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Zener,	  1934	  

Si	  le	  passage	  par	  effet	  tunnel	  est	  négligeable,	  l’électron	  oscille	  à	  la	  pulsaGon	   !B = Fa/~

force	  F	


Avec	  des	  atomes	  froids	  :	  
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Rappel	  du	  cours	  précédent	  (suite)	  

our data is gatom ¼ 9:804 923 2ð14Þ m=s2 where the uncer-
tainty corresponds to 1 standard deviation.

The reference value for local gravitational acceleration
is provided by an absolute gravimeter based on an optical
interferometer with one arm including a freely falling
corner-cube (FG5, Micro-g LaCoste). The measurement
is performed in the same laboratory at a distance of 1.15 m
from the atomic probe position. The difference in height
of 14(5) cm together with the estimated vertical gravity
gradient value gzz ¼ $3:09% 10$6 s$2 at the laboratory
site is taken into account in the data analysis. The result
is gFG5 ¼ 9:804 921 609ð84Þ m=s2

The comparison of the value obtained with the quantum
mechanical atomic sensor and the one obtained with the
classical gravimeter shows that they agree within the ex-
perimental errors.

With minor modifications of the experimental proce-
dure, in this work we also determine g by measuring the
frequency of the Bloch oscillations of the atoms in the

vertical optical lattice. Because of a better vacuum and
taking advantage of the lattice modulation method to re-
duce the initial momentum distribution of the atoms in the
lattice [19], we considerably improve the visibility of the
oscillations and, as a consequence, the frequency resolu-
tion compared with previous experiments [9]. After the
transfer of the atoms in the vertical optical lattice, an
amplitude-modulation burst with typical duration of
120 cycles at !m ’ !B is applied. The quantum phase of
the atomic wave function induced by the amplitude modu-
lation gives rise to an interference effect which results in an
enhanced visibility of the Bloch oscillations peaks in the
time-of-flight image of the atomic cloud [28]. After turning
off the modulation, we let the atomic cloud evolve for a
time T. Finally, we switch off the optical lattice within
5 "s to measure the momentum distribution of the atoms
in ballistic expansion by taking an absorption picture with
a CCD camera. In order to optimize the visibility through
this quantum interference effect, we set the time of flight to
14 ms. As shown in Fig. 4, we observe Bloch oscillations
with high visibility for &20 s. From the fit of the mean
atomic momentum we can estimate the Bloch frequency
!B with 1:7% 10$7 statistical uncertainty. In comparison
with the determination of !B obtained with the resonant
amplitude-modulation technique, however, we find a con-
siderably larger scattering in repeated measurements,
mainly due to the initial position instability of the atomic
trap and to a higher sensitivity to the timing of the experi-
ment. The value for g obtained with the Bloch oscillation
technique is gBloch ¼ 9:804 88ð6Þ m=s2, which is consis-
tent with the measurement presented above but is affected
by a larger relative uncertainty of 6% 10$6.
In conclusion, we have performed an accurate measure-

ment of gravitational acceleration using ultracold 88Sr
atoms confined in a vertical optical lattice. The result
agrees within 140 ppb with the value obtained with a
classical FG5 gravimeter. This result improves by 1 order
of magnitude in sensitivity and by more than 2 in

TABLE I. Systematic corrections and their associated uncer-
tainties (% 10$7) for the gravity measurement with 88Sr atoms
in the amplitude-modulated optical lattice.

Effect Correction Uncertainty

Lattice wavelength 0 2
Lattice beam vertical align. 0 0.2
Stark shift (beam geometry) 14.3–17.3 0.4
Experiment timing 0 0.2
Tides $1:4–0:9 <0:1
Height difference 4.3 0.2
Refraction index 0 <0:01
Fundamental constants 0 0.7
Systematics total 17.2–22.5 2.2

FIG. 4 (color online). Long-lived Bloch oscillations for Sr
atoms in the vertical lattice under the influence of gravity.
Each picture shows one Bloch cycle in successive time-of-flight
absorption images giving the momentum distribution at the time
of release from the lattice. Displayed are the first (a), the 2900th
(b), the 7500th (c), and the 9800th (d) Bloch cycles.

FIG. 3 (color online). Measurements of g using the amplitude-
modulation technique. Each experimental point is corrected for
the systematic effects presented in Table I. The red dashed line
represents the weighted mean of the 21 measurements. The blue
solid line is the value obtained with the classical absolute FG5
gravimeter.
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!B/2⇡ = 574 Hz

V0 ⇡ 2 à 3 Er

a = 266 nm

distribuGons	  après	  temps	  de	  vol	  

osc.	  n°	  2900	  

osc.	  n°	  7500	   osc.	  n°	  9800	  

Groupe	  de	  G.	  Tino	  (2011),	  88Sr	  	  
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5.	  

Les	  échelles	  de	  Wannier-‐Stark	  



�2 �1 0 1 2

Le	  problème	  de	  Wannier-‐Stark	  

Peut-‐on	  trouver	  les	  états	  propres	  de	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ?	  	  Ĥ =
p̂2

2m
+ V (x̂)� Fx̂

V (x) = V0 sin
2(kx)

V (x)� Fx

x

Spectre	  conGnu	  allant	  de	  	  	  	  	  	  	  	  	  	  	  à	  	  	  	  	  	  �1 +1

Il	  peut	  y	  avoir	  des	  résonances	  de	  type	  Fabry-‐Perot	  :	  

E	


Pas	  d’états	  liés,	  mais	  des	  résonances	  de	  diffusion	  (formalisme	  de	  la	  matrice	  S)	  



Le	  problème	  de	  Wannier-‐Stark	  (suite)	  

Si	  on	  se	  restreint	  à	  une	  seule	  bande	  d’énergie	  (où	  un	  nombre	  fini	  de	  bandes),	  	  
le	  problème	  change	  de	  nature.	  

j

j � 1

j + 1

J

J

Le	  spectre	  d’énergie	  devient	  
enGèrement	  discret	  :	  

uniquement	  des	  états	  liés	  

Nous	  allons	  faire	  ce]e	  approximaGon	  à	  une	  bande	  dans	  ce	  qui	  suit.	  

