Les interactions entre atomes dans les gaz quantiques

Cours 3 Collisions à basse énergie

Jean Dalibard Chaire *Atomes et rayonnement* Année 2020-21

Bilan des cours précédents

Potentiel d'interaction entre deux atomes neutres dans leur état fondamental

Potentiel invariant par rotation si on néglige l'interaction dipôle-dipôle magnétique

Formalisme pour traiter la collision entre deux atomes interagissant par ce potentiel

• Canaux de collision indépendants, associés au moment cinétique relatif ℓ

• Série de problèmes 1D avec
$$V_{\text{eff}}^{(\ell)}(r) = V(r) + \frac{\hbar^2 \ell(\ell+1)}{2m_{\text{r}}r^2} \leftarrow \text{barrière centrifuge}$$

Collisions à basse énergie

 $\ell = 1$, rubidium : 30 μ K

C'est essentiellement le canal $\ell = 0$ qui contribue à l'interaction entre particules dans les gaz d'atomes froids

Buts de ce cours

-> Approfondir la description de la collision en terme de déphasage $\delta_{\ell}(k)$

$$\frac{1}{f_{\ell}(k)} = \frac{k}{\tan \delta_{\ell}(k)} - ik$$

Comportement à basse énergie de δ_{ℓ} ?

→ Introduire la *longueur de diffusion* pour les collisions en onde s $(\ell = 0)$

→ Illustrer ces notions sur des potentiels modèles

- Puits carré
- Potentiel de contact $V(\mathbf{r}) = g \, \delta(\mathbf{r})$???

- V(r)
- Pseudo-potentiel et condition aux limites de Bethe-Peierls

1.

Equation radiale à basse énergie

La portée *b* d'un potentiel

- Notion claire pour un potentiel carré : portée = b
- Pour un potentiel de type van der Waals, en $-C_n/r^n$ à l'infini ?

Paquet d'ondes de taille σ : l'énergie potentielle $\sim -C_6/\sigma^6$ sera significative par rapport à l'énergie cinétique de confinement $\hbar^2/m_r\sigma^2$ si

$$\sigma \lesssim R_{\rm vdW} \qquad \qquad R_{\rm vdW} \equiv \frac{1}{2} \left(2m_r C_6 / \hbar^2 \right)^{1/4}$$

Portée $b = R_{vdW}$ de l'ordre de quelques dizaines d'Angströms

Les différentes zones spatiales pour l'équation radiale

Canal ℓ : • on pose $\psi(\mathbf{r}) = \chi(\mathbf{r}) Y_{\ell,m}(\theta, \varphi)$ $\hat{H}\psi(\mathbf{r}) = E \psi(\mathbf{r})$

• on introduit la fonction radiale réduite $u(r) = r \chi(r)$

$$u'' + \left(-\frac{\ell(\ell+1)}{r^2} - \frac{2m_{\rm r}V(r)}{\hbar^2} + k^2\right)u = 0 \qquad u(0) = 0 \qquad E = \frac{\hbar^2k^2}{2m_{\rm r}}$$

Quels sont les termes dominants quand $kb \ll 1$?

Mise en oeuvre pour $\ell = 0$

 $kb \ll 1$

Cas
$$\ell = 0$$
: $u'' + \left(k^2 - \frac{2m_r V(r)}{\hbar^2}\right)u = 0$ $u(0) = 0$

Loi d'échelle pour le déphasage $\delta_0(k)$

Le raccordement n°2 consiste à connecter pour $kr \ll 1$:

$$u(r) = \alpha r + \beta$$
 et $u(r) = e^{-ikr} - e^{ikr}e^{2i\delta_0}$
 α/β imposé $\approx (1 - e^{2i\delta_0}) - ikr(1 + e^{2i\delta_0})$

On en déduit :

$$\frac{\beta}{\alpha} \approx \frac{1 - e^{2i\delta_0}}{-ik\left(1 + e^{2i\delta_0}\right)} = \frac{\tan[\delta_0(k)]}{k} \longrightarrow \tan[\delta_0(k)] \propto k \quad \text{quand } k \to 0$$

Plus généralement, ce type de raisonnement approché conduit à [*cf.* notes]: $\tan[\delta_{\ell}(k)] \propto k^{2\ell+1} \qquad \text{quand } k \to 0$

