Des cages de lumière pour les atomes : la physique des pièges et des réseaux optiques

# Cours 5. Les oscillations de Bloch dans un réseau optique

Jean Dalibard Chaire *Atomes et rayonnement* Année 2012-13



## Bilan des cours précédents



Atome dans un réseau optique stationnaire :  $\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$   $V(x) = V_0 \sin^2(kx)$ 

Fonctions de Bloch :  $\psi_{n,q}(x) = e^{ixq}u_{n,q}(x)$ Bandes d'énergie :  $E_n(q)$ Echelle d'énergie :  $E_r = \hbar^2 k^2/2m$ zone de Brillouin :  $-k < q \le k$  10  $E_{n,q}$   $E_r$  0 -1 0 q/k 10  $V_0 = 4 E_r$  0 -1 0 q/k 10  $V_0 = 4 E_r$  0 -1 0 q/k1



## Bilan des cours précédents



*Identification de trois hamiltoniens équivalents pour décrire ce problème* 

 $A(t) = m\dot{x}_0(t)$  $F(t) = -\dot{A}(t) = -m\ddot{x}_0(t)$ 



## Les trois hamiltoniens utiles



Si  $\hat{H}_2$  est l'hamiltonien dans le référentiel du laboratoire, alors  $\hat{H}_1$  est l'hamiltonien du même problème dans le référentiel accéléré

 $F(t) = -m\ddot{x}_0(t)$  : force d'inertie

Mais  $\hat{H}_1$  peut également être l'hamiltonien dans le référentiel du laboratoire si on ajoute une « vraie » force constante : champ électrique sur un électron, gravité, gradient de champ magnétique sur un atome neutre

# Evolution d'une onde de Bloch pour les trois hamiltoniens

Hamiltonien 
$$\hat{H}_0(t) = \frac{\left[\hat{p} - A(t)\right]^2}{2m} + V(\hat{x})$$

Forme de Bloch conservée,  $e^{ixq}u(x,0) \rightarrow e^{ixq}u(x,t)$  q(t) = q(0)

Hamiltonien 
$$\hat{H}_2(t) = \frac{\hat{p}^2}{2m} + V[\hat{x} - x_0(t)]$$

Forme de Bloch conservée,  $e^{ixq}u(x,0) \rightarrow e^{ixq}u(x,t)$  q(t) = q(0)

Hamiltonien 
$$\hat{H}_1(t) = \frac{\hat{p}^2}{2m} + V(\hat{x}) - F(t) \hat{x}$$

Forme de Bloch conservée mais avec un changement de quasi-moment:

 $e^{ixq}u(x,0) \to e^{ix\,q(t)}u(x,t)$   $q(t) = q(0) - p_0(t)/\hbar = q(0) + \frac{1}{\hbar}\int_0^t F(t')\,dt'$ 

1.

# Le principe des oscillations de Bloch

# Le problème de Zener (1934)



Exemple de transposition avec des atomes



A quel champ se produit le « claquage » ?

*extraction irréversible des électrons depuis la bande de conduction* 

Hamiltonien « de type  $\hat{H}_1$  » avec une force constante (indépendante du temps et de l'espace) en plus du potentiel périodique

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}) - F\hat{x}$$
  $V(x+a) = V(x)$ 

Que gagne-t-on par rapport à la relation générale  $q(t) = q_{\rm in} + \frac{1}{\hbar} \int_0^t F(t') dt'$ ?

# L'approximation adiabatique



Instant initial :  $\psi(x, t = 0) = \psi_{n,q_{\text{in}}}(x) = e^{ix q_{\text{in}}} u_{n,q_{\text{in}}}(x)$ 

L'approximation adiabatique consiste à supposer que l'état de l'atome reste dans la bande de départ

$$\psi(x,t) \propto \psi_{n,q(t)}(x) = e^{ix q(t)} u_{n,q(t)}(x) \qquad q(t) = q_{\rm in} + Ft/\hbar$$

En particulier, au bout d'une période de Bloch  $\psi(x, au_B) \propto \psi(x,0)$ 

égalité à une phase près : dynamique + géométrique (Zak)

# L'approche de Zener (1934)



Mélange la notion de bande (espace des quasi-impulsions) et de potentiel (espace des positions)

« spectre d'énergie local »

Amplitude de l'oscillation dans l'espace réel :  $x_b - x_A = \Delta E/F$ 

La vitesse de groupe en absence de force  $v_{g,n}(q_0) = \frac{1}{\hbar} \left. \frac{dE_n}{dq} \right|_{q=q_0}$ 

