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our data is gatom ¼ 9:804 923 2ð14Þ m=s2 where the uncer-
tainty corresponds to 1 standard deviation.

The reference value for local gravitational acceleration
is provided by an absolute gravimeter based on an optical
interferometer with one arm including a freely falling
corner-cube (FG5, Micro-g LaCoste). The measurement
is performed in the same laboratory at a distance of 1.15 m
from the atomic probe position. The difference in height
of 14(5) cm together with the estimated vertical gravity
gradient value gzz ¼ $3:09% 10$6 s$2 at the laboratory
site is taken into account in the data analysis. The result
is gFG5 ¼ 9:804 921 609ð84Þ m=s2

The comparison of the value obtained with the quantum
mechanical atomic sensor and the one obtained with the
classical gravimeter shows that they agree within the ex-
perimental errors.

With minor modifications of the experimental proce-
dure, in this work we also determine g by measuring the
frequency of the Bloch oscillations of the atoms in the

vertical optical lattice. Because of a better vacuum and
taking advantage of the lattice modulation method to re-
duce the initial momentum distribution of the atoms in the
lattice [19], we considerably improve the visibility of the
oscillations and, as a consequence, the frequency resolu-
tion compared with previous experiments [9]. After the
transfer of the atoms in the vertical optical lattice, an
amplitude-modulation burst with typical duration of
120 cycles at !m ’ !B is applied. The quantum phase of
the atomic wave function induced by the amplitude modu-
lation gives rise to an interference effect which results in an
enhanced visibility of the Bloch oscillations peaks in the
time-of-flight image of the atomic cloud [28]. After turning
off the modulation, we let the atomic cloud evolve for a
time T. Finally, we switch off the optical lattice within
5 "s to measure the momentum distribution of the atoms
in ballistic expansion by taking an absorption picture with
a CCD camera. In order to optimize the visibility through
this quantum interference effect, we set the time of flight to
14 ms. As shown in Fig. 4, we observe Bloch oscillations
with high visibility for &20 s. From the fit of the mean
atomic momentum we can estimate the Bloch frequency
!B with 1:7% 10$7 statistical uncertainty. In comparison
with the determination of !B obtained with the resonant
amplitude-modulation technique, however, we find a con-
siderably larger scattering in repeated measurements,
mainly due to the initial position instability of the atomic
trap and to a higher sensitivity to the timing of the experi-
ment. The value for g obtained with the Bloch oscillation
technique is gBloch ¼ 9:804 88ð6Þ m=s2, which is consis-
tent with the measurement presented above but is affected
by a larger relative uncertainty of 6% 10$6.
In conclusion, we have performed an accurate measure-

ment of gravitational acceleration using ultracold 88Sr
atoms confined in a vertical optical lattice. The result
agrees within 140 ppb with the value obtained with a
classical FG5 gravimeter. This result improves by 1 order
of magnitude in sensitivity and by more than 2 in

TABLE I. Systematic corrections and their associated uncer-
tainties (% 10$7) for the gravity measurement with 88Sr atoms
in the amplitude-modulated optical lattice.

Effect Correction Uncertainty

Lattice wavelength 0 2
Lattice beam vertical align. 0 0.2
Stark shift (beam geometry) 14.3–17.3 0.4
Experiment timing 0 0.2
Tides $1:4–0:9 <0:1
Height difference 4.3 0.2
Refraction index 0 <0:01
Fundamental constants 0 0.7
Systematics total 17.2–22.5 2.2

FIG. 4 (color online). Long-lived Bloch oscillations for Sr
atoms in the vertical lattice under the influence of gravity.
Each picture shows one Bloch cycle in successive time-of-flight
absorption images giving the momentum distribution at the time
of release from the lattice. Displayed are the first (a), the 2900th
(b), the 7500th (c), and the 9800th (d) Bloch cycles.

FIG. 3 (color online). Measurements of g using the amplitude-
modulation technique. Each experimental point is corrected for
the systematic effects presented in Table I. The red dashed line
represents the weighted mean of the 21 measurements. The blue
solid line is the value obtained with the classical absolute FG5
gravimeter.

PRL 106, 038501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

21 JANUARY 2011

038501-3

!B/2⇡ = 574 Hz

V0 ⇡ 2 à 3 Er
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red detuned (! ¼ 1064 nm, beam waist 200 "m) Yb fiber
laser providing transverse confinement (see Fig. 2). To load
this dipole trap, we superimpose it to a 3D-Magneto-
Optical trap (MOT) containing 107 atoms fed by a 2D-
MOT during 500 ms. The cloud is then cooled down to
2 "K by a far detuned molasses, at the end of which we
switch off the cooling lasers to let the untrapped atoms
fall. At our low lattice depth (Ul ’ 4ER (where ER ¼
ð@klÞ2=ð2maÞ is the lattice recoil energy), only the first
band has a non-negligible lifetime and is populated with
about 105 atoms vertically distributed along 104 sites (the
second band is centered at 5ER already above the lattice
depth). The atoms accumulated in all the Zeeman sublevels
of j52S1=2; F ¼ 2i are depumped to j52S1=2; F ¼ 1i and
then optically pumped (95% efficiency) on the j52S1=2;
F ¼ 1i ! j52P3=2; F ¼ 0i transition to the j52S1=2;
F ¼ 1; mF ¼ 0i Zeeman sublevel, which is sensitive to
stray magnetic fields only to second order. The remaining
5% unpolarized atoms can easily be removed from the trap
with a pushing beam. Our fluorescence detection scheme,
based on a time of flight measurement similar to the one
used in atomic clocks and inertial sensors, allows us to
measure the atomic populations in the two hyperfine states
after releasing the atoms from the trap [16]. The Raman
transitions are driven by two counterpropagating beams at
780 nm circularly polarized, detuned from the atomic
transition by about 3 GHz, and aligned along the direction