Attention : validité limitée aux ℓ petits pour un potentiel en $-C_n/r^n$

Diffusion en onde s (ou p) longueur (ou volume) de diffusion

amplitude de diffusion :

$$\begin{aligned} f(k,\theta) &= \sum_{\ell} \left(2\ell + 1 \right) P_{\ell}(\cos \theta) f_{\ell}(k) \\ &\approx f_0(k) \qquad \qquad \left[P_0(x) = 1 \right] \end{aligned}$$

La longueur de diffusion (onde s, $\ell = 0$)

La loi d'échelle tan[$\delta_0(k)$] $\propto k$ quand $k \rightarrow 0$ conduit à poser:

$$a \equiv -\lim_{k \to 0} \frac{\tan[\delta_0(k)]}{k} \qquad \left(= -\frac{\beta}{\alpha} \text{ pour } u(r) = \alpha r + \beta \right)$$

Le lien entre amplitude de diffusion et déphasage
$$\frac{1}{f_{\ell}(k)} = \frac{k}{\tan \delta_{\ell}(k)} - ik$$
 conduit alors à :

$$\frac{1}{f_0(k)} \approx -\frac{1}{a} - ik \qquad \Leftrightarrow \qquad f_0(k) \approx -\frac{a}{1 + ika}$$

Section efficace totale : $\sigma_{\text{tot}} \approx \frac{4\pi a^2}{1 + k^2 a^2} \approx 4\pi a^2$

Ordre suivant dans le développement de $1/f_0(k)$ en puissances de k:

$$\frac{1}{f(k)} \approx -\frac{1}{a} - ik + \frac{1}{2}r_ek^2 \qquad r_e : \text{ portée effective}$$

Diffusion en onde p ($\ell = 1$)

La loi d'échelle trouvée plus haut s'écrit

 $k \to 0$: $\tan[\delta_1(k)] \propto k^3$

On définit le volume de diffusion $v = -\lim_{k \to 0} \frac{\tan[\delta_1(k)]}{k^3}$

Amplitude de diffusion : $f(k, \theta) = 3 \cos \theta f_1(k)$

avec
$$\frac{1}{f_1(k)} = \frac{k}{\tan[\delta_1(k)]} - ik \approx -\frac{1}{k^2 v} - ik$$

La section efficace totale $\propto |f_1(k)|^2$ varie alors comme k^4

Attention aux termes de portée effective...

Etude expérimentale de collisions en onde s

Jaskula, Bonneau *et al.*

Partant de 10⁵ atomes à $v_z \approx 0$, on crée deux nuages d'atomes se propageant avec $v_z = \pm 2\hbar k/m$, plus un nuage restant à $v_z = 0$

Expérience de temps de vol, en sélectionnant le produit de la collision $v_z = 0$ avec $v_z = + 2\hbar k/m$

$$v_{\rm cdm} = \frac{\hbar k}{m}$$
 $v_{\rm rel} = \pm \frac{\hbar k}{m}$

Collisions isotropes : densité uniforme sur toute la sphère de rayon $\hbar k/m$

+ corrélations (
$$v_{rel}$$
, - v_{rel})

Etude expérimentale de collisions en onde p

10⁷ atomes de ⁴⁰K polarisés dans un piège harmonique anisotrope

$$\frac{1}{2}m\omega_{\alpha}^2 r_{\alpha}^2 = \frac{1}{2}k_B T \qquad \alpha = x, y, z$$

A l'instant t = 0, on modifie soudainement une des fréquences du piège

On mesure le temps de retour à l'équilibre thermodynamique sous l'effet des collisions élastiques

$$\sigma_{\rm tot} \propto k^4 \propto T^2$$

Le rôle central de la longueur de diffusion

A basse énergie, collisions dans l'onde s décrites par l'amplitude de diffusion

Deux potentiels de même longueur de diffusion conduisent généralement à des comportements collectifs similaires

On cherche donc à remplacer le potentiel réel, souvent compliqué, par un potentiel modèle le plus simple possible de même longueur de diffusion

3.

