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Chaire	Atomes	et	rayonnement

	Fluides	quan2ques	de	basse	dimension	
et	transi2on	de	Kosterlitz-Thouless

La	transi9on	BKT	explorée	avec		
des	gaz	d’atomes	ou	de	polaritons



2

Bilan	des	cours	précédents

Fluide	2D	de	par9cules	de	Bose	en	interac9on	à	courte	portée	

V (ri � rj) =
~2
m

g̃ �(ri � rj)

g̃ :	paramètre	sans	dimension	caractérisant	la	force	des	interac9ons

Théorème	général	de	Mermin-Wagner-Hohenberg

Système	uniforme	:	pas	de	condensa9on	de	Bose-Einstein	à	la	limite	thermodynamique

Mais	il	y	a	malgré	tout	une	transi9on	superfluide	non	conven9onnelle	!

Berezinskii	-	Kosterlitz	-	Thouless

z

x

y

` g̃ / a

`

longueur	de	diffusion	
à	3	dimensions

épaisseur	du	gaz	
dans	la	direc9on	gelée
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Bilan	(suite):	la	transi9on	superfluide	BKT

Température	0 Tc
état	superfluide état	normal

⇢ = ⇢n + ⇢s ⇢ = ⇢n

D = Dn +Ds D = Dn

densité	spa9ale	:

densité	dans	l’espace		
des	phases	:

Ds > 4 Ds = 0g = 0 g = 1 g = 2

q = +1

q = �1

I

C
v(r) · dr = +

2⇡~
m

I

C
v(r) · dr = �2⇡~

m

I

C
v(r) · dr = 0

g = 0 g = 1 g = 2

q = +1

q = �1

I

C
v(r) · dr = +

2⇡~
m

I

C
v(r) · dr = �2⇡~

m

I

C
v(r) · dr = 0

Transi9on	induite	par	l’appariement	des	vortex	en	paires	de	circula9ons	opposées

Au	point	de	transi2on,	saut	«	universel	»	de	la	densité	superfluide

D = ⇢�2
T

�2
T =

2⇡ ~2
mkBT
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Bilan	(fin)	:	le	quasi-ordre	à	longue	portée

Ds > 4 Ds = 0

G1(r) / e�r/`

Température	0 Tc
état	superfluide état	normal

ne	dépend	que	de															dans	un	système	uniformer � r0
G1(r, r

0) = hr|⇢̂|r0i = h ̂†(r)  ̂(r0)i

Le	quasi-ordre	(algébrique)	aXendu	à	basse	température	est	compa9ble	avec		
le	théorème	de	Mermin-Wagner-Hohenberg	puisqu’on	a	toujours

G1(r) ! 0 quand r ! 1

Quelle	est	la	densité	totale	en	ce	point	?

La	caractérisa9on	du	point	de	transi9on	par																		est	implicite	:Ds = 4

⇢s(Tc) �
2
Tc

= 4

G1(r) / 1/r⌘⌘ =
1

Ds
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Buts	de	ce	cours

Caractériser	la	posi9on	du	point	cri9que	en	fonc9on	des	variables		
thermodynamiques	usuelles	:

Résultat	qui	va	dépendre	de	la	force	des	interac2ons

Contraste	avec	le	résultat	3D	pour	la	condensa9on	de	Bose-Einstein:	

⇢�3
T = 2.612

Décrire	les	études	expérimentales	faites	jusqu’à	maintenant	avec		
des	gaz	d’atomes,	de	molécules,	ou	des	systèmes	hybrides		
lumière-ma9ère	(polaritons	de	cavité)

	température	T,	poten9el	chimique	µ,	densité	ρ
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1.	

Lois	d’échelle	au	point	cri9que	BKT

Déterminer	la	valeur	de	la	densité	totale	et	du	poten9el	chimique		
au	point	cri9que,	pour	un	paramètre	d’interac9on						donné	g̃
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Champ	classique	et	modes	de	Bogoliubov

�(r1, . . . , rN )  (r1) . . . (rN )On	modélise	l’état	du	système,																													,	par	l’état	factorisé	

Energie	(fonc9onnelle	de	Gross-Pitaevskii)	:

Descrip9on	de	ce	système	à	l’approxima9on	de	Bogoliubov,	avec	l’hypothèse	de	
fluctua9ons	de	densité	rela9vement	faibles,	ce	qui	exclut	les	vortex

• Etat	fondamental	correspondant	à		    uniforme		  =

r
N

L2 E0 =
~2

2mL2
g̃N2

• Modes	propres	indépendants	caractérisés	par	leur	vecteur	d’onde	q	et	
leur	fréquence	ωq

!q =
~
2m

⇥
q2

�
q2 + 4g̃⇢

�⇤1/2
⇢ =

N

L2

E[ ] =
~2
2m

Z ⇥
|r |2 + g̃ | (r)|4

⇤
d2r

N =

Z
| (r)|2 d2r �1 �0.5 0 0.5 1 �1

0

1

0

0.5

1

1.5 | |

x

y
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Coupure	ultra-violeXe

0 1 2 3 4
0

2

4

6

8

q (unité :
p
g̃⇢0)

!
q

(u
ni

té
:h̄

g̃⇢
0
/m

)

!q =
~
2m

⇥
q2

�
q2 + 4g̃⇢

�⇤1/2

q
0

0

Cours	3	:	l’approche	champ	classique		
n’est	valable	que	si	les	modes	sont		
significa9vement	peuplés	par	les		
fluctua9ons	thermiques	:

n! & 1 ~! . kBT

kBT

qmax

~2q2max

2m
⇠ kBT

~!q

Les	modes																						seront	supposés	non	peuplés	:	
																								coupure	«	ultra-violeXe	»	sur	toutes	les	intégrales

q > qmax
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Thermodynamique	du	gaz	de	Bose	à	l’approx.	de	Bogoliubov

Fonc9on	de	par99on Z =
X

config

e�Econfig/kBT

Energie	libre	: F = �kBT lnZ

Fonc9ons	thermodynamiques,	par	exemple	: µ =

✓
@F

@N

◆

T,L2

Bogoliubov	:	on	décrit	le	gaz	comme	une	collec9on	d’oscillateurs	indépendants	

~! . kBTDans	les	deux	cas,	pour	les	modes	de	basse	énergie																							: Z ⇡ kBT

~!

Z =
1

2⇡~

Z
e�✏(x,p)/kBT dx dp

✏(x, p) =
p2

2m
+

1

2
m!2x2avec

Fonc9on	de	par99on	d’un	oscillateur	(quan9que	ou	classique)	de	pulsa9on	ω

Z =
1X

n=0

e�✏n/kBT

✏n = (n+
1

2
)~!avec
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Thermodynamique	à	l’approxima9on	de	Bogoliubov	(2)

Energie	libre	:	on	somme	la	contribu9on	des	tous	les	modes	indépendants

F (T,N,L) = E0 � kBT
X

q

ln

✓
kBT

~!q

◆

Pour	un	oscillateur	:	 Z =
kBT

~!
F = �kBT lnZ = �kBT ln

✓
kBT

~!

◆

!q =
~
2m

⇥
q2

�
q2 + 4g̃⇢

�⇤1/2

Passage	d’une	somme	discrète	à	une	intégrale	:
X

q

[...] ! L2

4⇡2

Z
[...] d2q

A	par9r	de	ceXe	expression	de	l’énergie	libre,	on	peut	calculer	les	autres	fonc9ons	
thermodynamiques,	par	exemple	:	

µ

kBT
⇡ g̃

2⇡


D +

Z qmax

0

2q

q2 + 4g̃⇢
dq

�

ou	encore	:
µ

kBT
⇡ g̃

2⇡


D + ln

✓
⇡

g̃D

◆�
validité	:	 D > ln

✓
⇡

g̃D

◆
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Densité	totale	et	densité	superfluide

On	calcule	la	densité	superfluide	en	u9lisant	la	formule	de	Landau	(cours	2015-16)	
qui	décrit	la	réponse	du	fluide	quand	on	met	en	mouvement	son	récipient	:

⇢s = ⇢+
1

(2⇡)2
~2
2m

Z
dN
d✏

q2 d2q

N (✏) : occupa9on	d’un	mode	d’énergie	ε (ici	les	modes	de	Bogoliubov)

(version	2D)

On	arrive	à	: Ds ⇡ D � ln

✓
kBT

2µ

◆

avec	au	point	cri9que																			(résultat	lié	aux	vortex,	en	dehors	de	Bogoliubov)	Ds = 4

µ

kBT
⇡ g̃

2⇡


D + ln

✓
⇡

g̃D

◆�
Le	résultat	au	point	cri9que																																										,	couplé	à	l’équa9on	d’état	D ⇡ 4 + ln

✓
kBT

2µ

◆

permet	de	caractériser	ce	point	cri9que,	en	par9culier	ses	lois	d’échelle	
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Lois	d’échelle	au	point	cri9que

Combinaison	de	l’équa9on	d’état	et	de	 Ds = 4

D|crit. ⇡ ln

✓
CD
g̃

◆
Densité	dans	l’espace	des	phases	totale	au	point	cri9que	:

CD : constante	numérique

Poten9el	chimique	au	point	cri9que	:
µ

kBT

����
crit.

⇡ g̃

⇡
ln

✓
Cµ
g̃

◆

Cµ : constante	numérique

Pour	déterminer	le	plus	précisément	possible	les	constantes										et								,	il	faut		
affiner	le	traitement	des	modes	peu	peuplés	et	aller	au	delà	de	l’approx	de	Bogoliubov

CµCD

Prokofev	&	Svistunov	(méthode	Monte	Carlo	avec	un	champ	classique)	:
CD ⇡ 380 Cµ ⇡ 13.2
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Validité	de	ce	résultat	obtenu		
par	l’approche	«	champ	classique	»

Au	point	cri9que	: D ⇡ ln

✓
380

g̃

◆
Ds = 4

densité	totale densité	superfluide

Une	condi9on	nécessaire	pour	la	validité	de	ce	traitement	est	bien	sûr	:		

D > Ds g̃ < 7

En	pra9que	pour	des	gaz	atomiques	:	 g̃ ⇠ 0.01 à 1

pour	les	polaritons	de	cavité	: g̃ ⇠ 0.01 à 0.05

Pour	aller	au	delà,	approches	Monte	Carlo	quan9ques	:		
											Holzmann	&	Krauth,	Rançon	&	Dupuis,	Pila9,	Giorgini	&	Prokofev
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2.	