Il	  faut	  néanmoins	  se	  souvenir	  que	  ces	  états	  liés	  acquièrent	  une	  largeur	  	  
non	  nulle	  dès	  que	  l’on	  prend	  en	  compte	  la	  possibilité	  de	  changement	  	  
de	  bande	  par	  transiGon	  Landau-‐Zener	  



La	  solu8on	  du	  problème	  de	  Wannier-‐Stark	  à	  une	  bande	  
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Le	  paramètre	  sans	  	  
dimension	  du	  problème	  :	   ⌫ =
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La	  nature	  du	  spectre	  de	  l’hamiltonien	  

ApproximaGon	  à	  une	  bande	  

Force	  nulle	  

spectre	  con4nu	  et	  borné,	  
bande	  d’énergie	  

Force	  non	  nulle	  
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spectre	  discret	  et	  non	  borné,	  
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Spectroscopie	  des	  échelles	  de	  Wannier-‐Stark	  

On	  sonde	  les	  états	  propres	  de	  l’hamiltonien	  de	  Wannier-‐Stark	  	  
avec	  une	  perturbaGon	  monochromaGque	  de	  faible	  amplitude	  
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h�j0 |Ŵ (±)(x)|�ji 6= 0

! ⇡ ±|j � j0| !B

spectre	  symétrique	  dans	  	  
l’approxima4on	  à	  une	  bande	  



Spectroscopie	  de	  Wannier-‐Stark	  vs.	  oscilla8ons	  de	  Bloch	  

Les	  oscilla8ons	  de	  Bloch	  

On	  prépare	  les	  atomes	  dans	  un	  état	  qui	  n’est	  pas	  un	  état	  propre	  de	  	  

et	  on	  regarde	  comment	  il	  évolue	  librement	  :	  réponse	  percussionnelle	  

La	  spectroscopie	  de	  Wannier-‐Stark	  

Le	  système	  peut	  se	  trouver	  iniGalement	  dans	  un	  état	  propre	  de	  l’hamiltonien	  
et	  on	  mesure	  sa	  réponse	  à	  une	  sonde	  de	  faible	  amplitude	  

Ĥ =
p̂2

2m
+ V (x̂)� Fx̂

Ŵ (x, t) = Ŵ

(+)(x) e�i!t + c.c.



Mesure	  de	  la	  gravité	  par	  spectroscopie	  de	  Wannier-‐Stark	  

Atomes	  de	  87Rb	  dans	  	  
un	  réseau	  verGcal	  	  
de	  pas	  a=266	  nm	  

SYRTE	  2011,	  2013	  
groupe	  de	  F.	  Pereira	  dos	  Santos	  
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V0 = 3.9 ER
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g2	


Ŵ (x, t)

⌫ ⇠ 7

red detuned (! ¼ 1064 nm, beam waist 200 "m) Yb fiber
laser providing transverse confinement (see Fig. 2). To load
this dipole trap, we superimpose it to a 3D-Magneto-
Optical trap (MOT) containing 107 atoms fed by a 2D-
MOT during 500 ms. The cloud is then cooled down to
2 "K by a far detuned molasses, at the end of which we
switch off the cooling lasers to let the untrapped atoms
fall. At our low lattice depth (Ul ’ 4ER (where ER ¼
ð@klÞ2=ð2maÞ is the lattice recoil energy), only the first
band has a non-negligible lifetime and is populated with
about 105 atoms vertically distributed along 104 sites (the
second band is centered at 5ER already above the lattice
depth). The atoms accumulated in all the Zeeman sublevels
of j52S1=2; F ¼ 2i are depumped to j52S1=2; F ¼ 1i and
then optically pumped (95% efficiency) on the j52S1=2;
F ¼ 1i ! j52P3=2; F ¼ 0i transition to the j52S1=2;
F ¼ 1; mF ¼ 0i Zeeman sublevel, which is sensitive to
stray magnetic fields only to second order. The remaining
5% unpolarized atoms can easily be removed from the trap
with a pushing beam. Our fluorescence detection scheme,
based on a time of flight measurement similar to the one
used in atomic clocks and inertial sensors, allows us to
measure the atomic populations in the two hyperfine states
after releasing the atoms from the trap [16]. The Raman
transitions are driven by two counterpropagating beams at
780 nm circularly polarized, detuned from the atomic
transition by about 3 GHz, and aligned along the direction

of the optical trap beams. The beams are collimated with a
1=e2 radius of 1 cm, ensuring a good intensity homoge-
neity along the transverse size of the trap (about 200 "m
radius).
Figure 3 shows two typical Raman spectra of the tran-

sition probability as a function of the Raman frequency #R,
taken for two different lattice depths. Transitions between
the two hyperfine levels at Raman frequencies equal to the
hyperfine splitting plus or minus an integer number !m of
Bloch frequencies (#B $ 569 Hz in our system) are the
signature that the atoms actually tunneled across !m lat-
tice sites. For those scans, the intensities in the Raman laser
beams were 0.25 and 0:54 mW=cm2. The resulting Rabi
frequencies "!m, different for each transition, are always
smaller than the Bloch frequency, so that each peak is well
resolved. The ratio between the Raman intensities was
chosen to cancel the differential light shift of the hyperfine
transition induced by them [17]. The Rabi frequency for
each transition !m is written [18]

"!m ¼ "Ul¼0hWmje%ikeffxjWm&!mi; (1)

where "Ul¼0 is the Rabi frequency in free space. Because
of the translational symmetry of the WS states, "!m does
not depend on the initial well index m but only on the
absolute value of !m [18]. It also depends on the lattice
wavelength !l and depth Ul, which is an important feature
of this experiment, as it induces a spatial inhomogeneity on
the Rabi frequency seen by the trapped atoms via the
transverse inhomogeneity of the lattice depth in the trap.
The damping induced on the Rabi oscillations by this

FIG. 2 (color online). Experimental setup for the optical trap-
ping and Raman intersite transitions. The different beams are
superposed using dichroic mirrors. The Raman beams are also
superposed and one of them is retro-reflected to allow counter-
propagating transitions.

