

LUND LASER CENTRE

Photoionization dynamics on the attosecond time scale

Anne L'Huillier Lund University Sweden

Outline

Extreme nonlinear optics

Brief history/tutorial
Attosecond sources

Attosecond light sources

Ultrafast atomic physics Ionization time delays Resonant photoionization

Attosecond physics

Extreme nonlinear optics

High-order harmonics

Ferray et al. J.Phys.B 1988 McPherson et al. JOSA B 1987

Attosecond pulses ?

"If the harmonics are appropriately phased, this bandwidth corresponds to temporal pulses on the order of 5×10^{-17} s, and thereby motivates a search for a new regime of short-pulse generation."

Farkas and Toth, Phys. Lett., 1992, Hänsch, Harris, Opt. Comm. 1993

Single atom response: One half cycle

Schafer, Kulander PRL 1993, Corkum PRL, 1993, Lewenstein et al. PRA 1994

5

Single atom response: Several half cycles

Harmonics = Interferences of attosecond pulses Attosecond pulses = phase locked harmonics

Light sources based upon high-order harmonic generation in gases

Nonlinear Optics

Phase velocity of the fundamental = Phase velocity of the harmonic fields

Degree of ionization = a few %

Gaarde et al., J. Phys. B, 2002, Heyl et al., J. Phys. B, 2017

Attosecond Pulses

Paris, 2001, 250 as

Vienna, 2001, 450 as

Lund, 2004, 170 as

Milan, 2006, 130 as

Munich, 2008, 80 as

Trains of attosecond pulses – RABBIT

Single attosecond pulses – Streaking

Paul et al., Science, 2001 Henstchel et al., Nature, 2001

P. Agostini

Characterization

RABBIT technique: interferometry

Optical interferometry

Quantum interferometry

Development of attosecond sources

Application-specific

Laser	800 nm, <mark>50 mJ</mark> , 10 Hz- 1kHz	850 nm, 100 μJ, <mark>200 kHz</mark>	<mark>2-4 μm</mark> , 0.1– 1 mJ 1-100 kHz
Attosecond source	Intense pulses (µJ) 20-50 eV	High-repetition rate pulses 20-100 eV	X-ray attosecond pulses 100-1000 eV
Applications	XUV-XUV pump- probe Nonlinear phenomena	Surface science Coincidence measurements	Ultrafast X-ray science
Heyl et al., Optica, 2016	Geometrical Scaling (up)	Geometrical Scaling (down)	Wavelength Scaling

Intense attosecond source

Manschwetus et al., Phys. Rev. A, 2016

High repetition rate attosecond source

Optical Parametric Amplification

Laser	OPCPA, 850 nm, 5 μJ, 7 fs, 200 kHz, CEP-stable	
Atto-second	Few attosecond	
source	pulses @ 17-50 eV	
Application	Surface and AMO	
Application	science	

Harth et al., J. Opt., 2017, Guo et al., J. Phys. B, 2017

Development of attosecond sources

Laser	800 nm, 50 mJ, 10 fs, 10 Hz- 1kHz	850 nm, 100 μJ, 7 fs, 200 kHz	2-4 μm, 0.1– 1 mJ 30 fs, 1-100 kHz
Attosecond source	Intense pulses (μJ) 20-50 eV	High-repetition rate pulses 20-100 eV	X-ray attosecond pulses 20-1000 eV
Applications	XUV-XUV pump- probe Nonlinear phenomena	Surface science Coincidence measurements	Ultrafast X-ray science

Sheehy et al., PRL, 1999, Popmintchev et al. Nat. Phot. 2012

La Physique Attoseconde en France

loa

R. Lopez-Martens S. Haessler

Lyon F. Lépine E. Constant

Strasbourg J.-Y. Bigot

R. Taïeb J. Caillat A. Maquet

P. Salières

T. Ruchon

H. Merdji

S. Kazamias

Bordeaux E. Cormier E. Mevel Y. Mairesse

B. Carré

Outline

Extreme nonlinear optics Brief history/tutorial Attosecond sources

Attosecond light sources

Ultrafast atomic physics
Ionization time delays
Resonant photoionization

Attosecond physics

Photoionization of neon

Characterization

Single ionization of Ne in 2s and 2p shells

Single ionization of Ne in 2s and 2p shells

High spectral resolution

Spectrometer resolution 100 meV

> su = shake up $2p \rightarrow 3p$

2p ionization +

38 39 Kinetic energy [eV]

High temporal (20 as) and spectral resolution (200 meV) !

Gruson et al., Science, 2016 Isinger et al., Science, 2017

0

Interpretation of the atomic delay

E. P. Wigner, Phys. Rev. 1955

Interpretation of the atomic delay

"Absolute" Photoionization time delays

Fano resonance

Ultrafast atomic physics

Wigner representation of the autoionizing wavepacket

Conclusion

Multiple development of attosecond light sources for specific applications M

Many-electron physics in the time domain using spectral amplitude and phase measurements

Thank you for your attention

J. Mauritsson, P. Johnsson, M. Gisselbrecht, C.L. Arnold, P. Rudawski, S. Zhong, S. Nandi, C. Guo, H. Coudert-Alteirac, M. Isinger, Y.-C. Cheng, S. Mikaelsson, D. Busto, H. Wikmark, J. Peschel, S. Maclot, L. Neoricic

Theoretical Support

J. M. Dahlström, (Lund) E. Lindroth (Stockholm), L. Argenti, F. Martín (Madrid), A. Maquet (Paris), R. Taïeb (Paris)