of the optical trap beams. The beams are collimated with a
1=e2 radius of 1 cm, ensuring a good intensity homoge-
neity along the transverse size of the trap (about 200 "m
radius).
Figure 3 shows two typical Raman spectra of the tran-

sition probability as a function of the Raman frequency #R,
taken for two different lattice depths. Transitions between
the two hyperfine levels at Raman frequencies equal to the
hyperfine splitting plus or minus an integer number !m of
Bloch frequencies (#B $ 569 Hz in our system) are the
signature that the atoms actually tunneled across !m lat-
tice sites. For those scans, the intensities in the Raman laser
beams were 0.25 and 0:54 mW=cm2. The resulting Rabi
frequencies "!m, different for each transition, are always
smaller than the Bloch frequency, so that each peak is well
resolved. The ratio between the Raman intensities was
chosen to cancel the differential light shift of the hyperfine
transition induced by them [17]. The Rabi frequency for
each transition !m is written [18]

"!m ¼ "Ul¼0hWmje%ikeffxjWm&!mi; (1)

where "Ul¼0 is the Rabi frequency in free space. Because
of the translational symmetry of the WS states, "!m does
not depend on the initial well index m but only on the
absolute value of !m [18]. It also depends on the lattice
wavelength !l and depth Ul, which is an important feature
of this experiment, as it induces a spatial inhomogeneity on
the Rabi frequency seen by the trapped atoms via the
transverse inhomogeneity of the lattice depth in the trap.
The damping induced on the Rabi oscillations by this

FIG. 2 (color online). Experimental setup for the optical trap-
ping and Raman intersite transitions. The different beams are
superposed using dichroic mirrors. The Raman beams are also
superposed and one of them is retro-reflected to allow counter-
propagating transitions.

FIG. 3 (color online). Raman spectra for two different lattice
depths, showing evidence of transitions between up to 9 neigh-
boring lattice sites, each having a different Rabi frequency
according to Eq. (1). The excitation time is 10 ms, which is
smaller than the duration of a $ pulse for each transition.
The peaks are separated by the Bloch frequency of our system
#B $ 569 Hz, and their amplitudes are related to the Rabi
frequencies calculated in Fig. 4.
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Raman laser pulses are used to induce coherent tunneling between neighboring sites of a vertical 1D

optical lattice. Such tunneling occurs when the detuning of a probe laser from the atomic transition

frequency matches multiples of the Bloch frequency, allowing for a spectroscopic control of the coupling

between Wannier-Stark (WS) states. In particular, we prepare coherent superpositions of WS states of

adjacent sites, and investigate the coherence time of these superpositions by realizing a spatial interfer-

ometer. This scheme provides a powerful tool for coherent manipulation of external degrees of freedom of

cold atoms, which is a key issue for quantum information processing.
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Trapping and manipulating cold neutral atoms in an
optical lattice offers high controllability and robust quan-
tum coherence properties, which makes it an attractive
system for many applications such as quantum simulation
of solid state systems [1], metrology [2,3], and quantum
information processing (QIP) [4]. One key issue in this
context is the possibility to coherently control the atoms
internal and external degrees of freedom. Combined with
the possibility to address single sites [5], this allows for the
realization of quantum logic operations [6].

Atom transport control in an optical lattice has been
previously reported using microwave fields [7], frequency,
phase and amplitude modulation techniques [8–10], or an
adiabatic change of the trapping potential [11,12]. In this
work, we demonstrate coherent laser induced tunneling of
cold atoms between neighboring sites of an optical lattice.
In contrast with most previous approaches, our technique
does not require any modification of the trapping potential.
It allows us to displace the atoms by a large number of
lattice periods (up to 9 in this work) in a system showing
good coherence properties (up to 1 s).

Our system consists of laser-cooled 87Rb atoms in the
first band of a vertical one-dimensional optical lattice.
Because of earth gravity, the ground energy levels of
each site of the lattice are shifted out of resonance. For a
sufficiently large lattice depth Ul, tunneling is highly
reduced, leading to a ladder of localized Wannier-Stark
(WS) eigenstates separated by the Bloch frequency !B ¼
mag"l=2h. Here, ma is the atomic mass, g is the gravity
acceleration, "l=2 is the distance between two adjacent
lattice sites, and h is the Planck constant. The WS states
jWmi are indexed by the discrete quantum number m
characterizing the well containing the center of the wave
function hxjWmi. The observation of Bloch oscillations
of the atoms in such a system have already been reported
and allowed a precise measurement of the Bloch frequency
[13,14].