Le	point	cri9que	dans	un	gaz	atomique	piégé

V (r) =
1

2
m!2r2 r2 = x2 + y2
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L’approxima9on	de	densité	locale

Gaz	à	l’équilibre	dans	un	piège,	de	température	T	et	de	poten9el	chimique	µ

V (r)

r

µ

0

µ� V (r) = µhom

On	relie	la	densité	en	un	point	du	piège	et	celle	d’un	gaz	homogène	caractérisé	par

Thom. = T µhom. = µ� V (r)

Validité	:	libre	parcours	moyen,	longueur	de	cicatrisa9on		<<			extension	du	gaz



Condensa9on	dans	un	piège	harmonique	2D

Cours	2	:	pour	un	gaz	parfait	dans	un	piège	harmonique,	la	satura9on	des	
																états	excités	se	produit	pour	

Nc,ideal =
⇡2

6

✓
kBT

~!

◆2

N > Nc,ideal

A	la	limite	thermodynamique N ! 1 ! ! 0 N!2 = constant

ce	point	est	aXeint	pour	la	densité	centrale ⇢(0) = 1

Impossible	à	réaliser	pour	un	gaz	en	interac2on	
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Le	point	cri9que	BKT	dans	un	piège

Quel	nombre	d’atomes	faut-il	meXre	dans	un	piège	pour	que	le	gaz	au	centre		
de	ce	piège	devienne	superfluide	?

⇢(0)�2
T = Dc = ln

✓
380

g̃

◆
Approxima9on	de	densité	locale	:

Quan2té	finie,	contrairement	au	seuil	de	la	condensa2on	de	Bose-Einstein

En	u9lisant	l’équa9on	d’état	trouvée	plus	haut,	on	trouve	(Holzmann	et	al.)	:

Nc,BKT

Nc,ideal
⇡ 1 +

3 g̃

⇡3
ln2

✓
g̃

16

◆
+

3 g̃

8⇡2


15 + ln

✓
g̃

16

◆�

Quand	le	paramètre	des	interac9ons														,	on	trouveg̃ ! 0
Nc,BKT

Nc,ideal
! 1

La	condensa2on	d’un	gaz	parfait	2D	dans	un	piège	harmonique	peut		
être	vu	comme	le	cas	limite	de	la	transi2on	plus	générale	de	type	BKT.
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Expérience	de	Cambridge	(groupe	de	Z.	Hadzibabic)

Détec9on	de	la	composante	superfluide	centrale	via	la	distribu9on	en	impulsion

pic	étroit	dans		
la	distribu9on		
en	impulsion

Expérience	faite	avec	39K	:	
une	résonance	de	Feschbach	
permet	de	varier	la	longueur	
de	diffusion	3D,	et	donc	 g̃

measurements of the equation of state [22,27], which do not
directly reveal any striking signatures of the infinite-order
BKT transition.
In this Letter, we systematically study the critical point

for the emergence of extended coherence in a harmonically
trapped 2D Bose gas over a wide range of interaction
strengths, 0.05 < ~g < 0.5. We show, without any free
parameters, that Nc generally agrees very well with the
beyond-mean-field calculation ofNBKT

c [38], and converges
onto N0

c of Eq. (1) as ~g → 0. The critical chemical potential
μc, which directly reveals uniform-system conditions for a
phase transition to occur in the trap center, also agrees with
the BKT theory and converges onto the BEC value, μc ¼ 0,
for ~g → 0. Our measurements also reiterate the importance
of the suppression of density fluctuations in the normal
state near the BKT critical point, previously observed in
Refs. [18,19,21–23].
The experiment was carried out using a 39K gas, in the

apparatus described in Ref. [41]. For 2D trapping, the
tight axial (vertical) confinement is provided by two
repulsive “blades” of blue-detuned light, formed by passing
a 532-nm Gaussian beam through a 0-π phase plate [20,42],
while a red-detuned 1064-nm dipole trap provides the
in-plane (horizontal) confinement. The radial and axial
trapping frequencies are ðωr;ωzÞ ≈ 2π × ð38; 4100Þ Hz.
For all of our measurements T ∈ ½140 nK; 190 nK% and
μ=kB < 100 nK, resulting in a small (< 30%) occupation
of the excited axial states. The interaction strength
~g ¼

ffiffiffiffiffiffi
8π

p
a=lz [14], where a is the s-wave scattering length

and lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωzÞ

p
, is controlled via a Feshbach reso-

nance centered at 402.5 G [41,43].
To characterize long-range coherence of a gas we study

its (in-plane) momentum distribution nðkÞ [19]. A change in
the functional form of g1ðrÞ leads to a dramatic change in its
values at distances much larger than the thermal wavelength
λ ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT

p
[14], and an increase of coherence over

some large distance L manifests itself in enhanced pop-
ulation of the low-momentum states k≲ 2π=L. Thus, unlike
the in-trap density distribution, which varies very smoothly
through the BKT critical point [18,19,22,23], nðkÞ can
provide a dramatic signature of the phase transition [19].
As illustrated in Fig. 1, to identify the critical point for a

given ~g, we start with a highly coherent 2D gas and measure
nðkÞ after holding the cloud in the trap for a variable time t.
During the hold time, the atom number N slowly decays
through various inelastic processes [44], while the elastic-
collision rate (≈ 0.2N ~g2 s−1) remains sufficiently high to
ensure that the gas is in quasistatic equilibrium. To measure
nðkÞ, we employ the “momentum focusing” technique
[19,29,45,46]. We turn off just the tight z confinement,
so the rapid vertical expansion (predominantly driven by
the zero-point motion along z) removes all the interaction
energy on a time scale 1=ωz ≪ 1=ωr. The subsequent
horizontal ideal-gas evolution in the remaining in-plane
harmonic potential reveals nðkÞ as the spatial distribution

after a quarter of the trap period. We probe this distribution
by absorption imaging along z [see Fig. 1(a)].
Our k-space imaging resolution, Δk ≈ 0.4 μm−1, sets

the largest distance over which we can probe coherence
to L ¼ 2π=Δk ≈ 15 μm, which is much larger than
λ ≈ 0.7 μm. To probe coherence on this length scale, we
simply monitor the peak value of the momentum distribu-
tion, P0, without making any theoretical assumptions about
the exact shape of nðkÞ at low k. To get the corresponding
atom number N we do a simple summation over the image.
Importantly, we eliminate the systematic error due to the
uncertainty in the absorption-imaging cross section by
independently calibrating our imaging system through
measurements of the BEC critical point in a 3D gas [47].
In Fig. 1(b) we show a typical evolution of P0 and N

(here ~g ¼ 0.28). While N decays smoothly, P0 shows two
distinct regimes, which allows us to identify the critical
hold time tc and the corresponding Nc. We note that even
for N significantly below Nc the peak of nðkÞ rises above a
Gaussian fitted to the wings of the distribution, indicating
some coherence on a length scale > λ [18,21]. The smooth
evolution of such non-Gaussian “peakiness” of nðkÞ does
not reveal a phase transition [21], and only P0 corres-
ponding to L ≫ λ shows a clear change in behavior at a
well-defined Nc [51]. Our large L is still small compared
to the thermal diameter of the cloud, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ðmω2

rÞ
p

≈
50 μm, so the observed Nc is closely linked to the

0

1

0 10 20 30
0

4

(b)
tc

P
0

(a
.u

.)

(a)

16 s11 s6 s

NcN
(1

04 )

Hold time (s)

FIG. 1 (color online). Determination of the critical point for the
onset of coherence, for ~g ¼ 0.28 and T ≈ 140 nK. (a) Evolution
of the momentum distribution nðkÞ with the hold time t (see text).
Extended coherence is revealed as a sharp peak in nðkÞ. Each
image is an average of three experimental realizations. (b) Evo-
lution of the momentum-distribution peak P0 and the smoothly
decaying total atom number N. We associate the thresholdlike
behavior of P0 with the critical time tc and deduce the
corresponding Nc. The solid line is a heuristic piecewise fit
function used to determine tc [47].

PRL 114, 255302 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
26 JUNE 2015

255302-2

Fletcher et al. 
Phys. Rev. Lett. 114, 255302 (2015) G1(r) /

1

r⌘
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Expérience	de	Cambridge	(suite)

occurrence of a phase transition in the center of the
trap [47].
For comparisons with theory, we also fit μ and T to each

nðkÞ image. Unlike in three dimensions, in two dimensions
interactions affect nðkÞ appreciably even in the normal
state, and near the critical point it is in general insufficient
to treat them at a mean-field (MF) level. However, beyond-
MF correlations primarily affect the highly populated low-k
states [38]. We restrict our fits to the high-k wings of
the distribution (ℏ2k2 > 2~gmkBT), where we expect the
beyond-MF effects to be small, and still carefully include
the effects of interactions at a MF level [47]. Following
Ref. [37], we also account for the residual thermal
occupation of the axial excited states and the interaction-
induced deformation of the axial eigenstates.
In Fig. 2 we summarize our measurements of the critical

atom number for a wide range of interaction strengths. To
compare our data with the strictly 2D theoretical calcula-
tions, we correct the observed “raw” Nc by subtracting the
calculated population of the excited axial states [47]. We
scale this corrected critical number N̄c to the BEC critical
atom number N0

c of Eq. (1) and plot it versus ~g. Our Δk-
limited value of L imposes a lower bound on ~g for which we
can reliably identify the critical point. In the absence of
any phase transition, in a weakly interacting degenerate gas
g1ðrÞ ∼ expð−r=l0Þ, with l0 ¼ λ expðD=2Þ=

ffiffiffiffiffiffi
4π

p
[14].