FIG. 3 (color online). Raman spectra for two different lattice
depths, showing evidence of transitions between up to 9 neigh-
boring lattice sites, each having a different Rabi frequency
according to Eq. (1). The excitation time is 10 ms, which is
smaller than the duration of a $ pulse for each transition.
The peaks are separated by the Bloch frequency of our system
#B $ 569 Hz, and their amplitudes are related to the Rabi
frequencies calculated in Fig. 4.
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PopulaGon	  de	  g2	


Sensibilité	  relaGve	  :	  0.9	  10-‐5	  en	  1	  s,	  comparable	  au	  résultat	  de	  Florence	  (1.5	  10-‐7	  en	  une	  heure)	  	  

Pour	  comparaison	  :	  interféromètre	  atomique	  en	  chute	  libre	  (plusieurs	  dizaines	  de	  cm)	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  δg / g ≈	  	  0.7	  10-‐7	  en	  1	  s	  

Laser Controlled Tunneling in a Vertical Optical Lattice
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Raman laser pulses are used to induce coherent tunneling between neighboring sites of a vertical 1D

optical lattice. Such tunneling occurs when the detuning of a probe laser from the atomic transition

frequency matches multiples of the Bloch frequency, allowing for a spectroscopic control of the coupling

between Wannier-Stark (WS) states. In particular, we prepare coherent superpositions of WS states of

adjacent sites, and investigate the coherence time of these superpositions by realizing a spatial interfer-

ometer. This scheme provides a powerful tool for coherent manipulation of external degrees of freedom of

cold atoms, which is a key issue for quantum information processing.

DOI: 10.1103/PhysRevLett.106.213002 PACS numbers: 32.80.Qk, 05.60.Gg, 37.10.Jk, 37.25.+k

Trapping and manipulating cold neutral atoms in an
optical lattice offers high controllability and robust quan-
tum coherence properties, which makes it an attractive
system for many applications such as quantum simulation
of solid state systems [1], metrology [2,3], and quantum
information processing (QIP) [4]. One key issue in this
context is the possibility to coherently control the atoms
internal and external degrees of freedom. Combined with
the possibility to address single sites [5], this allows for the
realization of quantum logic operations [6].

Atom transport control in an optical lattice has been
previously reported using microwave fields [7], frequency,
phase and amplitude modulation techniques [8–10], or an
adiabatic change of the trapping potential [11,12]. In this
work, we demonstrate coherent laser induced tunneling of
cold atoms between neighboring sites of an optical lattice.
In contrast with most previous approaches, our technique
does not require any modification of the trapping potential.
It allows us to displace the atoms by a large number of
lattice periods (up to 9 in this work) in a system showing
good coherence properties (up to 1 s).

Our system consists of laser-cooled 87Rb atoms in the
first band of a vertical one-dimensional optical lattice.
Because of earth gravity, the ground energy levels of
each site of the lattice are shifted out of resonance. For a
sufficiently large lattice depth Ul, tunneling is highly
reduced, leading to a ladder of localized Wannier-Stark
(WS) eigenstates separated by the Bloch frequency !B ¼
mag"l=2h. Here, ma is the atomic mass, g is the gravity
acceleration, "l=2 is the distance between two adjacent
lattice sites, and h is the Planck constant. The WS states
jWmi are indexed by the discrete quantum number m
characterizing the well containing the center of the wave
function hxjWmi. The observation of Bloch oscillations
of the atoms in such a system have already been reported
and allowed a precise measurement of the Bloch frequency
[13,14].

We use counterpropagating Raman beams to drive
coherent transitions between the ground and excited

hyperfine levels jgi ¼ j52S1=2; F ¼ 1; mF ¼ 0i and jei ¼
j52S1=2; F ¼ 2; mF ¼ 0i. Such a transition implies a mo-
mentum transfer of keff ¼ k1 þ k2 # 4#=ð780 nmÞ that
couples the WS states either in the same well or in neigh-
boring wells, with a coupling strength proportional to
hWmjeikeffxjWm&!mi. Fourier-limited widths of the reso-
nances over excitation times larger than the Bloch period
allows resolved intersite transitions jg;mi ! je;m& !mi,
at Raman frequencies

!R ¼ !HFS &!m' !B;

where !HFS is the hyperfine splitting and !m is the number
of lattice wells separating the two coupled WS states. The
energy spectrum of our system is schematically illustrated
in Fig. 1.
Coupling between neighboring wells can be efficiently

tuned using the lattice depth when kl is close to keff , where
kl is the optical lattice wave vector [15]. We therefore use a
mixed trap configuration with a blue detuned lattice gen-
erated by a single mode frequency doubled Nd: YVO4

laser ("l ¼ 532 nm, beam waist 600 $m) that provides
only vertical longitudinal confinement, superposed with a

FIG. 1 (color online). Atoms in the first band of the lattice
form a Wannier-Stark ladder of eigenstates. The Raman probe
laser couples the ground to the excited hyperfine level in the
different WS states separated by the Bloch frequency.
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6.	  