We use counterpropagating Raman beams to drive
coherent transitions between the ground and excited

hyperfine levels jgi ¼ j52S1=2; F ¼ 1; mF ¼ 0i and jei ¼
j52S1=2; F ¼ 2; mF ¼ 0i. Such a transition implies a mo-
mentum transfer of keff ¼ k1 þ k2 # 4#=ð780 nmÞ that
couples the WS states either in the same well or in neigh-
boring wells, with a coupling strength proportional to
hWmjeikeffxjWm&!mi. Fourier-limited widths of the reso-
nances over excitation times larger than the Bloch period
allows resolved intersite transitions jg;mi ! je;m& !mi,
at Raman frequencies

!R ¼ !HFS &!m' !B;

where !HFS is the hyperfine splitting and !m is the number
of lattice wells separating the two coupled WS states. The
energy spectrum of our system is schematically illustrated
in Fig. 1.
Coupling between neighboring wells can be efficiently

tuned using the lattice depth when kl is close to keff , where
kl is the optical lattice wave vector [15]. We therefore use a
mixed trap configuration with a blue detuned lattice gen-
erated by a single mode frequency doubled Nd: YVO4

laser ("l ¼ 532 nm, beam waist 600 $m) that provides
only vertical longitudinal confinement, superposed with a

FIG. 1 (color online). Atoms in the first band of the lattice
form a Wannier-Stark ladder of eigenstates. The Raman probe
laser couples the ground to the excited hyperfine level in the
different WS states separated by the Bloch frequency.
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Perspec8ves	
  et	
  applica8ons	
  

Mesure	
  de	
  h / m  (m:	
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  d’un	
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  donnée)	
  

Mesure	
  de	
  forces	
  au	
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  de	
  surfaces	
  



La	
  mesure	
  de	
  h / m	
  	
  

Importance	
  métrologique	
  :	
  

Nouvelle	
  définiGon	
  de	
  l’unité	
  de	
  masse	
  

Mesure	
  de	
  la	
  constante	
  de	
  structure	
  fine	
  α	
  (constante	
  fondamentale	
  	
  
des	
  interacGons	
  électromagnéGques)	
  	
  

↵ =
q2

4⇡✏0~c

Si	
  «	
  on	
  croit	
  »	
  à	
  l’électrodynamique	
  quanGque,	
  α	
  	
  peut	
  se	
  «	
  déduire	
  »	
  de	
  la	
  mesure	
  
de	
  l’anomalie	
  gyromagnéGque	
  de	
  l’électron	
  (Gabrielse,	
  Harvard)	
  :	
  

↵�1 = 137.035 999 084 (51) [0.37 ppb]

Pour	
  un	
  mesure	
  indépendante	
  de	
  l’électrodynamique	
  quanGque	
  :	
  	
  

↵2 =
2R1
c

m

me

h

m

R1 : constante de Rydberg

me : masse de l’électron

Autre	
  mesure	
  de	
   α :	
  effet	
  Hall	
  quanGque	
  [18	
  ppb]	
  



avec	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (entre	
  500	
  et	
  1000)	
  

Mesure	
  de	
  h / m avec	
  les	
  oscilla8ons	
  de	
  Bloch	
  	
  

Groupe	
  de	
  F.	
  Biraben,	
  Laboratoire	
  Kastler	
  Brossel	
  	
  

Réseau	
  accéléré	
  	
  

x

phase �1 phase �2

�1 = k�t2/2 �2 = �k�t2/2

! !

Transfert	
  d’impulsion	
  dans	
  le	
  référenGel	
  	
  
du	
  laboratoire	
  

pfin = pin + 2N ~k

N � 1

Mesure	
  des	
  impulsions	
  iniGales	
  et	
  finales	
  grâce	
  à	
  l’effet	
  Doppler	
  (spectroscopie	
  Raman)	
  	
  

~!(p) = �Ehf +
[p+ ~(k1 + k2)]

2

2m
� p2

2m~k1 ~k2

�Ehf ga

gb
~
m

=
!(pfi)� !(pin)

2Nk(k1 + k2)



Mesure	
  de	
  h / m avec	
  les	
  oscilla8ons	
  de	
  Bloch	
  (suite)	
  	
  

~
m

=
!(pfi)� !(pin)

2Nk(k1 + k2)
Bouchendira	
  et	
  al.,	
  2011	
  

Mesures	
  faites	
  avec	
  un	
  réseau	
  verGcal	
  

• 	
  accéléraGon	
  vers	
  le	
  haut	
  ou	
  vers	
  le	
  bas	
  :	
  permet	
  d’éliminer	
  l’effet	
  de	
  la	
  gravité	
  	
  

h

mRb
= 4.591 359 2729(57) 10�9m2/s [1.2 ppb]

• 	
  schéma	
  interférométrique	
  pour	
  améliorer	
  la	
  précision	
  de	
  la	
  mesure	
  de	
  	
  	
  	
  	
  	
  	
  	
  et	
  	
  	
  pin pfi

conduit	
  alors	
  à	
  	
  
1

↵
= 137.035 999 037 (91)↵2 =

2R1
c

m

me

h

m
[0.66 ppb]

[0.44 ppb]

L’expression	
  

La	
  comparaison	
  avec	
  la	
  mesure	
  de	
  l’anomalie	
  gyromagnéGque	
  de	
  l’électron	
  permet	
  :	
  

• 	
  de	
  tester	
  la	
  contribuGon	
  des	
  muons	
  et	
  des	
  hadrons,	
  

• 	
  si	
  on	
  croit	
  à	
  l’électrodynamique	
  quanGque,	
  de	
  contraindre	
  une	
  possible	
  structure	
  	
  
	
  	
  	
  de	
  l’électron	
  ou	
  les	
  paramètres	
  de	
  parGcules	
  de	
  maGère	
  noire.	
  