Evolution générale dans le potentiel périodique dans une bande n :

$$\psi(x,0) = \int c(q) \,\psi_{n,q}(x) \,dq \qquad \longrightarrow \qquad \psi(x,t) = \int c(q) \,\psi_{n,q}(x) \,e^{-iE_n(q)t/\hbar} \,dq$$

On considère un paquet d'ondes centré en  $q_0$  avec une dispersion  $\Delta q \ll k$ :

Développement au voisinage de 
$$q_0$$
:  $E_n(q) \approx E_n(q_0) + (q - q_0) \left. \frac{dE_n}{dq} \right|_{q=q_0}$   
=  $E_n(q_0) + \hbar(q - q_0)v_{g,n}(q_0)$   
 $\longrightarrow \quad \psi(x,t) \propto \int c(q) \ \psi_{n,q}(x) \ e^{-iqv_{g,n}(q_0) t} \ dq$ 

Choisissons une durée t telle que  $v_{\mathrm{g},n}t=a$  (une période spatiale du réseau)

 $e^{-iqa}\psi_{n,q}(x) = \psi_{n,q}(x-a) \longrightarrow \psi(x,t) \propto \psi(x-a,0)$ 

Propagation à vitesse  $v_{g,n}(q_0)$ 

# L'approche « paquet d'ondes » en présence de la force F

Le défilement du quasi-moment  $q(t) = q_{in} + Ft/\hbar$  entraine une modification de la vitesse de groupe :

$$v_{\rm g}(q) \to v_{\rm g}[q(t)]$$

Evolution du centre du paquet d'ondes :

$$\frac{d\bar{x}}{dt} = v_{\rm g}(t) = \frac{1}{\hbar} \left. \frac{dE_{n,q}}{dq} \right|_{q=\bar{q}(t)}$$



ce qui s'intègre en : 
$$\bar{x}(t) - \bar{x}(0) = \frac{1}{\hbar} \int_0^t \frac{dE_{n,q}}{dq} dt = \frac{1}{F} \int_{q_{\rm in}}^{q(t)} \frac{dE_{n,q}}{dq} dq,$$

où encore : 
$$\bar{x}(t) - \bar{x}(0) = \frac{1}{F} \left( E_{n,\bar{q}(t)} - E_{n,q_{\text{in}}} \right)$$

identique à la prédiction de Zener

Raisonnement semi-classique qui est valable si  $\Delta q_{
m in} \ll \pi/a$   $\Delta x_{
m in} \gg a$ 

# Interprétation en termes de photons

Image perturbative de l'interaction atome-lumière

L'atome est accéléré comme une particule libre selon la loi  $\dot{p} = F$ 

L'effet du réseau se fait sentir quand une transition multi-photonique conservant l'énergie et l'impulsion devient possible





2.

# **Observations expérimentales avec des atomes froids**

Observations initiales avec des électrons dans des super-réseaux (cf. article de revue par Mendez & Bastard)

# Les premières expériences avec des atomes froids

1995-97 : groupes de M. Raizen (Austin, Texas) et C. Salomon (Paris)

#### Réseau accéléré dans le référentiel du laboratoire :



pulsations instantanées  $\omega_j = \omega + \frac{d\phi_j}{dt} = \omega \pm k\gamma t$   $x_0(t) = \gamma t^2/2$ 

#### Paris, atomes de <sup>133</sup>Cs

 $\gamma \sim 1$ à 30 m/s²

Austin, atomes de <sup>23</sup>Na

 $\gamma \sim 1000$ à 3000 m/s²

# Expériences de Paris (1995-97, groupe de C. Salomon)



atomic momentum [ħk]

Distribution en impulsion dans le référentiel du réseau, mesurée par temps de vol

# Vitesse atomique moyenne (Paris, 1996)



# **Evolution dans le référentiel du laboratoire**



Image perturbative  $\begin{array}{c}
40\\
30\\
\hline E_{r}\\
20\\
10\\
-4\\
-4\\
-2\\
0\\
\hline -4\\
-2\\
0\\
\hline -4\\
\hline p/\hbar k
\end{array}$ 

Condition de résonance :

$$\begin{split} \hbar[\omega_1(t_j) - \omega_2(t_j)] &= [(2j+2)^2 - (2j)^2]E_1 \\ \Rightarrow \quad t_j &= (j + \frac{1}{2}) \tau_{\rm B} \\ \tau_{\rm B} &= 2\hbar k/m\gamma \end{split}$$

# Un « quizz »

inspiré d'une conférence de W.D. Phillips

Initialement : réseau éteint, atomes à vitesse nulle ou basse :  $v \ll \hbar k/m$ 

On branche adiabatiquement le réseau avec une vitesse nulle

On accélère le réseau jusqu'à une vitesse  $v_{\mathrm{fin}}$ 

On éteint adiabatiquement le réseau pendant qu'il bouge à la vitesse  $v_{\mathrm{fin}}$ 



mesurée dans le référentiel du laboratoire ?

