadre de Born-Oppenheimer par

Seules les collisions en onde s ($\ell = 0$) jouent un rôle important, sauf cas très particulier

un gaz de fermions polarisés est généralement un gaz parfait

En résumé (1)

• Description d'une collision en termes d'état stationnaire de diffusion $|\psi_k\rangle$

$$\psi_k(\mathbf{r}) \sim \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} + f(\mathbf{k},\theta) \frac{\mathrm{e}^{\mathrm{i}\mathbf{k}\mathbf{r}}}{r}$$

• L'amplitude de diffusion $f(k, \theta)$ contient toute l'information sur la collision

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\Omega) = |f(k,\theta)|^2$$

• L'amplitude de diffusion se calcule à partir de la matrice de transition $\hat{T}(E)$

$$f(k,\theta) = -\frac{m_{\rm r}}{2\pi\hbar^2} \langle \mathbf{k}_f | \hat{T} | \mathbf{k}_i \rangle \qquad \theta = (\mathbf{k}_i, \mathbf{k}_f) \qquad k = |\mathbf{k}_i| = |\mathbf{k}_f|$$

avec $\hat{T}(E) = \hat{V} + \hat{V}\hat{G}(E)\hat{V}$ $\hat{G}(E) = \frac{1}{E - \hat{H} + i0_+}$

En résumé (2)

Pour un potentiel invariant par rotation V(r)

- Canaux indépendants associés aux ondes partielles de moment cinétique donné
- Pour des particules indiscernables

 ℓ pair pour des bosons sans spin ou polarisés

 ℓ impair pour des fermions polarisés

• Pour une énergie suffisamment basse, seul le canal $\ell = 0$ contribue diffusion isotrope

Le théorème optique impose dans ce cas :

$$\frac{1}{f(k)} = \text{fonction reelle}(k) - ik$$