V0 ⇠ 100 Er

(gain	
  d’un	
  facteur	
  7	
  )	
  



Mesures	
  de	
  forces	
  faibles	
  

La	
  relaGon	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  connecte	
  une	
  mesure	
  de	
  force	
  et	
  une	
  mesure	
  de	
  fréquence	
  ~!B = Fa

mg

miroir	
  

atome	
  

Caruso]o	
  et	
  al.	
  (2005)	
  :	
  comment	
  la	
  proximité	
  d’un	
  matériau	
  (par	
  exemple	
  le	
  miroir	
  créant	
  
l’onde	
  staGonnaire)	
  modifie-­‐t-­‐elle	
  la	
  fréquence	
  de	
  Bloch	
  liée	
  à	
  la	
  gravité	
  ?	
  

PotenGel	
  d’interacGon	
  qui	
  prend	
  en	
  compte	
  
les	
  effets	
  de	
  van	
  der	
  Waals-­‐London,	
  de	
  Casimir-­‐Polder,	
  	
  
et	
  les	
  correcGons	
  thermiques	
  :	
  

�!B

!B
= �0.17

D4
(µm)4

correcGon	
  de	
  10-­‐5	
  à	
  la	
  gravité	
  pour	
  	
  D = 10 µm 	


(une	
  précision	
  de	
  10-­‐7	
  est	
  possible)	
  

Wolf	
  et	
  al.	
  (2007)	
  :	
  interféromètre	
  à	
  parGr	
  d’états	
  de	
  Wannier-­‐Stark	
  pour	
  une	
  recherche	
  
de	
  forces	
  correspondant	
  à	
  une	
  déviaGon	
  par	
  rapport	
  à	
  la	
  loi	
  de	
  Newton	
  

Mesures	
  locales,	
  avec	
  une	
  posi8on	
  définie	
  au	
  micron	
  près	
  



Cours	
  6.	
  	
  
Topologie	
  dans	
  un	
  réseau	
  :	
  l’exemple	
  des	
  points	
  de	
  Dirac	
  



1.	
  

Points	
  de	
  Dirac	
  dans	
  une	
  zone	
  de	
  Brillouin	
  



Les	
  points	
  de	
  Dirac	
  

Réseau	
  à	
  deux	
  dimensions,	
  quasi-­‐moment	
  	
  ~q = (q
x

, q
y

)

Bandes	
  d’énergie	
  	
  E
n

(q
x

, q
y

)

f!k" = 2 cos!#3kya" + 4 cos$#3
2

kya%cos$3
2

kxa% , !6"

where the plus sign applies to the upper !!*" and the
minus sign the lower !!" band. It is clear from Eq. !6"
that the spectrum is symmetric around zero energy if t!
=0. For finite values of t!, the electron-hole symmetry is
broken and the ! and !* bands become asymmetric. In
Fig. 3, we show the full band structure of graphene with
both t and t!. In the same figure, we also show a zoom in
of the band structure close to one of the Dirac points !at
the K or K! point in the BZ". This dispersion can be
obtained by expanding the full band structure, Eq. !6",
close to the K !or K!" vector, Eq. !3", as k=K+q, with
&q & " &K& !Wallace, 1947",

E±!q" ' ± vF&q& + O(!q/K"2) , !7"

where q is the momentum measured relatively to the
Dirac points and vF is the Fermi velocity, given by vF
=3ta /2, with a value vF*1#106 m/s. This result was
first obtained by Wallace !1947".

The most striking difference between this result and
the usual case, $!q"=q2 / !2m", where m is the electron
mass, is that the Fermi velocity in Eq. !7" does not de-
pend on the energy or momentum: in the usual case we
have v=k /m=#2E /m and hence the velocity changes
substantially with energy. The expansion of the spectrum
around the Dirac point including t! up to second order
in q /K is given by

E±!q" * 3t! ± vF&q& − $9t!a2

4
±

3ta2

8
sin!3%q"%&q&2, !8"

where

%q = arctan$qx

qy
% !9"

is the angle in momentum space. Hence, the presence of
t! shifts in energy the position of the Dirac point and
breaks electron-hole symmetry. Note that up to order
!q /K"2 the dispersion depends on the direction in mo-
mentum space and has a threefold symmetry. This is the
so-called trigonal warping of the electronic spectrum
!Ando et al., 1998, Dresselhaus and Dresselhaus, 2002".