We thus do not expect our measurements to reliably identify
Nc if l0 > L for some D < DBKT. This occurs for
~g < 380λ2=ð4πL2Þ ≈ 0.06, indicated by the shaded area
in Fig. 2. Our measurements also stop being reliable for
~g≳ 0.5; in that regime our MF temperature fits are
restricted to very high k values, which are affected by the

anharmonicity of the optical trap. The error bars in Fig. 2 are
statistical, while the systematic uncertainty in N̄c=N0

c is
≲0.2 [47].
Without any free parameters, we find generally excellent

agreement with the prediction of Ref. [38]:

NBKT
c

N0
c

≈ 1þ 3~g
π3

ln2
"

~g
16

#
þ 6~g
16π2

$
15þ ln

"
~g
16

#%
; ð2Þ

which is based on fixing the phase-space density in the trap
center to DBKT and integrating a uniform-system equation
of state over the trap, using the classical-field results
of Ref. [39].
The agreement with Eq. (2) over a very broad range of

interaction strengths and the proximity of our lowest
reliable ~g values to zero allow us to conclude that the
critical atom number, without any free parameters, indeed
smoothly converges onto the BEC result of Eq. (1).
It is instructive to also compare our data with the

approximation NBKT
c =N0

c ¼ 1þ3~gD2
BKT=π

3 [10,12], shown
by the dashed line in Fig. 2. Here, the critical phase-space
density is again set toDBKT, but the suppression of bosonic
fluctuations in the normal state is neglected; i.e., the density
profile is calculated using MF theory with an interaction
potential 2gnðrÞ, where g ¼ ðℏ2=mÞ~g. Our data strongly
exclude this result, confirming the importance of the
suppression of density fluctuations near the critical point
even for our lowest ~g values.
For a more direct comparison with the uniform-system

theory, we also consider the critical chemical potential for
the onset of coherence. Like Nc in Fig. 1, μc is exper-
imentally defined via the critical hold time tc. The classical-
field simulations [7] predict DBKT to be reached for
μBKTc ¼ kBTð~g=πÞ ln ð13.2=~gÞ, which reduces to the BEC
prediction, μc ¼ 0, for ~g ¼ 0.

In Fig. 3 we plot ~μc ¼ μc=ðkBTÞ versus ~g, and again
observe generally good agreement with the classical-field
prediction (solid line), all the way down to ~g ≈ 0.06, i.e.,
very close to the expected BEC limit. The small systematic
difference between the data and the theory is comparable
to our systematic uncertainty in ~μc of ∼0.05 [47].
We also compare our data with two intuitive approx-

imations to ~μc. We consider interaction potentials γgn with
γ ¼ 2, corresponding to a fully fluctuating Bose gas, and
γ ¼ 1, corresponding to a complete suppression of density
fluctuations. In both of these extremes one can analyti-
cally write Dγð ~μÞ ¼ − ln ½1 − exp ð~μ − γgn=ðkBTÞÞ& [14].
Defining ~μγc so that Dγð ~μ

γ
cÞ ¼ DBKT we obtain the dashed
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Finally, we note that in previous experiments [22,27], on
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FIG. 2 (color online). Critical atom number as a function of the
interaction strength ~g. All numbers are scaled to the ideal-gas
BEC critical number N0

c, defined in Eq. (1). The solid line is the
classical-field BKT prediction of Eq. (2), without any free
parameters. The dashed line is an approximation that neglects
suppression of density fluctuations in the normal state. The star
ð⋆Þ denotes the critical point for BEC, which only occurs in the
ideal-gas limit. The shaded region, ~g < 0.06, indicates the regime
in which our measurements stop being reliable (see text). The
error bars are statistical.
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3.	

Quasi-ordre	en	phase	et	superfluidité	
dans	un	gaz	atomique
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La	fonc9on	G1( r , r’)	dans	un	piège

Pour	un	gaz	2D	uniforme	dans	le	régime	superfluide,	on	sait	que

G1(r, r
0) = h ̂†(r)  ̂(r0)i

Dans	un	piège,	la	varia9on	spa9ale	de	la	densité	totale	et	de	la	densité	superfluide	
vient	compliquer	l’analyse

Petrov, Holzmann, Shlyapnikov (2000)

On	doit	se	contenter	la	plupart	du	temps	d’une	analyse	semi-quan9ta9ve…
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach
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momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
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measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
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~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
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A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach
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length a2D and crossover parameter lnðkFa2DÞ [25]. For
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and fermionic limit of the crossover, respectively.
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field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
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hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
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encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of
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A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are
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expands freely in the axial direction while being focused by
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lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
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sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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Ḡ1(r) �2

regions of the sample where the density is not uniform.
As pointed out in Refs. [36,37], such extended spatial
coherence in an interacting system is a sufficient condition
for superfluidity in two-dimensional systems.
As the temperature is lowered below a critical value, we

find that the correlation function in an intermediate range
3λT < r < 20λT is well described by a power-law decay,
whereas exponential behavior is clearly disfavored. We
quantify this by extracting the χ2 for both fit functions at
different temperatures and observe a clear transition from
exponential to algebraic decay [see Fig. 1(b)]. This quali-
tative change in g1ðrÞ provides an alternative way to
determine the phase transition temperature Tc from the
kink in χ2ðTÞ [31]. We find that the corresponding Tc
obtained in this manner agrees with the temperature
associated with the onset of pair condensation that was
measured in our previous work [24].
The power-law decay of g1ðrÞ means that the spatial

coherence of the entire sample is characterized by a single
exponent η. Figure 2 shows the experimentally determined
η for all the interaction strengths accessed in this work.
We find ηðTÞ to increase with temperature until it reaches
a maximal value at Tc, indicating a slower falloff of
correlations at lower temperatures. Although such temper-
ature dependence is qualitatively consistent with the BKT
theory, we observe the values of the exponents to be in the
range 0.6–1.4 for the temperatures accessed in the meas-
urement, which is substantially above the expectation of
η ≤ 0.25 for the homogeneous setup.
To confirm the large scaling exponents in the trapped

system, we compute the one-body density matrix on the
bosonic side by using the QMC technique described above.
This allows us to determine both the trap-averaged corre-
lation function g1ðrÞ as well as the central correlation
function G1ðr; 0Þ. The trap-averaged g1ðrÞ shows the
same behavior as in the experimental case, i.e., a transition

from exponential to algebraic decay at low temperatures.
The corresponding QMC transition temperatures also agree
with the measured values of Tc for ~g ¼ 0.60, 1.07, and
2.76. Furthermore, the maximal scaling exponent at Tc
extracted from the QMC g1ðrÞ for ~g ¼ 0.6 is approximately
1.35, which is close to the experimentally determined
ηðTcÞ≃ 1.4. The central correlation function G1ðr; 0Þ
shows a transition to algebraic order as well—with the
same Tc as in the experiment—but with a maximal
exponent of approximately 0.25, as expected for a homo-
geneous system. This finding is also in agreement with the
measurement of G1ðr; 0Þ in the interference experiments
[14] and is explained by the nearly uniform density in the
center of the trap.
Figure 2(a) shows the comparison between the exper-

imental and QMC values of ηðTÞ for ~g ¼ 0.60
[lnðkFa2DÞ≃ −7.3]. Although both show similar depend-
ence on temperature, we find a considerable quantitative
deviation between them. As discussed in Supplemental
Material [31], this discrepancy can mostly be attributed to
the effect of the finite imaging resolution in the measure-
ment of ~nðkÞ, which leads to an apparent broadening at low
momenta and thus overestimates the value of η. We show an
estimate of this temperature-dependent effect on the expo-
nents (open red triangles) in Fig. 2(a). There may be other
effects in the experiment that contribute additionally to
the deviation, such as higher-order corrections to the
determination of ~g from the fermionic scattering parameters
and density-dependent inelastic loss processes.
The experimental and simulated data raise the question

why correlations in the trapped system decay with a larger
scaling exponent than in the homogeneous case. To elucidate
the role of inhomogeneity, we consider the bosonic field
operator given by ϕ̂ðrÞ≃ ffiffiffiffiffiffiffiffiffi

ρðrÞ
p

exp½iφ̂ðrÞ%. In this repre-
sentation, it is clear that one contribution to the decay of
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maximal exponent ηc is reached. (c) The value of ηc is approximately constant for all lnðkFa2DÞ where we have previously observed
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].

PRL 115, 010401 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JULY 2015

010401-2

approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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regions of the sample where the density is not uniform.
As pointed out in Refs. [36,37], such extended spatial
coherence in an interacting system is a sufficient condition
for superfluidity in two-dimensional systems.
As the temperature is lowered below a critical value, we

find that the correlation function in an intermediate range
3λT < r < 20λT is well described by a power-law decay,
whereas exponential behavior is clearly disfavored. We
quantify this by extracting the χ2 for both fit functions at
different temperatures and observe a clear transition from
exponential to algebraic decay [see Fig. 1(b)]. This quali-
tative change in g1ðrÞ provides an alternative way to
determine the phase transition temperature Tc from the
kink in χ2ðTÞ [31]. We find that the corresponding Tc
obtained in this manner agrees with the temperature
associated with the onset of pair condensation that was
measured in our previous work [24].
The power-law decay of g1ðrÞ means that the spatial

coherence of the entire sample is characterized by a single
exponent η. Figure 2 shows the experimentally determined
η for all the interaction strengths accessed in this work.
We find ηðTÞ to increase with temperature until it reaches
a maximal value at Tc, indicating a slower falloff of
correlations at lower temperatures. Although such temper-
ature dependence is qualitatively consistent with the BKT
theory, we observe the values of the exponents to be in the
range 0.6–1.4 for the temperatures accessed in the meas-
urement, which is substantially above the expectation of
η ≤ 0.25 for the homogeneous setup.
To confirm the large scaling exponents in the trapped

system, we compute the one-body density matrix on the
bosonic side by using the QMC technique described above.
This allows us to determine both the trap-averaged corre-
lation function g1ðrÞ as well as the central correlation
function G1ðr; 0Þ. The trap-averaged g1ðrÞ shows the
same behavior as in the experimental case, i.e., a transition

from exponential to algebraic decay at low temperatures.
The corresponding QMC transition temperatures also agree
with the measured values of Tc for ~g ¼ 0.60, 1.07, and
2.76. Furthermore, the maximal scaling exponent at Tc
extracted from the QMC g1ðrÞ for ~g ¼ 0.6 is approximately
1.35, which is close to the experimentally determined
ηðTcÞ≃ 1.4. The central correlation function G1ðr; 0Þ
shows a transition to algebraic order as well—with the
same Tc as in the experiment—but with a maximal
exponent of approximately 0.25, as expected for a homo-
geneous system. This finding is also in agreement with the
measurement of G1ðr; 0Þ in the interference experiments
[14] and is explained by the nearly uniform density in the
center of the trap.
Figure 2(a) shows the comparison between the exper-

imental and QMC values of ηðTÞ for ~g ¼ 0.60
[lnðkFa2DÞ≃ −7.3]. Although both show similar depend-
ence on temperature, we find a considerable quantitative
deviation between them. As discussed in Supplemental
Material [31], this discrepancy can mostly be attributed to
the effect of the finite imaging resolution in the measure-
ment of ~nðkÞ, which leads to an apparent broadening at low
momenta and thus overestimates the value of η. We show an
estimate of this temperature-dependent effect on the expo-
nents (open red triangles) in Fig. 2(a). There may be other
effects in the experiment that contribute additionally to
the deviation, such as higher-order corrections to the
determination of ~g from the fermionic scattering parameters
and density-dependent inelastic loss processes.
The experimental and simulated data raise the question

why correlations in the trapped system decay with a larger
scaling exponent than in the homogeneous case. To elucidate
the role of inhomogeneity, we consider the bosonic field
operator given by ϕ̂ðrÞ≃ ffiffiffiffiffiffiffiffiffi