Des atomes dans un réseau optique en mouvement ne sont pas comme de l'eau dans un élévateur à godets...



# Bilan d'impulsion pour un réseau accéléré

Dans le référentiel du laboratoire :  $p_{fin}^{labo} = p_{ini}^{labo} + 2N\hbar k$ 





#### Dans le référentiel du réseau :



# **Bilan d'impulsion (suite)**



Une mesure d'impulsion va donner :  $p_{\text{fin}}^{(\text{reseau})} = \hbar q(T) + 2N\hbar k \in [-\hbar k, \hbar k]$ 

ce qui correspond dans le laboratoire à : 
$$p_{\text{fin}}^{(\text{labo})} = p_{\text{fin}}^{(\text{reseau})} + mv^{(\text{reseau})}(T)$$
  
 $= p_{\text{fin}}^{(\text{reseau})} + m\dot{x}_0(T)$   
 $= \hbar q(T) + 2N\hbar k + m\dot{x}_0(T)$   
 $= p_{\text{in}} + 2N\hbar k$ 

# Oscillations de Bloch dues à la gravité



Stanford 1998, Florence 2004,...

 $\hat{H}_1$  est maintenant l'hamiltonien dans le référentiel du laboratoire

Florence 2011, Groupe de G. Tino : <sup>88</sup>Sr

a = 266 nm  $\omega_B/2\pi = 574 \text{ Hz}$   $V_0 \approx 2 \text{ à } 3 E_r$ 



distributions après temps de vol

*g* à 6 x10<sup>-6</sup> près

 $\hbar\omega_B = amg$ 

# 3.

# L'approximation adiabatique et au delà

# Validité de l'approximation adiabatique

Déjà abordée au cours 2 : Hamiltonien dépendant d'un paramètre f

> Etats propres  $|\phi_n(f)\rangle$ Energies  $E_n(f)$



On suppose que f dépend du temps.

A l'instant initial, le système est dans un état propre particulier  $|\phi_n[f(0)]\rangle$ Le système suit cet état propre si :  $\hbar \left| \langle \phi_{n'} | \frac{d}{dt} | \phi_n \rangle \right| \ll |E_{n'} - E_n|, \quad \forall n' \neq n,$ 

Ici, le quasi-moment q joue le rôle du paramètre f



# Le critère d'adiabaticité

On remplace le paramétrage en temps par un paramétrage en quasi-moment :



# **Transition de Landau-Zener**

E $\hat{H}(t) = \alpha t \,\hat{\sigma}_z + \beta \hat{\sigma}_x$ >  $E_{\pm}(t) = \pm \sqrt{\alpha^2 t^2 + \beta^2}$ - 1 Probabilité de suivi adiabatique :  $\mathcal{P} = 1 - e^{-\pi \beta^2/(\hbar \alpha)}$ qui devient pour notre problème :  $\mathcal{P} = 1 - e^{-F_{\rm c}/F}$   $F_{\rm c} = \frac{\pi}{32} \frac{V_0^2}{E_{\rm r}} k$ 

Liaisons faibles : modèle de croisement évités entre deux niveaux (Zener 1932)



#### cf. modèle de Gamow pour la radioactivité (1931)

L'électron « tente sa chance »  $\tau_{\rm B}$  fois par seconde ; probabilité d'être encore dans la bande de départ :

$$\Pi(t) \approx \mathcal{P}^{j} = \exp\left[j\ln\left(1 - e^{-F_{\rm c}/F}\right)\right] \approx \exp(-t/\tau)$$
$$j = t/\tau_{\rm B} \qquad \qquad \tau = \tau_{\rm B} \; e^{F_{\rm c}/F}$$