1. Cyclotron mass

The energy dispersion !7" resembles the energy of ul-
trarelativistic particles; these particles are quantum me-
chanically described by the massless Dirac equation !see
Sec. II.B for more on this analogy". An immediate con-
sequence of this massless Dirac-like dispersion is a cy-
clotron mass that depends on the electronic density as its
square root !Novoselov, Geim, Morozov, et al., 2005;
Zhang et al., 2005". The cyclotron mass is defined, within
the semiclassical approximation !Ashcroft and Mermin,
1976", as

m* =
1

2!
+ !A!E"

!E
,

E=EF

, !10"

with A!E" the area in k space enclosed by the orbit and
given by

A!E" = !q!E"2 = !
E2

vF
2 . !11"

Using Eq. !11" in Eq. !10", one obtains

m* =
EF

vF
2 =

kF

vF
. !12"

The electronic density n is related to the Fermi momen-
tum kF as kF

2 /!=n !with contributions from the two
Dirac points K and K! and spin included", which leads to

m* =
#!

vF

#n . !13"

Fitting Eq. !13" to the experimental data !see Fig. 4"
provides an estimation for the Fermi velocity and the

FIG. 3. !Color online" Electronic dispersion in the honeycomb
lattice. Left: energy spectrum !in units of t" for finite values of
t and t!, with t=2.7 eV and t!=−0.2t. Right: zoom in of the
energy bands close to one of the Dirac points.

FIG. 4. !Color online" Cyclotron mass of charge carriers in
graphene as a function of their concentration n. Positive and
negative n correspond to electrons and holes, respectively.
Symbols are the experimental data extracted from the tem-
perature dependence of the SdH oscillations; solid curves are
the best fit by Eq. !13". m0 is the free-electron mass. Adapted
from Novoselov, Geim, Morozov, et al., 2005.
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q
x

qy

E0(qx, qy)

E1(qx, qy)

Un	
  point	
  de	
  Dirac	
  est	
  un	
  point	
  
de	
  contact	
  isolé	
  entre	
  deux	
  	
  
bandes	
  d’énergie	
  avec	
  :	
  

• 	
  une	
  relaGon	
  de	
  dispersion	
  
	
  	
  linéaire	
  au	
  voisinage	
  de	
  ce	
  point	
  

• 	
  une	
  chiralité	
  (posiGve	
  ou	
  négaGve)	
  	
  

figure	
  4rée	
  de	
  Castro-­‐Neto	
  et	
  al	
  (2009)	
  

CaractérisGque	
  emblémaGque	
  du	
  graphène	
  (réseau	
  2D	
  hexagonal),	
  mais	
  	
  
ces	
  points	
  de	
  Dirac	
  peuvent	
  apparaître	
  dans	
  beaucoup	
  d’autres	
  configuraGons.	
  

Expérience	
  de	
  Zurich,	
  groupe	
  de	
  T.	
  Esslinger	
  :	
  Tarruell	
  et	
  al	
  (2012)	
  



La	
  rela8on	
  de	
  dispersion	
  linéaire	
  

wikipedia	
  

graphène	
  

E0/1(~q) ⇡ ±~c|~q � ~qD|+ ✏0

f!k" = 2 cos!#3kya" + 4 cos$#3
2

kya%cos$3
2

kxa% , !6"

where the plus sign applies to the upper !!*" and the
minus sign the lower !!" band. It is clear from Eq. !6"
that the spectrum is symmetric around zero energy if t!
=0. For finite values of t!, the electron-hole symmetry is
broken and the ! and !* bands become asymmetric. In
Fig. 3, we show the full band structure of graphene with
both t and t!. In the same figure, we also show a zoom in
of the band structure close to one of the Dirac points !at
the K or K! point in the BZ". This dispersion can be
obtained by expanding the full band structure, Eq. !6",
close to the K !or K!" vector, Eq. !3", as k=K+q, with
&q & " &K& !Wallace, 1947",

E±!q" ' ± vF&q& + O(!q/K"2) , !7"

where q is the momentum measured relatively to the
Dirac points and vF is the Fermi velocity, given by vF
=3ta /2, with a value vF*1#106 m/s. This result was
first obtained by Wallace !1947".

The most striking difference between this result and
the usual case, $!q"=q2 / !2m", where m is the electron
mass, is that the Fermi velocity in Eq. !7" does not de-
pend on the energy or momentum: in the usual case we
have v=k /m=#2E /m and hence the velocity changes
substantially with energy. The expansion of the spectrum
around the Dirac point including t! up to second order
in q /K is given by

E±!q" * 3t! ± vF&q& − $9t!a2

4
±

3ta2

8
sin!3%q"%&q&2, !8"

where

%q = arctan$qx

qy
% !9"

is the angle in momentum space. Hence, the presence of
t! shifts in energy the position of the Dirac point and
breaks electron-hole symmetry. Note that up to order
!q /K"2 the dispersion depends on the direction in mo-
mentum space and has a threefold symmetry. This is the
so-called trigonal warping of the electronic spectrum
!Ando et al., 1998, Dresselhaus and Dresselhaus, 2002".