L'exemple d'une interaction en "puits carré"

Longueur de diffusion pour le puits carré

Continuité de u(r) et u'(r) en r = b: fournit $\beta/\alpha = -a$ avec: $a = b - \frac{\tan(k_0 b)}{k_0}$

Etats stationnaires de diffusion $\ell = 0$ pour le puits carré

Comportement similaire à un potentiel de coeur dur de rayon *a*

Etats stationnaires de diffusion $\ell = 0$ (suite)

On considère le point $k_0 b = 0.475\pi$

→ longueur de diffusion négative
$$u(r) \propto \sin [k(r-a)]$$

noeud commun "virtuel"

Les états liés du puits carré ($\ell = 0$)

Recherche d'états liés (E < 0) : on pose $\frac{\hbar^2 \kappa^2}{2m_r} = |E|$ $\frac{\hbar^2 k_1^2}{2m_r} = V_0 + E$

On doit raccorder • la solution dans le puits : $u(r) = A \sin(k_1 r)$

• la solution à l'extérieur du puits : $u(r) = B e^{-\kappa r}$

avec continuité de u(r) et de sa dérivée première

Premier état lié pour $k_0 b = \pi/2$, deuxième état lié pour $k_0 b = 3\pi/2$, etc.

Energie des éventuels états liés :

Longueur de diffusion :

Le théorème de Levinson

Divergence de la longueur de diffusion à l'apparition de chaque nouvel état lié

4.

Modélisation de l'interaction par un potentiel de contact $\bar{g} \, \delta(\mathbf{r})$

Everything should be made as simple as possible, but no simpler

Einstein

Potentiel de contact en point de vue position

Parfaitement légitime sur le plan mathématique à 1D:

 $\hat{V}[\psi(x)] = \bar{g}\psi(0)\delta(x), \quad \bar{g} \text{ réel positif ou négatif}$

Quid à 3D? $\hat{V}[\psi(\mathbf{r})] = \bar{g}\psi(0)\delta(\mathbf{r})$

Retour sur l'équation intégrale de la diffusion :

: 1---

On considère le développement de Born en puissance de \overline{g} :

à l'ordre 1:
$$\psi_{k}(\boldsymbol{r}) = e^{i\boldsymbol{k}\cdot\boldsymbol{r}} + \int \mathscr{G}_{0}^{(+)}(\boldsymbol{r}-\boldsymbol{r}') \ \hat{V}\left[e^{i\boldsymbol{k}\cdot\boldsymbol{r}'}\right] \ d^{3}\boldsymbol{r}'$$
$$= e^{i\boldsymbol{k}\cdot\boldsymbol{r}} + \int \mathscr{G}_{0}^{(+)}(\boldsymbol{r}-\boldsymbol{r}') \ \bar{g} \ \delta(\boldsymbol{r}') \ d^{3}\boldsymbol{r}'$$
$$= e^{i\boldsymbol{k}\cdot\boldsymbol{r}} - \frac{\bar{g}m_{r}}{2\pi\hbar^{2}} \frac{e^{i\boldsymbol{k}\boldsymbol{r}}}{r} \qquad jusqu'ici, tout va bien...$$

Potentiel de contact en point de vue position (2)

Ordre 1 du développement de Born :

$$\psi_k(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} - \frac{\bar{g}m_r}{2\pi\hbar^2} \frac{e^{ikr}}{r} + \mathcal{O}(\bar{g}^2)$$

Ordre 2 du développement de Born :

$$\psi_{k}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} - \frac{\bar{g}m_{r}}{2\pi\hbar^{2}}\frac{e^{i\mathbf{k}\mathbf{r}}}{r} + \int \mathscr{G}_{0}^{(+)}(\mathbf{r}-\mathbf{r}') \hat{V}\left[\frac{\bar{g}m_{r}}{2\pi\hbar^{2}}\frac{e^{i\mathbf{k}\mathbf{r}'}}{r'}\right] d^{3}r' + \mathcal{O}(\bar{g}^{3})$$

avec: $\hat{V}\left[\psi(\mathbf{r})\right] = \bar{g}\psi(0)\,\delta(\mathbf{r})$

On doit faire agir la distribution de Dirac sur une fonction qui diverge en r = 0

Problème mathématiquement mal défini ...