Perspec8ves	  et	  applica8ons	  

Mesure	  de	  h / m  (m:	  masse	  d’un	  atome	  d’une	  espèce	  donnée)	  

Mesure	  de	  forces	  au	  voisinage	  de	  surfaces	  



La	  mesure	  de	  h / m	  	  

Importance	  métrologique	  :	  

Nouvelle	  définiGon	  de	  l’unité	  de	  masse	  

Mesure	  de	  la	  constante	  de	  structure	  fine	  α	  (constante	  fondamentale	  	  
des	  interacGons	  électromagnéGques)	  	  

↵ =
q2

4⇡✏0~c

Si	  «	  on	  croit	  »	  à	  l’électrodynamique	  quanGque,	  α	  	  peut	  se	  «	  déduire	  »	  de	  la	  mesure	  
de	  l’anomalie	  gyromagnéGque	  de	  l’électron	  (Gabrielse,	  Harvard)	  :	  

↵�1 = 137.035 999 084 (51) [0.37 ppb]

Pour	  un	  mesure	  indépendante	  de	  l’électrodynamique	  quanGque	  :	  	  

↵2 =
2R1
c

m

me

h

m

R1 : constante de Rydberg

me : masse de l’électron

Autre	  mesure	  de	   α :	  effet	  Hall	  quanGque	  [18	  ppb]	  



avec	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (entre	  500	  et	  1000)	  

Mesure	  de	  h / m avec	  les	  oscilla8ons	  de	  Bloch	  	  

Groupe	  de	  F.	  Biraben,	  Laboratoire	  Kastler	  Brossel	  	  

Réseau	  accéléré	  	  

x

phase �1 phase �2

�1 = k�t2/2 �2 = �k�t2/2

! !

Transfert	  d’impulsion	  dans	  le	  référenGel	  	  
du	  laboratoire	  

pfin = pin + 2N ~k

N � 1

Mesure	  des	  impulsions	  iniGales	  et	  finales	  grâce	  à	  l’effet	  Doppler	  (spectroscopie	  Raman)	  	  

~!(p) = �Ehf +
[p+ ~(k1 + k2)]

2

2m
� p2

2m~k1 ~k2

�Ehf ga

gb
~
m

=
!(pfi)� !(pin)

2Nk(k1 + k2)



Mesure	  de	  h / m avec	  les	  oscilla8ons	  de	  Bloch	  (suite)	  	  

~
m

=
!(pfi)� !(pin)

2Nk(k1 + k2)
Bouchendira	  et	  al.,	  2011	  

Mesures	  faites	  avec	  un	  réseau	  verGcal	  

• 	  accéléraGon	  vers	  le	  haut	  ou	  vers	  le	  bas	  :	  permet	  d’éliminer	  l’effet	  de	  la	  gravité	  	  

h

mRb
= 4.591 359 2729(57) 10�9m2/s [1.2 ppb]

• 	  schéma	  interférométrique	  pour	  améliorer	  la	  précision	  de	  la	  mesure	  de	  	  	  	  	  	  	  	  et	  	  	  pin pfi

conduit	  alors	  à	  	  
1

↵
= 137.035 999 037 (91)↵2 =

2R1
c

m

me

h

m
[0.66 ppb]

[0.44 ppb]

L’expression	  

La	  comparaison	  avec	  la	  mesure	  de	  l’anomalie	  gyromagnéGque	  de	  l’électron	  permet	  :	  

• 	  de	  tester	  la	  contribuGon	  des	  muons	  et	  des	  hadrons,	  

• 	  si	  on	  croit	  à	  l’électrodynamique	  quanGque,	  de	  contraindre	  une	  possible	  structure	  	  
	  	  	  de	  l’électron	  ou	  les	  paramètres	  de	  parGcules	  de	  maGère	  noire.	  

V0 ⇠ 100 Er

(gain	  d’un	  facteur	  7	  )	  



Mesures	  de	  forces	  faibles	  

La	  relaGon	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  connecte	  une	  mesure	  de	  force	  et	  une	  mesure	  de	  fréquence	  ~!B = Fa

mg

miroir	  

atome	  

Caruso]o	  et	  al.	  (2005)	  :	  comment	  la	  proximité	  d’un	  matériau	  (par	  exemple	  le	  miroir	  créant	  
l’onde	  staGonnaire)	  modifie-‐t-‐elle	  la	  fréquence	  de	  Bloch	  liée	  à	  la	  gravité	  ?	  

PotenGel	  d’interacGon	  qui	  prend	  en	  compte	  
les	  effets	  de	  van	  der	  Waals-‐London,	  de	  Casimir-‐Polder,	  	  
et	  les	  correcGons	  thermiques	  :	  

�!B

!B
= �0.17

D4
(µm)4

correcGon	  de	  10-‐5	  à	  la	  gravité	  pour	  	  D = 10 µm 	

(une	  précision	  de	  10-‐7	  est	  possible)	  

Wolf	  et	  al.	  (2007)	  :	  interféromètre	  à	  parGr	  d’états	  de	  Wannier-‐Stark	  pour	  une	  recherche	  
de	  forces	  correspondant	  à	  une	  déviaGon	  par	  rapport	  à	  la	  loi	  de	  Newton	  

Mesures	  locales,	  avec	  une	  posi8on	  définie	  au	  micron	  près	  



Cours	  6.	  	  
Topologie	  dans	  un	  réseau	  :	  l’exemple	  des	  points	  de	  Dirac	  



1.	  

Points	  de	  Dirac	  dans	  une	  zone	  de	  Brillouin	  



Les	  points	  de	  Dirac	  

Réseau	  à	  deux	  dimensions,	  quasi-‐moment	  	  ~q = (q
x

, q
y

)

Bandes	  d’énergie	  	  E
n

(q
x

, q
y

)

f!k" = 2 cos!#3kya" + 4 cos$#3
2

kya%cos$3
2

kxa% , !6"

where the plus sign applies to the upper !!*" and the
minus sign the lower !!" band. It is clear from Eq. !6"
that the spectrum is symmetric around zero energy if t!
=0. For finite values of t!, the electron-hole symmetry is
broken and the ! and !* bands become asymmetric. In
Fig. 3, we show the full band structure of graphene with
both t and t!. In the same figure, we also show a zoom in
of the band structure close to one of the Dirac points !at
the K or K! point in the BZ". This dispersion can be
obtained by expanding the full band structure, Eq. !6",
close to the K !or K!" vector, Eq. !3", as k=K+q, with
&q & " &K& !Wallace, 1947",

E±!q" ' ± vF&q& + O(!q/K"2) , !7"

where q is the momentum measured relatively to the
Dirac points and vF is the Fermi velocity, given by vF
=3ta /2, with a value vF*1#106 m/s. This result was
first obtained by Wallace !1947".