ρðrÞ
p

exp½iφ̂ðrÞ%. In this repre-
sentation, it is clear that one contribution to the decay of
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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Ḡ1(r) �2

regions of the sample where the density is not uniform.
As pointed out in Refs. [36,37], such extended spatial
coherence in an interacting system is a sufficient condition
for superfluidity in two-dimensional systems.
As the temperature is lowered below a critical value, we

find that the correlation function in an intermediate range
3λT < r < 20λT is well described by a power-law decay,
whereas exponential behavior is clearly disfavored. We
quantify this by extracting the χ2 for both fit functions at
different temperatures and observe a clear transition from
exponential to algebraic decay [see Fig. 1(b)]. This quali-
tative change in g1ðrÞ provides an alternative way to
determine the phase transition temperature Tc from the
kink in χ2ðTÞ [31]. We find that the corresponding Tc
obtained in this manner agrees with the temperature
associated with the onset of pair condensation that was
measured in our previous work [24].
The power-law decay of g1ðrÞ means that the spatial

coherence of the entire sample is characterized by a single
exponent η. Figure 2 shows the experimentally determined
η for all the interaction strengths accessed in this work.
We find ηðTÞ to increase with temperature until it reaches
a maximal value at Tc, indicating a slower falloff of
correlations at lower temperatures. Although such temper-
ature dependence is qualitatively consistent with the BKT
theory, we observe the values of the exponents to be in the
range 0.6–1.4 for the temperatures accessed in the meas-
urement, which is substantially above the expectation of
η ≤ 0.25 for the homogeneous setup.
To confirm the large scaling exponents in the trapped

system, we compute the one-body density matrix on the
bosonic side by using the QMC technique described above.
This allows us to determine both the trap-averaged corre-
lation function g1ðrÞ as well as the central correlation
function G1ðr; 0Þ. The trap-averaged g1ðrÞ shows the
same behavior as in the experimental case, i.e., a transition

from exponential to algebraic decay at low temperatures.
The corresponding QMC transition temperatures also agree
with the measured values of Tc for ~g ¼ 0.60, 1.07, and
2.76. Furthermore, the maximal scaling exponent at Tc
extracted from the QMC g1ðrÞ for ~g ¼ 0.6 is approximately
1.35, which is close to the experimentally determined
ηðTcÞ≃ 1.4. The central correlation function G1ðr; 0Þ
shows a transition to algebraic order as well—with the
same Tc as in the experiment—but with a maximal
exponent of approximately 0.25, as expected for a homo-
geneous system. This finding is also in agreement with the
measurement of G1ðr; 0Þ in the interference experiments
[14] and is explained by the nearly uniform density in the
center of the trap.
Figure 2(a) shows the comparison between the exper-

imental and QMC values of ηðTÞ for ~g ¼ 0.60
[lnðkFa2DÞ≃ −7.3]. Although both show similar depend-
ence on temperature, we find a considerable quantitative
deviation between them. As discussed in Supplemental
Material [31], this discrepancy can mostly be attributed to
the effect of the finite imaging resolution in the measure-
ment of ~nðkÞ, which leads to an apparent broadening at low
momenta and thus overestimates the value of η. We show an
estimate of this temperature-dependent effect on the expo-
nents (open red triangles) in Fig. 2(a). There may be other
effects in the experiment that contribute additionally to
the deviation, such as higher-order corrections to the
determination of ~g from the fermionic scattering parameters
and density-dependent inelastic loss processes.
The experimental and simulated data raise the question

why correlations in the trapped system decay with a larger
scaling exponent than in the homogeneous case. To elucidate
the role of inhomogeneity, we consider the bosonic field
operator given by ϕ̂ðrÞ≃ ffiffiffiffiffiffiffiffiffi

ρðrÞ
p

exp½iφ̂ðrÞ%. In this repre-
sentation, it is clear that one contribution to the decay of
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an exponent which increases with temperature in agreement with the BKT theory. The power-law decay eventually ceases at Tc, where a
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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Ḡ1(r) �2

regions of the sample where the density is not uniform.
As pointed out in Refs. [36,37], such extended spatial
coherence in an interacting system is a sufficient condition
for superfluidity in two-dimensional systems.
As the temperature is lowered below a critical value, we

find that the correlation function in an intermediate range
3λT < r < 20λT is well described by a power-law decay,
whereas exponential behavior is clearly disfavored. We
quantify this by extracting the χ2 for both fit functions at
different temperatures and observe a clear transition from
exponential to algebraic decay [see Fig. 1(b)]. This quali-
tative change in g1ðrÞ provides an alternative way to
determine the phase transition temperature Tc from the
kink in χ2ðTÞ [31]. We find that the corresponding Tc
obtained in this manner agrees with the temperature
associated with the onset of pair condensation that was
measured in our previous work [24].
The power-law decay of g1ðrÞ means that the spatial

coherence of the entire sample is characterized by a single
exponent η. Figure 2 shows the experimentally determined
η for all the interaction strengths accessed in this work.
We find ηðTÞ to increase with temperature until it reaches
a maximal value at Tc, indicating a slower falloff of
correlations at lower temperatures. Although such temper-
ature dependence is qualitatively consistent with the BKT
theory, we observe the values of the exponents to be in the
range 0.6–1.4 for the temperatures accessed in the meas-
urement, which is substantially above the expectation of
η ≤ 0.25 for the homogeneous setup.
To confirm the large scaling exponents in the trapped

system, we compute the one-body density matrix on the
bosonic side by using the QMC technique described above.
This allows us to determine both the trap-averaged corre-
lation function g1ðrÞ as well as the central correlation
function G1ðr; 0Þ. The trap-averaged g1ðrÞ shows the
same behavior as in the experimental case, i.e., a transition

from exponential to algebraic decay at low temperatures.
The corresponding QMC transition temperatures also agree
with the measured values of Tc for ~g ¼ 0.60, 1.07, and
2.76. Furthermore, the maximal scaling exponent at Tc
extracted from the QMC g1ðrÞ for ~g ¼ 0.6 is approximately
1.35, which is close to the experimentally determined
ηðTcÞ≃ 1.4. The central correlation function G1ðr; 0Þ
shows a transition to algebraic order as well—with the
same Tc as in the experiment—but with a maximal
exponent of approximately 0.25, as expected for a homo-
geneous system. This finding is also in agreement with the
measurement of G1ðr; 0Þ in the interference experiments
[14] and is explained by the nearly uniform density in the
center of the trap.
Figure 2(a) shows the comparison between the exper-

imental and QMC values of ηðTÞ for ~g ¼ 0.60
[lnðkFa2DÞ≃ −7.3]. Although both show similar depend-
ence on temperature, we find a considerable quantitative
deviation between them. As discussed in Supplemental
Material [31], this discrepancy can mostly be attributed to
the effect of the finite imaging resolution in the measure-
ment of ~nðkÞ, which leads to an apparent broadening at low
momenta and thus overestimates the value of η. We show an
estimate of this temperature-dependent effect on the expo-
nents (open red triangles) in Fig. 2(a). There may be other
effects in the experiment that contribute additionally to
the deviation, such as higher-order corrections to the
determination of ~g from the fermionic scattering parameters
and density-dependent inelastic loss processes.
The experimental and simulated data raise the question

why correlations in the trapped system decay with a larger
scaling exponent than in the homogeneous case. To elucidate
the role of inhomogeneity, we consider the bosonic field
operator given by ϕ̂ðrÞ≃ ffiffiffiffiffiffiffiffiffi

ρðrÞ
p

exp½iφ̂ðrÞ%. In this repre-
sentation, it is clear that one contribution to the decay of
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value at the critical temperature. For ~g ¼ 0.60 [lnðkFa2DÞ≃ −7.3], we show the prediction from QMC calculations for a Bose gas (filled
red triangles) and an estimate of the effect of the finite imaging resolution present in the measured data (open red triangles) [31]. We find
an exponent which increases with temperature in agreement with the BKT theory. The power-law decay eventually ceases at Tc, where a
maximal exponent ηc is reached. (c) The value of ηc is approximately constant for all lnðkFa2DÞ where we have previously observed
condensation of pairs [24]. This strongly suggests that the associated phase transitions are within one universality class.
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Transformée	de	Fourier	de	la	distribu9on	en	impulsion

Qualité	de	l’ajustement:	
• par	une	loi	de	puissance	
• par	une	exponen9elle

approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].

PRL 115, 010401 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JULY 2015

010401-2

approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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approximately 300:1. Our experimental system and method-
ology have been described in detail in Ref. [24]. We perform
in situ imaging of the sample as a function of temperature and
interaction strength. From the central density, we define the
Fermi momentum kF and Fermi temperature TF, which
constitute the relevant scales in the system. As shown in
Ref. [24], for our experimental parameters, all the relevant
energy scales are smaller than the axial confinement energy
ℏωz. Hence, the system is in the quasi-2D regime.
We tune the interparticle interactions by using a Feshbach

resonance located at 832 G. Using the 3D scattering length
a3D [26], the axial oscillator length lz [27], and the Fermi
momentum, we construct the effective 2D scattering
length a2D and crossover parameter lnðkFa2DÞ [25]. For
lnðkFa2DÞ ≪ −1 and lnðkFa2DÞ ≫ 1, we are in the bosonic
and fermionic limit of the crossover, respectively.
In addition to the measurements, we perform path-integral

quantum Monte Carlo (QMC) computations of a Bose gas
[28,29] in a highly anisotropic 3D trap with parameters
similar to those employed in the experiment. In the simu-
lations, the bosons interact via the molecular scattering
length amol ¼ 0.6a3D [30]. The relevant parameters that
describe the system in terms of pointlike bosons are the
effective bosonic coupling strength ~g ¼

ffiffiffiffiffiffi
8π

p
amol=lz and the

condensation temperature of an ideal 2D Bose gas
T0
BEC ¼

ffiffiffiffiffiffiffi
6N

p
ðℏωr=πkBÞ ≈ 140 nK, where N is the number

of particles. We use these bosonic parameters to compare our
measurements to QMC calculations at the lowest magnetic
field values, where we have ~g ¼ 0.6; 1.07; 2.76; 7.75 [31].
From the QMC computations, we obtain the local density
profile and the one-body density matrix ρ1ðx;x0Þ ¼
hϕ̂†ðxÞϕ̂ðx0Þi for different interaction strengths and temper-
atures, where ϕ̂ðxÞ is the bosonic field operator.
The global off-diagonal correlations in the system are