1. Cyclotron mass

The energy dispersion !7" resembles the energy of ul-
trarelativistic particles; these particles are quantum me-
chanically described by the massless Dirac equation !see
Sec. II.B for more on this analogy". An immediate con-
sequence of this massless Dirac-like dispersion is a cy-
clotron mass that depends on the electronic density as its
square root !Novoselov, Geim, Morozov, et al., 2005;
Zhang et al., 2005". The cyclotron mass is defined, within
the semiclassical approximation !Ashcroft and Mermin,
1976", as

m* =
1

2!
+ !A!E"

!E
,

E=EF

, !10"

with A!E" the area in k space enclosed by the orbit and
given by

A!E" = !q!E"2 = !
E2

vF
2 . !11"

Using Eq. !11" in Eq. !10", one obtains

m* =
EF

vF
2 =

kF

vF
. !12"

The electronic density n is related to the Fermi momen-
tum kF as kF

2 /!=n !with contributions from the two
Dirac points K and K! and spin included", which leads to

m* =
#!

vF

#n . !13"

Fitting Eq. !13" to the experimental data !see Fig. 4"
provides an estimation for the Fermi velocity and the

FIG. 3. !Color online" Electronic dispersion in the honeycomb
lattice. Left: energy spectrum !in units of t" for finite values of
t and t!, with t=2.7 eV and t!=−0.2t. Right: zoom in of the
energy bands close to one of the Dirac points.

FIG. 4. !Color online" Cyclotron mass of charge carriers in
graphene as a function of their concentration n. Positive and
negative n correspond to electrons and holes, respectively.
Symbols are the experimental data extracted from the tem-
perature dependence of the SdH oscillations; solid curves are
the best fit by Eq. !13". m0 is the free-electron mass. Adapted
from Novoselov, Geim, Morozov, et al., 2005.
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q
x

qy

E0(qx, qy)

E1(qx, qy)

~qD

✏0

c	
  :	
  dimension	
  d’une	
  vitesse	
  

dans	
  le	
  graphène	
  :	
  1/300ème	
  	
  
de	
  la	
  vitesse	
  de	
  la	
  lumière	
  

Vitesse	
  de	
  groupe	
  pour	
  un	
  paquet	
  d’ondes	
  composé	
  de	
  quasi	
  moments	
  	
  
au	
  voisinage	
  de	
  	
  	
  	
  	
  	
  :	
  ~qD

|~vg,0/1| = c~vg,0/1 =
1

~
~r~qE0/1(~q) = ±c

�~q

|�~q|

simule	
  le	
  mouvement	
  de	
  par4cules	
  ultra-­‐	
  
rela4vistes,	
  décrit	
  par	
  l’équa4on	
  de	
  Dirac	
  

�~q = ~q � ~qD



La	
  chiralité	
  des	
  points	
  de	
  Dirac	
  

ModélisaGon	
  «	
  minimale	
  »	
  pour	
  obtenir	
  ces	
  points	
  :	
  

• 	
  modèle	
  de	
  liaisons	
  fortes	
  

• 	
  cellule	
  unité	
  à	
  deux	
  sites	
  A	
  et	
  B	
  	
  (pour	
  avoir	
  deux	
  bandes	
  d’énergie)	
  

A B

Hamiltonien	
  dans	
  l’espace	
  réciproque	
  :	
  

Ĥ(~q) =

✓
✏0 f⇤(~q)

f(~q) ✏0

◆

Même	
  énergie	
  	
  	
  	
  	
  	
  pour	
  les	
  sites	
  A	
  et	
  les	
  sites	
  B	
  	
  

Sauts	
  possibles	
  	
   • 	
  	
  de	
  A	
  vers	
  B	
  	
  
• 	
  	
  de	
  B	
  vers	
  A	
  

✏0

A,~j ! A,~j0

A,~j ! B,~j0

B,~j ! A,~j0

B,~j ! B,~j0( (



La	
  chiralité	
  des	
  points	
  de	
  Dirac	
  (suite)	
  

Hamiltonien	
  dans	
  l’espace	
  réciproque	
  :	
   Ĥ(~q) =

✓
✏0 f⇤(~q)

f(~q) ✏0

◆

f(q
x

, q
y

) :	
  fonc4on	
  complexe	
  dont	
  la	
  valeur	
  précise	
  dépend	
  des	
  caractéris4ques	
  du	
  réseau	
  

f(q
x

, q
y

) = �J
⇣
1 + ei 3aqx/2 cos(

p
3 aq

y

/2)
⌘

J	
  :	
  coefficient	
  tunnel	
  
a	
  :	
  distance	
  A-­‐B	
  

graphène	
  :	
  

Deux	
  bandes	
  d’énergie	
  :	
   E±(qx, qy) = ✏0 ± |f(q
x

, q
y

)|

f!k" = 2 cos!#3kya" + 4 cos$#3
2

kya%cos$3
2

kxa% , !6"

where the plus sign applies to the upper !!*" and the
minus sign the lower !!" band. It is clear from Eq. !6"
that the spectrum is symmetric around zero energy if t!
=0. For finite values of t!, the electron-hole symmetry is
broken and the ! and !* bands become asymmetric. In
Fig. 3, we show the full band structure of graphene with
both t and t!. In the same figure, we also show a zoom in
of the band structure close to one of the Dirac points !at
the K or K! point in the BZ". This dispersion can be
obtained by expanding the full band structure, Eq. !6",
close to the K !or K!" vector, Eq. !3", as k=K+q, with
&q & " &K& !Wallace, 1947",

E±!q" ' ± vF&q& + O(!q/K"2) , !7"

where q is the momentum measured relatively to the
Dirac points and vF is the Fermi velocity, given by vF
=3ta /2, with a value vF*1#106 m/s. This result was
first obtained by Wallace !1947".