The most striking difference between this result and
the usual case, $!q"=q2 / !2m", where m is the electron
mass, is that the Fermi velocity in Eq. !7" does not de-
pend on the energy or momentum: in the usual case we
have v=k /m=#2E /m and hence the velocity changes
substantially with energy. The expansion of the spectrum
around the Dirac point including t! up to second order
in q /K is given by

E±!q" * 3t! ± vF&q& − $9t!a2

4
±

3ta2

8
sin!3%q"%&q&2, !8"

where

%q = arctan$qx

qy
% !9"

is the angle in momentum space. Hence, the presence of
t! shifts in energy the position of the Dirac point and
breaks electron-hole symmetry. Note that up to order
!q /K"2 the dispersion depends on the direction in mo-
mentum space and has a threefold symmetry. This is the
so-called trigonal warping of the electronic spectrum
!Ando et al., 1998, Dresselhaus and Dresselhaus, 2002".

1. Cyclotron mass

The energy dispersion !7" resembles the energy of ul-
trarelativistic particles; these particles are quantum me-
chanically described by the massless Dirac equation !see
Sec. II.B for more on this analogy". An immediate con-
sequence of this massless Dirac-like dispersion is a cy-
clotron mass that depends on the electronic density as its
square root !Novoselov, Geim, Morozov, et al., 2005;
Zhang et al., 2005". The cyclotron mass is defined, within
the semiclassical approximation !Ashcroft and Mermin,
1976", as

m* =
1

2!
+ !A!E"

!E
,

E=EF

, !10"

with A!E" the area in k space enclosed by the orbit and
given by

A!E" = !q!E"2 = !
E2

vF
2 . !11"

Using Eq. !11" in Eq. !10", one obtains

m* =
EF

vF
2 =

kF

vF
. !12"

The electronic density n is related to the Fermi momen-
tum kF as kF

2 /!=n !with contributions from the two
Dirac points K and K! and spin included", which leads to

m* =
#!

vF

#n . !13"

Fitting Eq. !13" to the experimental data !see Fig. 4"
provides an estimation for the Fermi velocity and the

FIG. 3. !Color online" Electronic dispersion in the honeycomb
lattice. Left: energy spectrum !in units of t" for finite values of
t and t!, with t=2.7 eV and t!=−0.2t. Right: zoom in of the
energy bands close to one of the Dirac points.

FIG. 4. !Color online" Cyclotron mass of charge carriers in
graphene as a function of their concentration n. Positive and
negative n correspond to electrons and holes, respectively.
Symbols are the experimental data extracted from the tem-
perature dependence of the SdH oscillations; solid curves are
the best fit by Eq. !13". m0 is the free-electron mass. Adapted
from Novoselov, Geim, Morozov, et al., 2005.
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q
x

qy

E0(qx, qy)

E1(qx, qy)

Un	  point	  de	  Dirac	  est	  un	  point	  
de	  contact	  isolé	  entre	  deux	  	  
bandes	  d’énergie	  avec	  :	  

• 	  une	  relaGon	  de	  dispersion	  
	  	  linéaire	  au	  voisinage	  de	  ce	  point	  

• 	  une	  chiralité	  (posiGve	  ou	  négaGve)	  	  

figure	  4rée	  de	  Castro-‐Neto	  et	  al	  (2009)	  

CaractérisGque	  emblémaGque	  du	  graphène	  (réseau	  2D	  hexagonal),	  mais	  	  
ces	  points	  de	  Dirac	  peuvent	  apparaître	  dans	  beaucoup	  d’autres	  configuraGons.	  

Expérience	  de	  Zurich,	  groupe	  de	  T.	  Esslinger	  :	  Tarruell	  et	  al	  (2012)	  



La	  rela8on	  de	  dispersion	  linéaire	  

wikipedia	  

graphène	  

E0/1(~q) ⇡ ±~c|~q � ~qD|+ ✏0

f!k" = 2 cos!#3kya" + 4 cos$#3
2

kya%cos$3
2

kxa% , !6"

where the plus sign applies to the upper !!*" and the
minus sign the lower !!" band. It is clear from Eq. !6"
that the spectrum is symmetric around zero energy if t!
=0. For finite values of t!, the electron-hole symmetry is
broken and the ! and !* bands become asymmetric. In
Fig. 3, we show the full band structure of graphene with
both t and t!. In the same figure, we also show a zoom in
of the band structure close to one of the Dirac points !at
the K or K! point in the BZ". This dispersion can be
obtained by expanding the full band structure, Eq. !6",
close to the K !or K!" vector, Eq. !3", as k=K+q, with
&q & " &K& !Wallace, 1947",

E±!q" ' ± vF&q& + O(!q/K"2) , !7"

where q is the momentum measured relatively to the
Dirac points and vF is the Fermi velocity, given by vF
=3ta /2, with a value vF*1#106 m/s. This result was
first obtained by Wallace !1947".

The most striking difference between this result and
the usual case, $!q"=q2 / !2m", where m is the electron
mass, is that the Fermi velocity in Eq. !7" does not de-
pend on the energy or momentum: in the usual case we
have v=k /m=#2E /m and hence the velocity changes
substantially with energy. The expansion of the spectrum
around the Dirac point including t! up to second order
in q /K is given by

E±!q" * 3t! ± vF&q& − $9t!a2

4
±

3ta2

8
sin!3%q"%&q&2, !8"

where

%q = arctan$qx

qy
% !9"

is the angle in momentum space. Hence, the presence of
t! shifts in energy the position of the Dirac point and
breaks electron-hole symmetry. Note that up to order
!q /K"2 the dispersion depends on the direction in mo-
mentum space and has a threefold symmetry. This is the
so-called trigonal warping of the electronic spectrum
!Ando et al., 1998, Dresselhaus and Dresselhaus, 2002".