Potentiel de contact en point de vue impulsion

Matrice de transition $\hat{T}(E)$:

$$\hat{T}(E) = \hat{V} + \hat{V} \frac{1}{E - \hat{H}_0 + i0_+} \hat{V} + \dots, \qquad E = \frac{\hbar^2 k^2}{2m_r}.$$

Elément de matrice de $\hat{T}(E)$ entre deux états d'impulsion bien définie ?

ordre 1 en
$$\bar{g}$$
: $\langle q_1 | \hat{T}(E) | q_2 \rangle = \langle q_1 | \hat{V} | q_2 \rangle = \bar{g} \int e^{-iq_1 \cdot r} \delta(r) e^{iq_2 \cdot r} d^3 r = \bar{g}$.
jusqu'ici, tout va bien (bis repetita)

ordre 2 en
$$\overline{g}$$
: $\langle \boldsymbol{q}_1 | \hat{T}(E) | \boldsymbol{q}_2 \rangle = \overline{g} + \frac{\overline{g}^2}{(2\pi)^3} \int \frac{1}{E - \varepsilon(q) + i0_+} d^3 q \qquad \varepsilon(q) = \frac{\hbar^2 q^2}{2m_r}$

mais
$$\mathscr{I}(E) = \frac{1}{(2\pi)^3} \int \frac{1}{E - \varepsilon(q) + i0_+} d^3q$$
 est divergente en $q = \infty$...

Potentiel de contact en point de vue impulsion (2)

On oublie pour l'instant le caractère divergent de $\mathcal{F}(E)$

Le développement de Born à l'ordre 2 s'écrit $\langle \boldsymbol{q}_1 | \hat{T}(E) | \boldsymbol{q}_2 \rangle = \bar{g} + \bar{g}^2 \mathscr{I}(E)$

et se généralise à tous les ordres comme

$$\langle \boldsymbol{q}_1 | \hat{T}(E) | \boldsymbol{q}_2 \rangle = \bar{g} \left\{ 1 + \bar{g} \mathcal{I}(E) + \left[\bar{g} \mathcal{I}(E) \right]^2 + \dots \right\} = \frac{\bar{g}}{1 - \bar{g} \mathcal{I}(E)}$$

Pour donner un sens à $\mathcal{F}(E)$, on impose une coupure à grand moment

$$\mathcal{F}(E) = -\frac{m_{\rm r}}{\pi^2 \hbar^2} \int_0^{q_{\rm max}} \frac{q^2}{q^2 - k^2 - i0_+} \, \mathrm{d}q = -\frac{m_{\rm r}}{\pi^2 \hbar^2} \left(q_{\rm max} + \mathrm{i}\frac{\pi k}{2}\right)$$

Retour à l'amplitude de diffusion : $f(k, k') = -\frac{m_{\rm r}}{2\pi \hbar^2} \langle k' | \hat{T} | k \rangle$

$$\frac{1}{f(k)} = -\frac{2\pi \hbar^2}{m_{\rm r} \bar{g}} - \frac{2q_{\rm max}}{\pi} - \mathrm{i}k \qquad \text{qui est bien du type} -\frac{1}{a} - \mathrm{i}k \qquad \text{26}$$

Comment mener des calculs avec cette coupure ?

Exemple : correction de Lee-Huang-Yang dans le cadre de l'approx. de Bogoliubov

- On connaît la longueur de diffusion *a*, et le couplage "physique" associé : $g = \frac{2\pi\hbar^2 a}{2\pi\hbar^2 a}$
- On modélise le potentiel d'interaction par $ar{g} \, \delta({m r})$, avec $ar{g}$ couplage "nu"

$$\frac{g}{2} \sum_{q_1,q_2,q} \hat{a}_{q_1+q}^{\dagger} \hat{a}_{q_2-q}^{\dagger} \hat{a}_{q_2} \hat{a}_{q_1}$$

• On tronque les intégrales sur q divergentes à une valeur q_{\max} en imposant

$$\frac{1}{a} = \frac{2\pi\hbar^2}{m_{\rm r}\bar{g}} + \frac{2q_{\rm max}}{\pi} \qquad \longleftrightarrow \qquad \frac{1}{g} = \frac{1}{\bar{g}} + Q_{\rm max} \qquad Q_{\rm max} = \frac{m_{\rm r}q_{\rm max}}{\pi^2\hbar^2}$$

• On mène les calculs à un ordre donné en \bar{g} que l'on remplace ensuite par :

$$\bar{g} = \frac{g}{1 - gQ_{\text{max}}} \approx g(1 + gQ_{\text{max}} + \dots)$$

Le résultat final ne doit dépendre que du couplage physique g et pas de Q_{\max}

5.