The most striking difference between this result and
the usual case, $!q"=q2 / !2m", where m is the electron
mass, is that the Fermi velocity in Eq. !7" does not de-
pend on the energy or momentum: in the usual case we
have v=k /m=#2E /m and hence the velocity changes
substantially with energy. The expansion of the spectrum
around the Dirac point including t! up to second order
in q /K is given by

E±!q" * 3t! ± vF&q& − $9t!a2

4
±

3ta2

8
sin!3%q"%&q&2, !8"

where

%q = arctan$qx

qy
% !9"

is the angle in momentum space. Hence, the presence of
t! shifts in energy the position of the Dirac point and
breaks electron-hole symmetry. Note that up to order
!q /K"2 the dispersion depends on the direction in mo-
mentum space and has a threefold symmetry. This is the
so-called trigonal warping of the electronic spectrum
!Ando et al., 1998, Dresselhaus and Dresselhaus, 2002".

1. Cyclotron mass

The energy dispersion !7" resembles the energy of ul-
trarelativistic particles; these particles are quantum me-
chanically described by the massless Dirac equation !see
Sec. II.B for more on this analogy". An immediate con-
sequence of this massless Dirac-like dispersion is a cy-
clotron mass that depends on the electronic density as its
square root !Novoselov, Geim, Morozov, et al., 2005;
Zhang et al., 2005". The cyclotron mass is defined, within
the semiclassical approximation !Ashcroft and Mermin,
1976", as

m* =
1

2!
+ !A!E"

!E
,

E=EF

, !10"

with A!E" the area in k space enclosed by the orbit and
given by

A!E" = !q!E"2 = !
E2

vF
2 . !11"

Using Eq. !11" in Eq. !10", one obtains

m* =
EF

vF
2 =

kF

vF
. !12"

The electronic density n is related to the Fermi momen-
tum kF as kF

2 /!=n !with contributions from the two
Dirac points K and K! and spin included", which leads to

m* =
#!

vF

#n . !13"

Fitting Eq. !13" to the experimental data !see Fig. 4"
provides an estimation for the Fermi velocity and the

FIG. 3. !Color online" Electronic dispersion in the honeycomb
lattice. Left: energy spectrum !in units of t" for finite values of
t and t!, with t=2.7 eV and t!=−0.2t. Right: zoom in of the
energy bands close to one of the Dirac points.

FIG. 4. !Color online" Cyclotron mass of charge carriers in
graphene as a function of their concentration n. Positive and
negative n correspond to electrons and holes, respectively.
Symbols are the experimental data extracted from the tem-
perature dependence of the SdH oscillations; solid curves are
the best fit by Eq. !13". m0 is the free-electron mass. Adapted
from Novoselov, Geim, Morozov, et al., 2005.
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q
x

qy
~qD

✏0
E+(qx, qy)

E�(qx, qy)

Point	
  de	
  Dirac	
  :	
  	
  	
  f(~qD) = 0

Quelle	
  est	
  la	
  structure	
  des	
  états	
  propres	
  	
  
de	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  au	
  voisinage	
  de	
  	
  	
  	
  	
  	
  	
  	
  ?	
  Ĥ(~q) ~qD



La	
  chiralité	
  des	
  points	
  de	
  Dirac	
  (suite)	
  

Hamiltonien	
  dans	
  l’espace	
  réciproque	
  :	
   Ĥ(~q) =

✓
✏0 f⇤(~q)

f(~q) ✏0

◆
f(~qD) = 0

Au	
  voisinage	
  de	
  	
  	
  	
  	
  	
  	
  ,	
  on	
  a	
  (à	
  une	
  phase	
  et	
  une	
  homothéGe	
  près)	
  :	
   f(q
x

, q
y

) = ~c(�q
x

± i�q
y

)~qD
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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Creating, moving and merging Dirac points with a
Fermi gas in a tunable honeycomb lattice
Leticia Tarruell1, Daniel Greif1, Thomas Uehlinger1, Gregor Jotzu1 & Tilman Esslinger1

Dirac points are central to many phenomena in condensed-matter
physics, from massless electrons in graphene to the emergence of
conducting edge states in topological insulators1,2. At a Dirac
point, two energy bands intersect linearly and the electrons behave
as relativistic Dirac fermions. In solids, the rigid structure of the
material determines the mass and velocity of the electrons, as well
as their interactions. A different, highly flexible means of studying
condensed-matter phenomena is to create model systems using
ultracold atoms trapped in the periodic potential of interfering
laser beams3,4. Here we report the creation of Dirac points with
adjustable properties in a tunable honeycomb optical lattice. Using
momentum-resolved interband transitions, we observe a minimum
bandgap inside the Brillouin zone at the positions of the two Dirac
points. We exploit the unique tunability of our lattice potential to
adjust the effective mass of the Dirac fermions by breaking inver-
sion symmetry. Moreover, changing the lattice anisotropy allows us
to change the positions of the Dirac points inside the Brillouin zone.
When the anisotropy exceeds a critical limit, the two Dirac points
merge and annihilate each other—a situation that has recently
attracted considerable theoretical interest5–9 but that is extremely
challenging to observe in solids10. We map out this topological
transition in lattice parameter space and find excellent agreement
with ab initio calculations. Our results not only pave the way to
model materials in which the topology of the band structure is
crucial, but also provide an avenue to exploring many-body phases
resulting from the interplay of complex lattice geometries with
interactions11–13.