1. Cyclotron mass

The energy dispersion !7" resembles the energy of ul-
trarelativistic particles; these particles are quantum me-
chanically described by the massless Dirac equation !see
Sec. II.B for more on this analogy". An immediate con-
sequence of this massless Dirac-like dispersion is a cy-
clotron mass that depends on the electronic density as its
square root !Novoselov, Geim, Morozov, et al., 2005;
Zhang et al., 2005". The cyclotron mass is defined, within
the semiclassical approximation !Ashcroft and Mermin,
1976", as

m* =
1

2!
+ !A!E"

!E
,

E=EF

, !10"

with A!E" the area in k space enclosed by the orbit and
given by

A!E" = !q!E"2 = !
E2

vF
2 . !11"

Using Eq. !11" in Eq. !10", one obtains

m* =
EF

vF
2 =

kF

vF
. !12"

The electronic density n is related to the Fermi momen-
tum kF as kF

2 /!=n !with contributions from the two
Dirac points K and K! and spin included", which leads to

m* =
#!

vF

#n . !13"

Fitting Eq. !13" to the experimental data !see Fig. 4"
provides an estimation for the Fermi velocity and the

FIG. 3. !Color online" Electronic dispersion in the honeycomb
lattice. Left: energy spectrum !in units of t" for finite values of
t and t!, with t=2.7 eV and t!=−0.2t. Right: zoom in of the
energy bands close to one of the Dirac points.

FIG. 4. !Color online" Cyclotron mass of charge carriers in
graphene as a function of their concentration n. Positive and
negative n correspond to electrons and holes, respectively.
Symbols are the experimental data extracted from the tem-
perature dependence of the SdH oscillations; solid curves are
the best fit by Eq. !13". m0 is the free-electron mass. Adapted
from Novoselov, Geim, Morozov, et al., 2005.
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q
x

qy

E0(qx, qy)

E1(qx, qy)

~qD

✏0

c	  :	  dimension	  d’une	  vitesse	  

dans	  le	  graphène	  :	  1/300ème	  	  
de	  la	  vitesse	  de	  la	  lumière	  

Vitesse	  de	  groupe	  pour	  un	  paquet	  d’ondes	  composé	  de	  quasi	  moments	  	  
au	  voisinage	  de	  	  	  	  	  	  :	  ~qD

|~vg,0/1| = c~vg,0/1 =
1

~
~r~qE0/1(~q) = ±c

�~q

|�~q|

simule	  le	  mouvement	  de	  par4cules	  ultra-‐	  
rela4vistes,	  décrit	  par	  l’équa4on	  de	  Dirac	  

�~q = ~q � ~qD



La	  chiralité	  des	  points	  de	  Dirac	  

ModélisaGon	  «	  minimale	  »	  pour	  obtenir	  ces	  points	  :	  

• 	  modèle	  de	  liaisons	  fortes	  

• 	  cellule	  unité	  à	  deux	  sites	  A	  et	  B	  	  (pour	  avoir	  deux	  bandes	  d’énergie)	  

A B

Hamiltonien	  dans	  l’espace	  réciproque	  :	  

Ĥ(~q) =

✓
✏0 f⇤(~q)

f(~q) ✏0

◆

Même	  énergie	  	  	  	  	  	  pour	  les	  sites	  A	  et	  les	  sites	  B	  	  

Sauts	  possibles	  	   • 	  	  de	  A	  vers	  B	  	  
• 	  	  de	  B	  vers	  A	  

✏0

A,~j ! A,~j0

A,~j ! B,~j0

B,~j ! A,~j0

B,~j ! B,~j0( (



La	  chiralité	  des	  points	  de	  Dirac	  (suite)	  

Hamiltonien	  dans	  l’espace	  réciproque	  :	   Ĥ(~q) =

✓
✏0 f⇤(~q)

f(~q) ✏0

◆

f(q
x

, q
y

) :	  fonc4on	  complexe	  dont	  la	  valeur	  précise	  dépend	  des	  caractéris4ques	  du	  réseau	  

f(q
x

, q
y

) = �J
⇣
1 + ei 3aqx/2 cos(

p
3 aq

y

/2)
⌘

J	  :	  coefficient	  tunnel	  
a	  :	  distance	  A-‐B	  

graphène	  :	  

Deux	  bandes	  d’énergie	  :	   E±(qx, qy) = ✏0 ± |f(q
x

, q
y

)|

f!k" = 2 cos!#3kya" + 4 cos$#3
2

kya%cos$3
2

kxa% , !6"

where the plus sign applies to the upper !!*" and the
minus sign the lower !!" band. It is clear from Eq. !6"
that the spectrum is symmetric around zero energy if t!
=0. For finite values of t!, the electron-hole symmetry is
broken and the ! and !* bands become asymmetric. In
Fig. 3, we show the full band structure of graphene with
both t and t!. In the same figure, we also show a zoom in
of the band structure close to one of the Dirac points !at
the K or K! point in the BZ". This dispersion can be
obtained by expanding the full band structure, Eq. !6",
close to the K !or K!" vector, Eq. !3", as k=K+q, with
&q & " &K& !Wallace, 1947",

E±!q" ' ± vF&q& + O(!q/K"2) , !7"

where q is the momentum measured relatively to the
Dirac points and vF is the Fermi velocity, given by vF
=3ta /2, with a value vF*1#106 m/s. This result was
first obtained by Wallace !1947".