encoded in the momentum distribution of particles. To
reliably measure the in-plane momentum distribution ~nðkÞ
of our sample, we employ the matter-wave focusing
technique described in Refs. [16,32,33], where the gas
expands freely in the axial direction while being focused by
a harmonic potential in the radial plane. After expansion for
a quarter of the period of the focusing potential, the initial
momentum distribution is mapped to the spatial density
profile, which we then image. We combine this focusing
method with a rapid magnetic field ramp into the weakly
interacting regime. This rapid ramp technique—along with
the fast axial expansion due to the large anisotropy of the
trap—ensures that interparticle collisions during the focus-
ing do not cause significant distortions to the measured
momentum distribution. From ~nðkÞ, we extract the abso-
lute temperature T by means of a Boltzmann fit to the high-
k thermal region [34].
To quantitatively investigate the spatial coherence in our

system, we determine the first-order correlation function
g1ðrÞ by means of a 2D Fourier transform of the measured
~nðkÞ. It is related to the one-body density matrix ρ1ðx;x0Þ
by means of

g1ðrÞ ¼
Z

d2k ~nðkÞeik·r

¼
Z

d2Rρ1ðR − r=2;Rþ r=2Þ: ð1Þ

A derivation of these relations is given in Supplemental
Material [31]. The function g1ðrÞ is a trap-averaged
function, which captures the off-diagonal correlations of
all particles in the system. Similarly, one can also define the
central correlation function G1ðr; 0Þ ¼ hϕ̂†ðrÞϕ̂ð0Þi, mea-
sured in the interference experiments [14,35], which
characterizes the correlations only in the central region
of the trap, where the density is approximately uniform.
In general, the two functions do not contain the same
information and are equivalent only in a translation
invariant system [31]. Note that, due to the radial symmetry
of the trapping and focusing potentials, the correlations
depend only on distance, and therefore it suffices to
consider the azimuthally averaged function g1ðrÞ.
Figure 1 shows the experimentally determined g1ðrÞ for

different temperatures in the strongly interacting crossover
regime. The correlation functions are normalized such that
g1ð0Þ ¼ 1. As expected, at high temperatures, g1ðrÞ decays
exponentially with correlation lengths on the order of the
thermal wavelength (λT ∼ 1.5 μm). As we lower the tem-
perature, we eventually observe the onset of coherence over
an extended spatial range that corresponds to several radial
oscillator lengths lr, with lr ≈ 6.8 μm. This shows that
phase fluctuations in the system are nonlocal and span
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FIG. 1 (color online). First-order correlation function g1ðrÞ for
different temperatures at lnðkFa2DÞ≃ −0.5 (upper left panel) and
lnðkFa2DÞ≃ 0.5 (lower left panel). The temperature scale used here
is t ¼ T=T0

BEC. (a) At high temperatures, correlations decay
exponentially as expected for a gas in the normal phase. At low
temperatures, we observe algebraic correlations [g1ðrÞ ∝ r−ηðTÞ]
with a temperature-dependent scaling exponent ηðTÞ. (b) This
qualitative change of behavior is clearly visible in the χ2 for both
exponential and algebraic fits (right panel), where a small value
signals a good fit. In particular, this allows for an accurate
determination of the transition temperature Tc (vertical dashed
lines) [31].
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Ḡ1(r) �2

regions of the sample where the density is not uniform.
As pointed out in Refs. [36,37], such extended spatial
coherence in an interacting system is a sufficient condition
for superfluidity in two-dimensional systems.
As the temperature is lowered below a critical value, we

find that the correlation function in an intermediate range
3λT < r < 20λT is well described by a power-law decay,
whereas exponential behavior is clearly disfavored. We
quantify this by extracting the χ2 for both fit functions at
different temperatures and observe a clear transition from
exponential to algebraic decay [see Fig. 1(b)]. This quali-
tative change in g1ðrÞ provides an alternative way to
determine the phase transition temperature Tc from the
kink in χ2ðTÞ [31]. We find that the corresponding Tc
obtained in this manner agrees with the temperature
associated with the onset of pair condensation that was
measured in our previous work [24].
The power-law decay of g1ðrÞ means that the spatial

coherence of the entire sample is characterized by a single
exponent η. Figure 2 shows the experimentally determined
η for all the interaction strengths accessed in this work.
We find ηðTÞ to increase with temperature until it reaches
a maximal value at Tc, indicating a slower falloff of
correlations at lower temperatures. Although such temper-
ature dependence is qualitatively consistent with the BKT
theory, we observe the values of the exponents to be in the
range 0.6–1.4 for the temperatures accessed in the meas-
urement, which is substantially above the expectation of
η ≤ 0.25 for the homogeneous setup.
To confirm the large scaling exponents in the trapped

system, we compute the one-body density matrix on the
bosonic side by using the QMC technique described above.
This allows us to determine both the trap-averaged corre-
lation function g1ðrÞ as well as the central correlation
function G1ðr; 0Þ. The trap-averaged g1ðrÞ shows the
same behavior as in the experimental case, i.e., a transition

from exponential to algebraic decay at low temperatures.
The corresponding QMC transition temperatures also agree
with the measured values of Tc for ~g ¼ 0.60, 1.07, and
2.76. Furthermore, the maximal scaling exponent at Tc
extracted from the QMC g1ðrÞ for ~g ¼ 0.6 is approximately
1.35, which is close to the experimentally determined
ηðTcÞ≃ 1.4. The central correlation function G1ðr; 0Þ
shows a transition to algebraic order as well—with the
same Tc as in the experiment—but with a maximal
exponent of approximately 0.25, as expected for a homo-
geneous system. This finding is also in agreement with the
measurement of G1ðr; 0Þ in the interference experiments
[14] and is explained by the nearly uniform density in the
center of the trap.
Figure 2(a) shows the comparison between the exper-

imental and QMC values of ηðTÞ for ~g ¼ 0.60
[lnðkFa2DÞ≃ −7.3]. Although both show similar depend-
ence on temperature, we find a considerable quantitative
deviation between them. As discussed in Supplemental
Material [31], this discrepancy can mostly be attributed to
the effect of the finite imaging resolution in the measure-
ment of ~nðkÞ, which leads to an apparent broadening at low
momenta and thus overestimates the value of η. We show an
estimate of this temperature-dependent effect on the expo-
nents (open red triangles) in Fig. 2(a). There may be other
effects in the experiment that contribute additionally to
the deviation, such as higher-order corrections to the
determination of ~g from the fermionic scattering parameters
and density-dependent inelastic loss processes.
The experimental and simulated data raise the question

why correlations in the trapped system decay with a larger
scaling exponent than in the homogeneous case. To elucidate
the role of inhomogeneity, we consider the bosonic field
operator given by ϕ̂ðrÞ≃ ffiffiffiffiffiffiffiffiffi

ρðrÞ
p

exp½iφ̂ðrÞ%. In this repre-
sentation, it is clear that one contribution to the decay of
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FIG. 2 (color online). Power-law scaling exponents across the two-dimensional BEC-BCS crossover. The temperature-dependent
scaling exponent ηðTÞ in (a) the bosonic limit and (b) the crossover regime is shown. The relevant temperature scales in these cases are
given by T0

BEC and TF, respectively. The crossover parameter lnðkFa2DÞ is mildly temperature dependent. For reference, we display the
value at the critical temperature. For ~g ¼ 0.60 [lnðkFa2DÞ≃ −7.3], we show the prediction from QMC calculations for a Bose gas (filled
red triangles) and an estimate of the effect of the finite imaging resolution present in the measured data (open red triangles) [31]. We find
an exponent which increases with temperature in agreement with the BKT theory. The power-law decay eventually ceases at Tc, where a
maximal exponent ηc is reached. (c) The value of ηc is approximately constant for all lnðkFa2DÞ where we have previously observed
condensation of pairs [24]. This strongly suggests that the associated phase transitions are within one universality class.
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Les	données	à	basse	température	semblent	privilégier	
un	comportement	algébrique	en	r-η,	mais….

Murthy et al. 
Phys. Rev. Lett. 115 010401 (2015)

…	l’exposant		η	que	l’on	déduit	des	ajustements	peut	aXeindre	1.5,	alors		
que	la	théorie	BKT	prédit																																				???	

BoeXcher	&	Holzmann	2016	:	contribu9on	importante	de	la	zone	périphérique	
du	piège,	dans	laquelle	le	gaz	n’est	pas	superfluide,	même	si	le	centre	l’est.		

⌘ = 1/Ds < 1/4
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Mouvement	d’une	impureté

Sonde	locale	de	la	superfluidité,	avec	une	impureté	formée	par	un	«	trou	de		
poten9el	»	créé	par	un	faisceau	laser

• ENS	2012	pour	des	atomes	de	rubidium	

• Hambourg	2015	(groupe	de	H.	Moritz)	pour	des	molécules	6Li2	en	interac9on	forte

Weimer et al. 
Phys. Rev. Lett.  

114 095301 (2015)

Excellent	accord	avec	la	prédic9on	théorique	 µloc

kBT
⇡ g̃

⇡
ln

✓
Cµ
g̃

◆
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Un	mode	collec9f	par9culier	:	le	mode	«	ciseaux	»

Idée	issue	de	la	physique	nucléaire	:		
Pour	tester	la	superfluidité	des	noyaux	lourds,		
on	cherche	un	mode	d’oscilla9on	par9culier		
des	protons	et	des	neutrons	

Adapté	au	cas	des	gaz	atomiques	piégés	par		
Guery-Odelin	&	Stringari	(1999)	

Piège	harmonique	non	isotrope	:	 !x > !y

On	étudie	l’oscilla9on	de	 hxyi

x

y

• Pour	un	gaz	thermique,	ce	mouvement	fait	intervenir	deux	fréquences,	
par	exemple																					pour	un	gaz	quasi-idéal|!x ± !y|

• Pour	un	gaz	superfluide,	mouvement	non	amor9	et	monofréquence	(!2
x + !2

y)
1/2
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Mode	ciseaux	localisé

Paris-Nord	Villetaneuse	(2016),	groupe	de	Hélène	Perrin

Analyse	de	la	moyenne	locale	de	hxyi

De Rossi et al. 
New Jour. Phys. 18  

062001 (2016)

Bon	accord	avec	l’approxima9on	de	densité	locale µloc

kBT
⇡ g̃

⇡
ln

✓
Cµ
g̃

◆
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4.	