Ultracold gases in optical lattices have become a versatile tool with
which to simulate a wide range of condensed-matter phenomena3,4.
For example, the control of interactions has led to the observation of
Mott insulating phases14–16. In fermionic systems, this provides new
access to the physics of strongly correlated materials. However, the
topology of the band structure is equally important for the properties of
a solid. A prime example is the honeycomb lattice of graphene, where
the presence of topological defects in momentum space—the Dirac
points—leads to remarkable transport properties, even in the absence
of interactions1. In quantum gases, a honeycomb lattice has recently
been realized and investigated using a Bose–Einstein condensate17,18,
but no signatures of Dirac points were observed. Here we study an
ultracold Fermi gas of 40K atoms in a two-dimensional, tunable optical
lattice, which can be continuously adjusted to create square, triangular,
dimer and honeycomb structures. In the honeycomb lattice, we
identify the presence of Dirac points in the band structure by observing
a minimum bandgap inside the Brillouin zone using interband transi-
tions. Our method is closely related to a technique recently used with
bosonic atoms to characterize the linear crossing of two high-energy
bands in a one-dimensional, bichromatic lattice19, but also provides
momentum resolution.

To create and manipulate Dirac points, we have developed a two-
dimensional optical lattice of adjustable geometry. It is formed by three
retro-reflected laser beams of wavelength l 5 1,064 nm, arranged as
depicted in Fig. 1a. The interference of two perpendicular beams, X

and Y, gives rise to a chequerboard lattice of spacing l=
ffiffiffi
2
p

. A third
beam, !X, collinear with X but detuned by a frequency d, creates an
additional standing wave with a spacing of l/2. This yields a potential
of the form

1Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland.
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Figure 1 | Optical lattice with adjustable geometry. a, Three retro-reflected
laser beams of wavelength l 5 1,064 nm create the two-dimensional lattice
potential of equation (1). Beams X and Y interfere and produce a chequerboard
pattern, and beam !X creates an independent standing wave. Their relative
position is controlled by the detuning d. b, Top: different lattice potentials can
be realized depending on the intensities of the lattice beams. White regions
correspond to lower potential energies and blue regions to higher potential
energies. Bottom: diagram showing the accessible lattice geometries as a
function of the lattice depths V!X and VX. The transition between triangular (T)
and dimer (D) lattices is indicated by a dotted line. When crossing the dashed
line into the honeycomb (Hc) regime, Dirac points appear. The limit V!X?VX,
V!X?VY corresponds to weakly coupled, one-dimensional chains (1D c). c, The
real-space potential of the honeycomb lattice has a two-site unit cell (sites A and
B) and the primitive lattice vectors are perpendicular. d, Left: sketch of the first
and second Brillouin zones (BZs) of the honeycomb lattice, indicating the
positions of the Dirac points. Right: three-dimensional view of the energy
spectrum showing the linear intersection of the bands at the two Dirac points.
The colour scale illustrates lines of constant energy. We denote the full
bandwidth, W; the minimum energy gap at the edges of the Brillouin zone, EG;
and the Bloch wavevector, qB 5 2p/l.
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors

1
. Tunnelling between

the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system

20
. The band structure

for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic

40
K atoms in the jF, mFæ 5 j9/2, 29/2æ state,

where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h

2
/2ml

2
is the recoil energy, h denotes Planck’s constant

and m is the mass of a
40

K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation

21
. We then measure the quasi-momentum distribution of

the atoms in the different bands
22

(Methods).
Owing to the finite momentum width of the cloud, trajectories with

different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force

21
, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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Conclusions	
  

Premier	
  pas	
  dans	
  le	
  contrôle	
  de	
  la	
  topologie	
  des	
  bandes	
  dans	
  un	
  réseau	
  op8que	
  

Beaucoup	
  d’aspects	
  restent	
  à	
  explorer,	
  par	
  exemple	
  :	
  	
  

Mise	
  en	
  évidence	
  des	
  points	
  de	
  Dirac	
  par	
  oscillaGons	
  de	
  Bloch	
  

Contrôle	
  de	
  la	
  posiGon	
  de	
  ces	
  points	
  	
  

Chiralité	
  des	
  points	
  de	
  Dirac	
  :	
  phase	
  accumulée	
  si	
  un	
  atome	
  tourne	
  	
  
autour	
  d’un	
  point	
  (oscillaGons	
  de	
  Bloch	
  2D),	
  effet	
  Hall	
  quanGque	
  anormal	
  

Aspects	
  paradoxaux	
  de	
  l’équaGon	
  de	
  Dirac	
  :	
  paradoxe	
  de	
  Klein	
  (transmission	
  
quasi-­‐totale	
  d’un	
  paquet	
  d’ondes	
  à	
  travers	
  une	
  barrière	
  de	
  grande	
  hauteur)	
  