The most striking difference between this result and
the usual case, $!q"=q2 / !2m", where m is the electron
mass, is that the Fermi velocity in Eq. !7" does not de-
pend on the energy or momentum: in the usual case we
have v=k /m=#2E /m and hence the velocity changes
substantially with energy. The expansion of the spectrum
around the Dirac point including t! up to second order
in q /K is given by

E±!q" * 3t! ± vF&q& − $9t!a2

4
±

3ta2

8
sin!3%q"%&q&2, !8"

where

%q = arctan$qx

qy
% !9"

is the angle in momentum space. Hence, the presence of
t! shifts in energy the position of the Dirac point and
breaks electron-hole symmetry. Note that up to order
!q /K"2 the dispersion depends on the direction in mo-
mentum space and has a threefold symmetry. This is the
so-called trigonal warping of the electronic spectrum
!Ando et al., 1998, Dresselhaus and Dresselhaus, 2002".

1. Cyclotron mass

The energy dispersion !7" resembles the energy of ul-
trarelativistic particles; these particles are quantum me-
chanically described by the massless Dirac equation !see
Sec. II.B for more on this analogy". An immediate con-
sequence of this massless Dirac-like dispersion is a cy-
clotron mass that depends on the electronic density as its
square root !Novoselov, Geim, Morozov, et al., 2005;
Zhang et al., 2005". The cyclotron mass is defined, within
the semiclassical approximation !Ashcroft and Mermin,
1976", as

m* =
1

2!
+ !A!E"

!E
,

E=EF

, !10"

with A!E" the area in k space enclosed by the orbit and
given by

A!E" = !q!E"2 = !
E2

vF
2 . !11"

Using Eq. !11" in Eq. !10", one obtains

m* =
EF

vF
2 =

kF

vF
. !12"

The electronic density n is related to the Fermi momen-
tum kF as kF

2 /!=n !with contributions from the two
Dirac points K and K! and spin included", which leads to

m* =
#!

vF

#n . !13"

Fitting Eq. !13" to the experimental data !see Fig. 4"
provides an estimation for the Fermi velocity and the

FIG. 3. !Color online" Electronic dispersion in the honeycomb
lattice. Left: energy spectrum !in units of t" for finite values of
t and t!, with t=2.7 eV and t!=−0.2t. Right: zoom in of the
energy bands close to one of the Dirac points.

FIG. 4. !Color online" Cyclotron mass of charge carriers in
graphene as a function of their concentration n. Positive and
negative n correspond to electrons and holes, respectively.
Symbols are the experimental data extracted from the tem-
perature dependence of the SdH oscillations; solid curves are
the best fit by Eq. !13". m0 is the free-electron mass. Adapted
from Novoselov, Geim, Morozov, et al., 2005.
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q
x

qy
~qD

✏0
E+(qx, qy)

E�(qx, qy)

Point	  de	  Dirac	  :	  	  	  f(~qD) = 0

Quelle	  est	  la	  structure	  des	  états	  propres	  	  
de	  	  	  	  	  	  	  	  	  	  	  	  	  au	  voisinage	  de	  	  	  	  	  	  	  	  ?	  Ĥ(~q) ~qD



La	  chiralité	  des	  points	  de	  Dirac	  (suite)	  

Hamiltonien	  dans	  l’espace	  réciproque	  :	   Ĥ(~q) =

✓
✏0 f⇤(~q)

f(~q) ✏0

◆
f(~qD) = 0

Au	  voisinage	  de	  	  	  	  	  	  	  ,	  on	  a	  (à	  une	  phase	  et	  une	  homothéGe	  près)	  :	   f(q
x

, q
y

) = ~c(�q
x

± i�q
y

)~qD

�~q = ~q � ~qD

Ĥ(~q) = ✏01̂ + ~c ~̂� · ~�q Ĥ(~q) = ✏01̂ + ~c ~̂� · ~�q⇤
Signe	  +	   Signe	  -‐	  

	  	  	  	  	  	  :	  matrices	  de	  Pauli.	  Equivalent	  de	  l’hamiltonien	  d’un	  spin	  ½	  	  :	  	  	  ~̂�

~

B = b (x~u
x

± y~u

y

)au	  voisinage	  	  du	  zéro	  d’un	  champ	  magnéGque	  	  

Ĥ = � ~̂� · ~B

Signe	  +	   Signe	  -‐	  

= ~c �q e±i'



2.	  

Le	  réseau	  «	  mur	  de	  briques	  »	  



Le	  réseau	  en	  mur	  de	  briques	   Zurich,	  2012	  

kx

ky

0 ⇡

⇡

�⇡

�⇡

On	  part	  d’un	  réseau	  carré	  et	  on	  supprime	  un	  lien	  horizontal	  sur	  deux	  :	  	  
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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Un	  cas	  intéressant	  :	  Δ	  est	  	  
lui-‐même	  une	  foncGon	  de	  	  ~q

effet	  Hall	  quanGque,	  
isolants	  topologiques	  
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Le	  graphène	  en	  version	  atomes	  froids	  
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Creating, moving and merging Dirac points with a
Fermi gas in a tunable honeycomb lattice
Leticia Tarruell1, Daniel Greif1, Thomas Uehlinger1, Gregor Jotzu1 & Tilman Esslinger1

Dirac points are central to many phenomena in condensed-matter
physics, from massless electrons in graphene to the emergence of
conducting edge states in topological insulators1,2. At a Dirac
point, two energy bands intersect linearly and the electrons behave
as relativistic Dirac fermions. In solids, the rigid structure of the
material determines the mass and velocity of the electrons, as well
as their interactions. A different, highly flexible means of studying
condensed-matter phenomena is to create model systems using
ultracold atoms trapped in the periodic potential of interfering
laser beams3,4. Here we report the creation of Dirac points with
adjustable properties in a tunable honeycomb optical lattice. Using
momentum-resolved interband transitions, we observe a minimum
bandgap inside the Brillouin zone at the positions of the two Dirac
points. We exploit the unique tunability of our lattice potential to
adjust the effective mass of the Dirac fermions by breaking inver-
sion symmetry. Moreover, changing the lattice anisotropy allows us
to change the positions of the Dirac points inside the Brillouin zone.
When the anisotropy exceeds a critical limit, the two Dirac points
merge and annihilate each other—a situation that has recently
attracted considerable theoretical interest5–9 but that is extremely
challenging to observe in solids10. We map out this topological
transition in lattice parameter space and find excellent agreement
with ab initio calculations. Our results not only pave the way to
model materials in which the topology of the band structure is
crucial, but also provide an avenue to exploring many-body phases
resulting from the interplay of complex lattice geometries with
interactions11–13.