Les	polaritons	de	cavité



30

Les	deux	composantes	en	présence

systems in the so-called strong light-matter coupling regime
have turned out to be particularly promising in order to obtain
the relatively strong nonlinear interactions that are necessary
for collective behavior. In this strong coupling regime, the
photon is strongly mixed with matter degrees of freedom,
which gives rise to a new mixed quasiparticle, the polariton
(Hopfield, 1958). Pictorially, the polariton can be seen as a
photon dressed by a matter excitation: a reinforced optical
nonlinearity then appears thanks to the relatively strong inter-
actions between matter excitations. This strong coupling re-
gime can be achieved in a number of material systems, from
atomic gases (Berman, 1994; Raimond, Brune, and Haroche,
2001; Fleischhauer, Imamoǧlu, and Marangos, 2005) to semi-
conducting solid-state media both in bulk (Klingshirn, 2007;
Yu and Cardona, 2010) and in cavity (Weisbuch et al., 1992;
Deveaud, 2007) geometries, to circuit-QED systems based on
superconducting Josephson junctions (Schoelkopf and Girvin,
2008; You and Nori, 2011).

To create a stable luminous fluid, it is also crucial to give a
finite effective mass to the photon. A simple strategy for this
purpose involves a spatial confinement of the photon by
metallic and/or dielectric planar mirrors. In a planar geometry
with a dielectric medium of refractive index n0 and thickness
‘z enclosed within a pair of metallic mirrors, the photon
motion along the perpendicular z direction is quantized as
qz ¼ !M=‘z, M being a positive integer. For each longitu-
dinal mode, the frequency dispersion as a function of the
in-plane wave vector k has the form

!cavðkÞ ¼
c

n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ k2

q
’ !o

cav þ
ℏk2

2mcav
; (1)

where the effective mass mcav of the photon and the cutoff
frequency !o

cav ¼ cqz=n0 are related by the relativisticlike
expression

mcav ¼
ℏn0qz
c

¼ ℏ!o
cav

c2=n20
: (2)

Using suitable values of the effective massmcav and the cutoff
frequency !o

cav extracted from microscopic calculations
(Savona, 1999), the generic form (1) of the dispersion can
be extended to the case of dielectric mirrors. In the presence
of a resonant electronic excitation strongly coupled to the
cavity mode, the elementary excitations of the cavity have
a polaritonic character with a peculiar dispersion law that
reflects their hybrid light-matter nature. An example of such
dispersion is shown in the middle panel of Fig. 1: In spite of
the complex light-matter interaction dynamics, the bottom of
the lower polariton branch is still well approximated by a
parabolic dispersion with an effective mass mLP and a cutoff
frequency !o

LP.
Historically, a first elaboration of the concept of photon fluid

dates back to the work of Brambilla et al. (1991) and Staliunas
(1993), where the time evolution of the coherent electromag-
netic field in a laser cavity with large Fresnel number was
reformulated in terms of hydrodynamic equations analogous
to the Gross-Pitaevskii equation for the superfluid order pa-
rameter. The local light intensity corresponds to the photon
density and the spatial gradient of its phase to the local current;
the collective behavior originates from the effective photon-
photon interactions stemming from the nonlinear refractive
index of the medium as well as from gain saturation. In the

FIG. 1 (color online). Upper panel: Sketch of a planar semicon-
ductor microcavity delimited by two Bragg mirrors and embedding
a quantum well (QW). The wave vector in the z direction perpen-
dicular to the cavity plane is quantized, while the in-plane motion is
free. The cavity photon mode is strongly coupled to the excitonic
transition in the QW. A laser beam with incidence angle " and
frequency ! can excite a microcavity mode with in-plane wave
vector kk ¼ ð!=cÞ sin", while the near-field (far-field) secondary

emission from the cavity provides information on the real-space
(k-space) photon density. Middle panel: The energy dispersion of
the polariton modes versus in-plane wave vector, i.e. the incidence
angle. The exciton dispersion is negligible, due to the heavy mass of
the exciton compared to that of the cavity photon. In the polariton
condensation experiments under incoherent pumping reported in
this figure, the system is incoherently excited by a laser beam tuned
at a very high energy. Relaxation of the excess energy (via phonon
emission, exciton-exciton scattering, etc.) leads to a population of
the cavity polariton states and, possibly, Bose-Einstein condensation
into the lowest polariton state. Lower panel: Experimental obser-
vation of polariton Bose-Einstein condensation obtained by increas-
ing the intensity of the incoherent off-resonant optical pump. From
Kasprzak et al., 2006.

Iacopo Carusotto and Cristiano Ciuti: Quantum fluids of light 301

Rev. Mod. Phys., Vol. 85, No. 1, January–March 2013

• Lumière	dans	une	cavité	de	faible	épaisseur	à	l’approxima9on	paraxiale	(cf.	cours	2	)

Cavité	de	facteur	de	qualité	104

Rela9on	de	dispersion	:

~!ph(k?) ⇡ ~!0, ph +
~2k2

?
2mph

mph ⇠ quelques 10�5 me

durée	de	vie	d’un	photon	dans	la	cavité	:	quelques	dizaines	de	picosecondes

• Ma9ère	:	paires	liées	électron-trou	(excitons)	dans	un	puits	quan9que	
d’épaisseur	<	10	nm	:	gel	du	mouvement	selon	la	direc9on	z

~!ex(k?) = ~!0, ex +
~2k2

?
2mex

mex = me +mh

considéré	ici	comme	une	par2cule	bosonique

Kasprzak et al., 
Nature 443 409 (2006)
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systems in the so-called strong light-matter coupling regime
have turned out to be particularly promising in order to obtain
the relatively strong nonlinear interactions that are necessary
for collective behavior. In this strong coupling regime, the
photon is strongly mixed with matter degrees of freedom,
which gives rise to a new mixed quasiparticle, the polariton
(Hopfield, 1958). Pictorially, the polariton can be seen as a
photon dressed by a matter excitation: a reinforced optical
nonlinearity then appears thanks to the relatively strong inter-
actions between matter excitations. This strong coupling re-
gime can be achieved in a number of material systems, from
atomic gases (Berman, 1994; Raimond, Brune, and Haroche,
2001; Fleischhauer, Imamoǧlu, and Marangos, 2005) to semi-
conducting solid-state media both in bulk (Klingshirn, 2007;
Yu and Cardona, 2010) and in cavity (Weisbuch et al., 1992;
Deveaud, 2007) geometries, to circuit-QED systems based on
superconducting Josephson junctions (Schoelkopf and Girvin,
2008; You and Nori, 2011).

To create a stable luminous fluid, it is also crucial to give a
finite effective mass to the photon. A simple strategy for this
purpose involves a spatial confinement of the photon by
metallic and/or dielectric planar mirrors. In a planar geometry
with a dielectric medium of refractive index n0 and thickness
‘z enclosed within a pair of metallic mirrors, the photon
motion along the perpendicular z direction is quantized as
qz ¼ !M=‘z, M being a positive integer. For each longitu-
dinal mode, the frequency dispersion as a function of the
in-plane wave vector k has the form

!cavðkÞ ¼
c

n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ k2

q
’ !o

cav þ
ℏk2

2mcav
; (1)

where the effective mass mcav of the photon and the cutoff
frequency !o

cav ¼ cqz=n0 are related by the relativisticlike
expression

mcav ¼
ℏn0qz
c

¼ ℏ!o
cav

c2=n20
: (2)

Using suitable values of the effective massmcav and the cutoff
frequency !o

cav extracted from microscopic calculations
(Savona, 1999), the generic form (1) of the dispersion can
be extended to the case of dielectric mirrors. In the presence
of a resonant electronic excitation strongly coupled to the
cavity mode, the elementary excitations of the cavity have
a polaritonic character with a peculiar dispersion law that
reflects their hybrid light-matter nature. An example of such
dispersion is shown in the middle panel of Fig. 1: In spite of
the complex light-matter interaction dynamics, the bottom of
the lower polariton branch is still well approximated by a
parabolic dispersion with an effective mass mLP and a cutoff
frequency !o

LP.
Historically, a first elaboration of the concept of photon fluid

dates back to the work of Brambilla et al. (1991) and Staliunas
(1993), where the time evolution of the coherent electromag-
netic field in a laser cavity with large Fresnel number was
reformulated in terms of hydrodynamic equations analogous
to the Gross-Pitaevskii equation for the superfluid order pa-
rameter. The local light intensity corresponds to the photon
density and the spatial gradient of its phase to the local current;
the collective behavior originates from the effective photon-
photon interactions stemming from the nonlinear refractive
index of the medium as well as from gain saturation. In the

FIG. 1 (color online). Upper panel: Sketch of a planar semicon-
ductor microcavity delimited by two Bragg mirrors and embedding
a quantum well (QW). The wave vector in the z direction perpen-
dicular to the cavity plane is quantized, while the in-plane motion is
free. The cavity photon mode is strongly coupled to the excitonic
transition in the QW. A laser beam with incidence angle " and
frequency ! can excite a microcavity mode with in-plane wave
vector kk ¼ ð!=cÞ sin", while the near-field (far-field) secondary

emission from the cavity provides information on the real-space
(k-space) photon density. Middle panel: The energy dispersion of
the polariton modes versus in-plane wave vector, i.e. the incidence
angle. The exciton dispersion is negligible, due to the heavy mass of
the exciton compared to that of the cavity photon. In the polariton
condensation experiments under incoherent pumping reported in
this figure, the system is incoherently excited by a laser beam tuned
at a very high energy. Relaxation of the excess energy (via phonon
emission, exciton-exciton scattering, etc.) leads to a population of
the cavity polariton states and, possibly, Bose-Einstein condensation
into the lowest polariton state. Lower panel: Experimental obser-
vation of polariton Bose-Einstein condensation obtained by increas-
ing the intensity of the incoherent off-resonant optical pump. From
Kasprzak et al., 2006.
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Le	fluide	de	polaritons
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• Les	photons	s’échappent	de	la	cavité	après	quelques	dizaines	de	picosecondes	
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systems in the so-called strong light-matter coupling regime
have turned out to be particularly promising in order to obtain
the relatively strong nonlinear interactions that are necessary
for collective behavior. In this strong coupling regime, the
photon is strongly mixed with matter degrees of freedom,
which gives rise to a new mixed quasiparticle, the polariton
(Hopfield, 1958). Pictorially, the polariton can be seen as a
photon dressed by a matter excitation: a reinforced optical
nonlinearity then appears thanks to the relatively strong inter-
actions between matter excitations. This strong coupling re-
gime can be achieved in a number of material systems, from
atomic gases (Berman, 1994; Raimond, Brune, and Haroche,
2001; Fleischhauer, Imamoǧlu, and Marangos, 2005) to semi-
conducting solid-state media both in bulk (Klingshirn, 2007;
Yu and Cardona, 2010) and in cavity (Weisbuch et al., 1992;
Deveaud, 2007) geometries, to circuit-QED systems based on
superconducting Josephson junctions (Schoelkopf and Girvin,
2008; You and Nori, 2011).