Le pseudo-potentiel

Le but recherché

On souhaite garder la simplicité de $g \,\delta(r)$ agissant sur une fonction régulière, mais on souhaite effacer la divergence qui apparaît quand on agit sur $\frac{1}{r}$

On pose :
$$\hat{V}_{pp}\left[\psi(\mathbf{r})\right] = g\,\delta(\mathbf{r})\left.\frac{\partial}{\partial r}\left[r\psi(\mathbf{r})\right]\right|_{r=0}$$
 Huang & Yang

Pour une fonction du type $\psi(\mathbf{r}) = \frac{\alpha}{r} + \psi_{\text{reg}}(\mathbf{r})$, on trouve $\hat{V}_{\text{pp}}[\psi(\mathbf{r})] = g \psi_{\text{reg}}(0) \delta(\mathbf{r})$

Par exemple :
$$\hat{V}_{pp}\left[\frac{e^{ikr}}{r}\right] = ikg\,\delta(r)$$

vient donner un sens aux termes du développement de Born

Retour sur le développement de Born

Avec le potentiel de contact $g \, \delta(\mathbf{r})$, les problèmes apparaissaient à l'ordre 2 :

$$\psi_{k}(\mathbf{r}) = \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} - \frac{gm_{\mathrm{r}}}{2\pi\hbar^{2}}\frac{\mathrm{e}^{\mathrm{i}\mathbf{k}\mathbf{r}}}{r} + \int \mathscr{G}_{0}^{(+)}(\mathbf{r}-\mathbf{r}') \,\hat{V}\left[\frac{gm_{\mathrm{r}}}{2\pi\hbar^{2}}\frac{\mathrm{e}^{\mathrm{i}\mathbf{k}\mathbf{r}'}}{r'}\right] \,\mathrm{d}^{3}\mathbf{r}' + \mathcal{O}(\bar{g}^{3})$$

$$= e^{i\boldsymbol{k}\cdot\boldsymbol{r}} - \frac{gm_{r}}{2\pi\hbar^{2}}\frac{e^{i\boldsymbol{k}\boldsymbol{r}}}{r} + \frac{gm_{r}}{2\pi\hbar^{2}}(i\boldsymbol{k}g)\int\mathscr{G}_{0}(\boldsymbol{r}-\boldsymbol{r}')\,\delta(\boldsymbol{r}')\,d^{3}\boldsymbol{r}' + \mathcal{O}(\bar{g}^{3})$$
$$= e^{i\boldsymbol{k}\cdot\boldsymbol{r}} - \frac{gm_{r}}{2\pi\hbar^{2}}\frac{e^{i\boldsymbol{k}\boldsymbol{r}}}{r} + i\boldsymbol{k}\left(\frac{-gm_{r}}{2\pi\hbar^{2}}\right)^{2}\frac{e^{i\boldsymbol{k}\boldsymbol{r}}}{r} + \mathcal{O}(\bar{g}^{3})$$

Tous les termes du développement auront la même structure en e^{ikr}/r

On pose $a \equiv \frac{gm_r}{2\pi\hbar^2}$ et on obtient l'état stationnaire de diffusion

$$\psi_k(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} - a\left[1 - ika + (-ika)^2 + \dots\right] \frac{e^{ikr}}{r} = e^{i\mathbf{k}\cdot\mathbf{r}} - \frac{a}{1 + ika} \frac{e^{ikr}}{r}$$

Remarques sur cet état stationnaire de diffusion

$$\psi_k(\mathbf{r}) = \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} - \frac{a}{1 + \mathrm{i}ka} \frac{\mathrm{e}^{\mathrm{i}kr}}{r}$$

vérification immédiate que c'est un état propre de \hat{H}

→ L'amplitude de diffusion $f(k) = -\frac{a}{1 + ika}$ est isotrope

Le pseudo-potentiel diffuse uniquement dans l'onde s

- → On retrouve bien $\frac{1}{f(k)} = -\frac{1}{a} ik$ • La longueur de diffusion est $a = \frac{gm_r}{2\pi\hbar^2}$
 - La partie imaginaire est celle imposée par le théorème optique
 - La portée effective est strictement nulle