Ultracold gases in optical lattices have become a versatile tool with
which to simulate a wide range of condensed-matter phenomena3,4.
For example, the control of interactions has led to the observation of
Mott insulating phases14–16. In fermionic systems, this provides new
access to the physics of strongly correlated materials. However, the
topology of the band structure is equally important for the properties of
a solid. A prime example is the honeycomb lattice of graphene, where
the presence of topological defects in momentum space—the Dirac
points—leads to remarkable transport properties, even in the absence
of interactions1. In quantum gases, a honeycomb lattice has recently
been realized and investigated using a Bose–Einstein condensate17,18,
but no signatures of Dirac points were observed. Here we study an
ultracold Fermi gas of 40K atoms in a two-dimensional, tunable optical
lattice, which can be continuously adjusted to create square, triangular,
dimer and honeycomb structures. In the honeycomb lattice, we
identify the presence of Dirac points in the band structure by observing
a minimum bandgap inside the Brillouin zone using interband transi-
tions. Our method is closely related to a technique recently used with
bosonic atoms to characterize the linear crossing of two high-energy
bands in a one-dimensional, bichromatic lattice19, but also provides
momentum resolution.

To create and manipulate Dirac points, we have developed a two-
dimensional optical lattice of adjustable geometry. It is formed by three
retro-reflected laser beams of wavelength l 5 1,064 nm, arranged as
depicted in Fig. 1a. The interference of two perpendicular beams, X

and Y, gives rise to a chequerboard lattice of spacing l=
ffiffiffi
2
p

. A third
beam, !X, collinear with X but detuned by a frequency d, creates an
additional standing wave with a spacing of l/2. This yields a potential
of the form

1Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland.
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Figure 1 | Optical lattice with adjustable geometry. a, Three retro-reflected
laser beams of wavelength l 5 1,064 nm create the two-dimensional lattice
potential of equation (1). Beams X and Y interfere and produce a chequerboard
pattern, and beam !X creates an independent standing wave. Their relative
position is controlled by the detuning d. b, Top: different lattice potentials can
be realized depending on the intensities of the lattice beams. White regions
correspond to lower potential energies and blue regions to higher potential
energies. Bottom: diagram showing the accessible lattice geometries as a
function of the lattice depths V!X and VX. The transition between triangular (T)
and dimer (D) lattices is indicated by a dotted line. When crossing the dashed
line into the honeycomb (Hc) regime, Dirac points appear. The limit V!X?VX,
V!X?VY corresponds to weakly coupled, one-dimensional chains (1D c). c, The
real-space potential of the honeycomb lattice has a two-site unit cell (sites A and
B) and the primitive lattice vectors are perpendicular. d, Left: sketch of the first
and second Brillouin zones (BZs) of the honeycomb lattice, indicating the
positions of the Dirac points. Right: three-dimensional view of the energy
spectrum showing the linear intersection of the bands at the two Dirac points.
The colour scale illustrates lines of constant energy. We denote the full
bandwidth, W; the minimum energy gap at the edges of the Brillouin zone, EG;
and the Bloch wavevector, qB 5 2p/l.
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Si	  on	  ne	  garde	  que	  les	  deux	  termes	  dominants,	  réseau	  carré	  :	  
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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instant	  iniGal	   après	  une	  période	  de	  Bloch	  

Les	  quasi-‐moments	  qui	  n’ont	  pas	  de	  suivi	  adiabaGque	  lors	  de	  l’oscillaGon	  de	  Bloch	  
sont	  bien	  là	  où	  on	  les	  a]end	  selon	  la	  prédicGon:	  

: cos(aq
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Dispari8on	  des	  points	  de	  Dirac	  
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V1(~r) = �VX̄ cos

2
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Si	  θ ≠ π	  ,	  on	  disymétrise	  les	  rôles	  des	  sites	  de	  type	  A	  et	  des	  sites	  de	  type	  B	  
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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expérience	  :	  Tarruell	  et	  al.,	  2012	  

FracGon	  transférée	  dans	  la	  bande	  supérieure	  

Paramètre	  de	  contrôle	  θ 	  (via	  le	  désaccord	  du	  laser)	  
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors

1
. Tunnelling between

the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system

20
. The band structure

for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic

40
K atoms in the jF, mFæ 5 j9/2, 29/2æ state,

where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h

2
/2ml

2
is the recoil energy, h denotes Planck’s constant

and m is the mass of a
40

K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation

21
. We then measure the quasi-momentum distribution of

the atoms in the different bands
22

(Methods).
Owing to the finite momentum width of the cloud, trajectories with

different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force

21
, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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Conclusions	  

Premier	  pas	  dans	  le	  contrôle	  de	  la	  topologie	  des	  bandes	  dans	  un	  réseau	  op8que	  

Beaucoup	  d’aspects	  restent	  à	  explorer,	  par	  exemple	  :	  	  

Mise	  en	  évidence	  des	  points	  de	  Dirac	  par	  oscillaGons	  de	  Bloch	  

Contrôle	  de	  la	  posiGon	  de	  ces	  points	  	  

Chiralité	  des	  points	  de	  Dirac	  :	  phase	  accumulée	  si	  un	  atome	  tourne	  	  
autour	  d’un	  point	  (oscillaGons	  de	  Bloch	  2D),	  effet	  Hall	  quanGque	  anormal	  

Aspects	  paradoxaux	  de	  l’équaGon	  de	  Dirac	  :	  paradoxe	  de	  Klein	  (transmission	  
quasi-‐totale	  d’un	  paquet	  d’ondes	  à	  travers	  une	  barrière	  de	  grande	  hauteur)	  