To create a stable luminous fluid, it is also crucial to give a
finite effective mass to the photon. A simple strategy for this
purpose involves a spatial confinement of the photon by
metallic and/or dielectric planar mirrors. In a planar geometry
with a dielectric medium of refractive index n0 and thickness
‘z enclosed within a pair of metallic mirrors, the photon
motion along the perpendicular z direction is quantized as
qz ¼ !M=‘z, M being a positive integer. For each longitu-
dinal mode, the frequency dispersion as a function of the
in-plane wave vector k has the form

!cavðkÞ ¼
c

n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ k2

q
’ !o

cav þ
ℏk2

2mcav
; (1)

where the effective mass mcav of the photon and the cutoff
frequency !o

cav ¼ cqz=n0 are related by the relativisticlike
expression

mcav ¼
ℏn0qz
c

¼ ℏ!o
cav

c2=n20
: (2)

Using suitable values of the effective massmcav and the cutoff
frequency !o

cav extracted from microscopic calculations
(Savona, 1999), the generic form (1) of the dispersion can
be extended to the case of dielectric mirrors. In the presence
of a resonant electronic excitation strongly coupled to the
cavity mode, the elementary excitations of the cavity have
a polaritonic character with a peculiar dispersion law that
reflects their hybrid light-matter nature. An example of such
dispersion is shown in the middle panel of Fig. 1: In spite of
the complex light-matter interaction dynamics, the bottom of
the lower polariton branch is still well approximated by a
parabolic dispersion with an effective mass mLP and a cutoff
frequency !o

LP.
Historically, a first elaboration of the concept of photon fluid

dates back to the work of Brambilla et al. (1991) and Staliunas
(1993), where the time evolution of the coherent electromag-
netic field in a laser cavity with large Fresnel number was
reformulated in terms of hydrodynamic equations analogous
to the Gross-Pitaevskii equation for the superfluid order pa-
rameter. The local light intensity corresponds to the photon
density and the spatial gradient of its phase to the local current;
the collective behavior originates from the effective photon-
photon interactions stemming from the nonlinear refractive
index of the medium as well as from gain saturation. In the

FIG. 1 (color online). Upper panel: Sketch of a planar semicon-
ductor microcavity delimited by two Bragg mirrors and embedding
a quantum well (QW). The wave vector in the z direction perpen-
dicular to the cavity plane is quantized, while the in-plane motion is
free. The cavity photon mode is strongly coupled to the excitonic
transition in the QW. A laser beam with incidence angle " and
frequency ! can excite a microcavity mode with in-plane wave
vector kk ¼ ð!=cÞ sin", while the near-field (far-field) secondary

emission from the cavity provides information on the real-space
(k-space) photon density. Middle panel: The energy dispersion of
the polariton modes versus in-plane wave vector, i.e. the incidence
angle. The exciton dispersion is negligible, due to the heavy mass of
the exciton compared to that of the cavity photon. In the polariton
condensation experiments under incoherent pumping reported in
this figure, the system is incoherently excited by a laser beam tuned
at a very high energy. Relaxation of the excess energy (via phonon
emission, exciton-exciton scattering, etc.) leads to a population of
the cavity polariton states and, possibly, Bose-Einstein condensation
into the lowest polariton state. Lower panel: Experimental obser-
vation of polariton Bose-Einstein condensation obtained by increas-
ing the intensity of the incoherent off-resonant optical pump. From
Kasprzak et al., 2006.
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and a band-pass interference filter, which reject scattered laser
light without distorting the LP spectrum.

We confirmed that the sample disorder potential is weak in two
ways (see SI Appendix). First, the lineshape of the luminescence
at low excitation power is Lorentzian, which is characteristic of a
homogeneously broadened line. Second, we measured a 2D map
of the disorder potential with resolution approximately 1 μm and
found that its spatial fluctuations are indeed weaker than the
homogeneous broadening and also much weaker than the energy
shift due to polariton–polariton interactions. Therefore, we can
ignore the sample disorder in our experiment. The condensate is
still localized in space, though, following the shape of the laser
excitation spot.

The first order spatial correlation function is defined as

gð1Þðr1; t1; r2; t2Þ ¼
hψ †

1ψ2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ †

1ψ1ihψ †
2ψ2i

q [1]

where ψ †
i and ψ i are the creation and annihilation field operators

at space-time point ðri; tiÞ. To measure this function, we built a
Michelson interferometer setup. A schematic is shown in Fig. 1A.
It includes a mirror in one arm, and a right angle prism in the
other. We overlap the condensate real-space image with its
reflected version, so that fringes similar to that of Fig. 1B are
observed on the camera. By changing the length of one interfe-
rometer arm, as shown in Fig. 1A, the relative phase of the two
beams is shifted. As a result, the intensity measured at one pixel
point shows a sinusoidal modulation (Fig. 1C). From the data of
Fig. 1C, we extract the phase difference of the two images at a

particular pixel point, as well as the fringe visibility. The latter is
proportional to the first order correlation function, which is the
physical quantity we are interested in in this experiment.

The prismM2 in Fig. 1A forms the reflection of the condensate
image along the prism axis. Therefore, point ðx; yÞ overlaps with
either ð−x; yÞ, or ðx; −yÞ on the camera, depending on the orien-
tation of the prism. This allows us to measure

gð1Þðx; −x; τÞ ≡ hgð1Þðx; y; tþ τ;−x; y; tÞit; [2]

or

gð1Þðy; −y; τÞ ≡ hgð1Þðx; y; tþ τ; x; −y; tÞit; [3]

where hit denotes time average. In this experiment, we are mainly
interested in interference at τ ¼ 0, so when the time argument is
not mentioned explicitly, we imply τ ¼ 0.

We repeat the procedure explained in Fig. 1 for every pixel, so
that we measure the phase difference between the two interfering
images in addition to the correlation function across the whole
spot. Representative data are shown in Fig. 2. Recording both
these quantities allows us to identify useful signal from systematic
or random noise. Because the prism displaces the beam that is
incident on it, the images from the mirror and the prism are
focused on the camera from different angles, so the two phase
fronts are tilted with respect to each other. As a consequence, we
expect to measure a constant phase tilt. This is the case in Fig. 2B,
in which the laser power is above threshold and a condensate has
formed. We conclude that our measurement of the correlation
function in Fig. 2D is reliable over this whole area. On the other
hand, at a pump rate below threshold, only short-range correla-
tions exist. Fig. 2A shows that in this case the phase difference is
measured correctly only over a small area around the center,
(jxj ≤ 1 μm). So the measured values of gð1Þðx; −xÞ outside this
area are not reliable and give an estimate of our measurement
uncertainties. As is clear from Fig. 2C, the experimental error
can be suppressed down to 0.01.

Phase maps such as those in Fig. 2 have been used to identify
localized phase defects—namely, quantum vortices (19). The
data of Fig. 2B show that such localized defects are not present
in our sample. At points with large fringe visibility (near
x ¼ 0 μm), fringes are perfectly parallel, whereas defects that ap-
pear for large jxj could be due to a numerical uncertainty in the
measurement of the local phase due to the small fringe visibility.
In any case, localized stationary phase defects cannot influence
gð1ÞðrÞ, because it is their motion that destroys spatial correlations
and not their mere presence. It has been found that vortices
appear in large disorder samples (19), when a direct external
perturbation is introduced (20), before the condensate reaches
its steady state (21), or when the condensate moves against an
obstacle (22, 23). None of these conditions is satisfied in our ex-
periment. On the other hand, we have found that, under the same
conditions as the current experiment, mobile bound vortex pairs
appear spontaneously due to the special form of the pumping
spot and the pumping and decay noise (18). In ref. 18), we found
that a single mobile bound vortex–antivortex pair is visible in a
small condensate. In the current experiment, we probe larger
condensate sizes, so it is likely that several vortex pairs are pre-
sent at the same time. Mobile bound vortex pairs are in general
invisible in time-integrated phase maps, like the one in Fig. 2B,
and they are consistent with a power-law decay of gð1ÞðrÞ.

Fig. 3A shows the short-distance dependence of gð1Þðx; −xÞ for
the same pumping power as in Fig. 2A andC. Every dot in Fig. 3A
corresponds to one pixel on the camera, and the x axis is its
distance from the axis of reflection (slightly tilted with respect to
the columns of the charge-coupled device array). Data at dis-
tances jxj > 1 μm is noise, because the measured phase in this
area is random (Fig. 2A). At shorter distances, we can measure
gð1Þðx; −xÞ reliably, and we find that the correlation function has a
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Fig. 1. Michelson interferometer. (A) Schematic of the setup for measure-
ment of the correlation function. The laser is linearly polarized, and we re-
cord luminescence of the orthogonal linear polarization through a polarizing
beamsplitter (PBS). We then employ a 50-50 nonpolarizing beamsplitter
(NPBS), a mirror (M1) and a right-angle prism (M2). The latter creates the re-
flection of the original image along one axis, depending on the prism orien-
tation. A two-lens microscope setup overlaps the two real space images of
the polariton condensate on the camera. (B) Typical interference pattern ob-
served above the polariton condensation threshold along with a schematic
showing the orientation of the two overlapping images. (C) Blue circles: mea-
sured intensity on one pixel of the camera as a function of the prism (M2)
position in normalized units. Red line: fitting to a sine function.
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gaussian form. This is the same functional dependence as for a
thermalized Bose gas when the temperature is sufficiently high or
the density sufficiently small (2, 4). In that equilibrium case,
the width of the gaussian decay is proportional to the thermal
de Broglie wavelength. Although our nonequilibrium system is
quite different than the thermalized Bose gas, we will use this
analogy to define a thermal de Broglie wavelength and therefore
also a temperature. We note that the temperature measured from
the short-distance behavior of gð1Þðx; −xÞ is a measure of the
occupation of the higher energy part of the spectrum (i.e., the
particle-like part of the spectrum). For an insufficiently therma-
lized system, it is quite possible that excitations in different energy
ranges have different effective temperatures. Therefore, the tem-
perature measured this way will not necessarily agree with other
measures of temperature.