# Mise en évidence expérimentale des transitions de Landau-Zener

#### Paris, Austin 1997

#### Pise 2009



Probabilité de survie d'atomes de rubidium dans la bande n = 0 d'un réseau accéléré de période a = 421 nm

$$V_0 = E_{\rm r}$$
$$\hbar\omega_{\rm B} = 0.4 E_{\rm r}$$

# Un séparateur de faisceau à base d'oscillations de Bloch

NIST 2002, ENS 2009, Stanford 2009

Point de départ : atomes d'impulsion  $p \le \hbar k$ Transition de Bragg : superposition de p et  $p + 2\hbar k$ On branche adiabatiquement un réseau immobile



On accélère le réseau et on cherche à avoir

- un suivi adiabatique pour la bande n=0 : l'atome acquiert une impulsion  $2N\,\hbar k$  dans le référentiel du laboratoire
- une absence de suivi adiabatique pour la bande n = 2: l'atome « ne voit pas » le réseau et reste avec son impulsion initiale dans le référentiel du laboratoire

$$|\Psi\rangle = \alpha |p + 2N\hbar k\rangle + \beta |p + 2\hbar k\rangle$$

# Séparateur de faisceaux (suite)



NIST 2002: jusqu'à 12  $\hbar k$  d'écart entre les deux bras + interféromètre Mach-Zender

Difficultés liées au fait que les déplacements lumineux ne sont pas les même dans les deux bras

4.

Les oscillations de Bloch dans la limite des liaisons fortes

## La fonction d'onde oscillante

Hamiltonien en liaisons fortes (de type 
$$\hat{H}_1$$
):  

$$\hat{H} = -J\left(\hat{T} + \hat{T}^{\dagger}\right) - Fa \sum_{j} j |w_j\rangle \langle w_j|$$

$$\hat{T} = \sum_{j} |w_{j+1}\rangle \langle w_j|$$

$$j = \int_{j} |w_{j+1}\rangle \langle w_j|$$

Si *F*=0, fonctions de Bloch : 
$$|\psi_q\rangle = \sum_j e^{i j a q} |w_j\rangle$$
  $E(q) = -2J \cos(aq)$ 

Si  $F \neq 0$ , la forme de Bloch est préservée avec  $q(t) = q_{\rm in} + Ft/\hbar$ 

On cherche une solution sous la forme :  $|\psi(t)
angle=e^{-i\Phi(t)}\sum_{j}e^{i\,ja\,q(t)}|w_{j}
angle$ 

cf. cours n°4 : 
$$\Phi(t) = \Phi(0) + \frac{1}{\hbar} \int_0^t E[q(t')] dt'$$

# La fonction d'onde oscillante (suite)

Phase globale d'une fonction de Bloch : 
$$|\psi(t)\rangle = e^{-i\Phi(t)}\sum_{j}e^{i\,ja\,q(t)}|w_{j}\rangle$$

$$E(q) = -2J\cos(aq)$$

$$\Phi(t) = \Phi(0) + \frac{1}{\hbar} \int_0^t E[q(t')] dt'$$

$$= \frac{\nu}{2} \{ \sin [aq(t)] - \sin[aq_{\rm in}] \}$$

$$u = rac{4J}{aF} \,$$
 : nombre de sites entre les points A et B



Connaissant l'évolution de chaque fonction de Bloch, on peut alors déterminer l'opérateur d'évolution  $\hat{U}(t)$ 

base des ondes de Bloch :  $\langle \psi_{q'} | \hat{U}(t) | \psi_q \rangle \propto \delta(q' - q - Ft/\hbar)$ base des fonctions de Wannier :  $\langle w_{j'} | \hat{U}(t) | w_j \rangle \propto \mathcal{J}_{j'-j} [\nu \sin(\omega_{\rm B} t/2)]$ 

# Exemples d'évolution en modèle de liaisons fortes

Hartmann et al, 2004 
$$\nu = \frac{4J}{aF} = \frac{\Delta E}{\hbar\omega_{\rm B}}$$
  
Point de départ :  
paquet localisé sur un site donné (j=0)  
 $\langle w_j | \hat{U}(t) | w_0 \rangle \propto \mathcal{J}_j [\nu \sin(\omega_{\rm B} t/2)]$   
Point de départ :  
paquet d'ondes étendu :  $\sigma = 5$  sites  
vitesse initiale nulle  
 $20$   
 $\nu = -31.6$   
 $0$   
 $-20$   
 $-40$   
 $0$   
 $\nu = -31.6$   
 $-20$   
 $-40$   
 $-40$   
 $-20$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-40$   
 $-60$ 

Point

-31.6

# A suivre :

- Les échelle de Wannier Stark
- Perspectives et applications