La forme trouvée pour $\psi_k(\mathbf{r})$ est valable $\forall \mathbf{r} \neq 0$ (pas seulement asymptotique)

• Comportement au voisinage de
$$r = 0$$
: $\psi_k(r) = -\frac{a}{1 + ika} \left[\frac{1}{r} - \frac{1}{a} + \mathcal{O}(r) \right]_{3^2}$

Etat lié du pseudo-potentiel

Rappel : lien entre les pôles de l'amplitude de diffusion et les états liés de \hat{H}

$$\psi_k(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} - \frac{a}{1+ika} \frac{e^{ikr}}{r} \qquad \qquad a = \frac{gm_r}{2\pi\hbar^2}$$

Ici, l'amplitude de diffusion a un pôle unique en $k_p = i/a$

Conduit possiblement à un état lié :
$$\psi_{\text{lie}} \propto \frac{e^{-r/a}}{r}$$
 si $a > 0$

On vérifie explicitement que cet état est bien état propre de \hat{H} avec l'énergie

$$E = \frac{\hbar^2 k_p^2}{2m_r} = -\frac{\hbar^2}{2m_r a^2}$$
 pour $a > 0$

Comportement à l'origine de l'état lié : $\psi_{\text{lie}} \propto \frac{1}{r} - \frac{1}{a} + \mathcal{O}(r)$

Le comportement à l'origine des fonctions d'onde

Avec \hat{V}_{pp} , on voit apparaître des fonctions variant comme $\frac{1}{r}$ à l'origine : nouveauté !

Si le potentiel est régulier en r = 0 ou varie lui-même comme 1/r (Coulomb), alors : $\psi(r) = \beta_0 + O(r)$

Que penser de $\psi(r) \propto 1/r$?

• de carré sommable : $\int \left(\frac{1}{r}\right)^{r}$

$$\frac{1}{r} \int_{-\infty}^{2} d^{3}r = \int \left(\frac{1}{r}\right)^{2} 4\pi r^{2} dr \qquad \text{est convergente en 0}$$

- En présence de $\hat{V}_{
m pp}$, tous les états propres (libres ou lié) s'écrivent

$$\psi(\mathbf{r}) \propto \frac{1}{r} - \frac{1}{a} + \mathcal{O}(r) \longrightarrow \frac{\beta_{-1}}{r} + \beta_0 + \mathcal{O}(r)$$

avec $\beta_{-1} = -a\beta_0$

Changement (pas un agrandissement !) du domaine des fonctions d'onde

La condition aux limites de Bethe-Peierls

Deux points de vue équivalents sur le même système

• Utiliser
$$\hat{H} = -\frac{\hbar^2}{2m_{\rm r}}\nabla^2 + \hat{V}_{\rm pp}$$
 comme on a fait ici

On en déduit la forme des fonctions propres autour de l'origine : $\frac{I}{-}$ – $\frac{I}{-}$ qui doit donc être vérifiée pour toute fonction d'onde physiquement acceptable

• On impose d'emblée le comportement $\psi(\mathbf{r}) \propto \frac{1}{r} - \frac{1}{a} + \mathcal{O}(r)$ à toutes les fonctions d'onde pouvant décrire le système

La seule énergie pertinente est alors l'énergie cinétique : $\hat{H}_0 = -\frac{\hbar^2}{2m_r}\nabla^2$

A rapprocher du traitement du puits carré 1D:

cf. Werner & Castin

En résumé

Loi de variation de l'amplitude de diffusion en onde s (et p) à basse énergie

onde s et longueur de diffusion:
$$\frac{1}{f(k)} \approx -\frac{1}{a} - ik \quad \Leftrightarrow \quad f(k) \approx -\frac{a}{1 + ika}$$

Validation sur des potentiels modèles

• Puits carré

Théorème de Levinson

• Le potentiel de contact et sa régularisation sous forme de pseudo-potentiel

Formulation en terme de condition aux limites (Bethe-Peierls)

$$\psi(\mathbf{r}) \propto \frac{1}{r} - \frac{1}{a} + \mathcal{O}(r)$$

Bien adaptée au passage vers le problème à N corps