In Fig. 3B we plot the effective wavelength λeff as a function of
pumping power. If σ is the standard deviation of the gaussian fit
for gð1Þðx; −xÞ, λeff ¼ 2

ffiffiffiffiffiffi
2π

p
σ in analogy to the thermal de Broglie

wavelength. λeff shows a smooth increase for increasing pumping

power with no obvious threshold, analogous to the theory of
equilibrium noninteracting 2D Bose gas as the particle density is
increased (4). We performed the same experiment for two ortho-
gonal prism orientations as shown in the legend of Fig. 3B. In
one case we measured gð1Þðx; −xÞ, whereas in the other case we
measured gð1Þðy; −yÞ. We found that λeff is shorter along the y axis
and attribute this difference to a small asymmetry of the laser
pumping spot. The occupation of excited states (which deter-
mines λeff) depends on their spatial overlap with the laser pump-
ing spot, so states of equal energy are not always equally
populated. This asymmetry shows that λeff is not simply related
to the cryostat temperature and depends on the spatial and
energy profiles of the high-energy states involved in producing
this correlation length. We also note that the resolution limit of
our imaging setup is approximately 1 μm, hence the measure-
ment of λeff at small pumping power is resolution-limited.

It is known that an ideal autocorrelation measurement with a
Michelson interferometer provides the same information as an
ideal measurement of the spectrum. In particular, gð1Þðx; −x; tÞ
is the Fourier transform of the power spectrum in momentum
space Sðk; ωÞ (24). However, systematic noise in measurement of
Sðk; ωÞ currently makes the direct measurement of gð1Þðx; −x; tÞ
the only way to reliably extract λeff of Fig. 3B as well as the power-
law decay at long distances to be explained later. The Fourier-
transform relationship between gð1Þðx; −x; tÞ and Sðk; ωÞ is illu-
strated in Fig. 4. The measured gð1Þðx; −x; tÞ at very low pumping
power is shown in Fig. 4A. At time delay t ¼ 0, it has a gaussian
form as a function of x, but for increasing t it broadens and
acquires a multipeak structure. This unusual space-time depen-
dence is reproduced by the numerical Fourier transform (Fig. 4C)
of measured Sðk; ωÞ (Fig. 4B). As explained in SI Appendix,
measurement of the time dependence of gð1Þðx; −x; tÞ is limited by
inhomogeneous broadening due to time-integrated data, so it
cannot provide an estimate of the homogeneous dephasing time.

At long distances, the behavior of the correlation function at
zero time delay t ¼ 0 is no longer gaussian. We found that it is
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Fig. 2. Phase map measured for laser power (A) below and (B) above the threshold power Pth. The prism in the Michelson interferometer is oriented
horizontally. The schematics on the top right of A and B show the orientation of the two interfering images. (C and D) Measured gð1Þðx; −xÞ corresponding
to A and B, respectively, averaged over the y axis inside the excitation spot area of 19-μm radius. Blue circles are experimental data. The continuous red and
dashed yellow fitting lines are explained in Figs. 3 and 6, respectively.
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gaussian form. This is the same functional dependence as for a
thermalized Bose gas when the temperature is sufficiently high or
the density sufficiently small (2, 4). In that equilibrium case,
the width of the gaussian decay is proportional to the thermal
de Broglie wavelength. Although our nonequilibrium system is
quite different than the thermalized Bose gas, we will use this
analogy to define a thermal de Broglie wavelength and therefore
also a temperature. We note that the temperature measured from
the short-distance behavior of gð1Þðx; −xÞ is a measure of the
occupation of the higher energy part of the spectrum (i.e., the
particle-like part of the spectrum). For an insufficiently therma-
lized system, it is quite possible that excitations in different energy
ranges have different effective temperatures. Therefore, the tem-
perature measured this way will not necessarily agree with other
measures of temperature.

In Fig. 3B we plot the effective wavelength λeff as a function of
pumping power. If σ is the standard deviation of the gaussian fit
for gð1Þðx; −xÞ, λeff ¼ 2

ffiffiffiffiffiffi
2π

p
σ in analogy to the thermal de Broglie

wavelength. λeff shows a smooth increase for increasing pumping

power with no obvious threshold, analogous to the theory of
equilibrium noninteracting 2D Bose gas as the particle density is
increased (4). We performed the same experiment for two ortho-
gonal prism orientations as shown in the legend of Fig. 3B. In
one case we measured gð1Þðx; −xÞ, whereas in the other case we
measured gð1Þðy; −yÞ. We found that λeff is shorter along the y axis
and attribute this difference to a small asymmetry of the laser
pumping spot. The occupation of excited states (which deter-
mines λeff) depends on their spatial overlap with the laser pump-
ing spot, so states of equal energy are not always equally
populated. This asymmetry shows that λeff is not simply related
to the cryostat temperature and depends on the spatial and
energy profiles of the high-energy states involved in producing
this correlation length. We also note that the resolution limit of
our imaging setup is approximately 1 μm, hence the measure-
ment of λeff at small pumping power is resolution-limited.

It is known that an ideal autocorrelation measurement with a
Michelson interferometer provides the same information as an
ideal measurement of the spectrum. In particular, gð1Þðx; −x; tÞ
is the Fourier transform of the power spectrum in momentum
space Sðk; ωÞ (24). However, systematic noise in measurement of
Sðk; ωÞ currently makes the direct measurement of gð1Þðx; −x; tÞ
the only way to reliably extract λeff of Fig. 3B as well as the power-
law decay at long distances to be explained later. The Fourier-
transform relationship between gð1Þðx; −x; tÞ and Sðk; ωÞ is illu-
strated in Fig. 4. The measured gð1Þðx; −x; tÞ at very low pumping
power is shown in Fig. 4A. At time delay t ¼ 0, it has a gaussian
form as a function of x, but for increasing t it broadens and
acquires a multipeak structure. This unusual space-time depen-
dence is reproduced by the numerical Fourier transform (Fig. 4C)
of measured Sðk; ωÞ (Fig. 4B). As explained in SI Appendix,
measurement of the time dependence of gð1Þðx; −x; tÞ is limited by
inhomogeneous broadening due to time-integrated data, so it
cannot provide an estimate of the homogeneous dephasing time.

At long distances, the behavior of the correlation function at
zero time delay t ¼ 0 is no longer gaussian. We found that it is
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Fig. 2. Phase map measured for laser power (A) below and (B) above the threshold power Pth. The prism in the Michelson interferometer is oriented
horizontally. The schematics on the top right of A and B show the orientation of the two interfering images. (C and D) Measured gð1Þðx; −xÞ corresponding
to A and B, respectively, averaged over the y axis inside the excitation spot area of 19-μm radius. Blue circles are experimental data. The continuous red and
dashed yellow fitting lines are explained in Figs. 3 and 6, respectively.
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Fig. 3. (A) Decay of gð1Þðx; −xÞ at short distances. Blue dots are experimental
data, the red line is a gaussian fit. Data at jxj > 1 μm is noise. (B) Effective de
Broglie wavelength λeff as a function of laser pumping power. λeff is extracted
from the width of the gaussian fit as shown in A. Blue circles and red squares
correspond to orthogonal orientations of the prism in the Michelson inter-
ferometer (see text). The condensation threshold is at approximately 55 mW.
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• 2012	:	ordre	algébrique	mais	avec	un	
exposant	beaucoup	trop	grand

avec

dépasse	la	borne	trouvée	pour	la	théorie	BKT	:	

Explica9on	proposée	:	ceXe	borne	ne	s’applique	pas	aux	systèmes	ouverts

Roumpos et al,  
PNAS 109 6467 (2012)G1(r,�r) / 1

r⌘
⌘ = 1.2

⌘ =
1

Ds
<

1

4

• 2014	par	le	même	groupe,	avec	une	modifica9on	de	la	forme	du	faisceau	
de	pompe	produisant	les	excitons	:

⌘max . 0.25
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Quelle	limite	thermodynamique	pour		
les	fluides	de	polaritons	?

Altman	et	al	(2015)	:		
				Le	fait	que	le	système	est	ouvert	change	radicalement	la	nature	du	problème	BKT

Equa9on	d’évolu9on	pour	la	phase	:	

@✓

@t
= Dr2✓ +

�

2
(r✓)2 + ⇣(r, t)

• Si	λ=0,	on	ob9ent	une	équa9on	de	diffusion	ordinaire	et	la	théorie	BKT	s’applique

• Si	λ	n’est	pas	nul	(ce	qui	est	généralement	le	cas),	équa9on	KPZ	(Kardar-Parisi-Zhang)

Lors	du	passage	par	le	groupe	de	renormalisa9on,	le	terme	non	linéaire	en	λ	finit	
toujours	par	dominer	:	destruc9on	du	quasi-ordre	à	longue	portée

On	aXend	alors	une	décroissance	exponen9elle	de	G1(r)	à	longue	distance
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Polaritons	autour	d’un	obstacle

2009	:	LKB-UPMC	(groupe	de	A.	Brama9	et	E.	Giacobino)

Créa9on	du	fluide	de	polariton	avec	une	vitesse	non	nulle	(pompage	cohérent	
avec	un	angle	d’incidence	non	nul)

vitesse	:	6	105	m/s

Ecoulement	autour	d’un	défaut	sta9que	apparu	lors	de	la	croissance	de	l’échan9llon

basse	densité	:	1	μm-1 haute	densité	:	40	μm-1

Absence	de	sillage	
à	haute	densité,	signe	
d’un	écoulement	

superfluide.

vitesse	du	son	:	2	106	m/s	
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En	résumé	

Les	fluides	quan9ques	à	base	d’atomes,	de	molécules	ou	de		
polaritons	permeXent	d’étudier	quan9ta9vement	plusieurs	
caractéris9ques	importantes	de	la	physique	2D

• La	posi9on	du	point	cri9que
• La	démonstra9on	d’un	comportement	superfluide

-	mouvement	d’une	impureté		
-	mode	collec2f	(ciseaux)

L’étude	quan9ta9ve	du	quasi-ordre	à	longue	portée,	avec	la	mesure	de	l’exposant	
caractérisant	la	décroissance	algébrique	de	G1,	est	revanche	plus	délicate

Prolongements	importants	:
• Influence	d’un	poten9el	désordonné	(cf.	texte	écrit	du	cours	5)
• Equa9on	d’état	du	fluide	(cf.	cours	6)

Invariance	d’échelle,	«	anomalies	quan9ques	»	

• La	visualisa9on	des	vortex


