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Les	  réseaux	  dépendant	  du	  temps	  

V (x) = V0 sin
2(kx)

x

V (x, t) = V0(t) sin
2[k(x� x0(t)]

Une	  ques9on	  générale,	  dont	  l’étude	  est	  rendue	  plus	  facile	  grâce	  à	  la	  flexibilité	  	  
des	  réseaux	  op9ques	  :	  	  

Que	  se	  passe-‐t-‐il	  quand	  les	  paramètres	  du	  réseau	  varient	  dans	  le	  temps	  ?	  

• 	  Localisa9on	  dynamique	  et	  modifica9on	  de	  l’effet	  tunnel	  

• 	  Les	  oscilla9ons	  de	  Bloch	  et	  leurs	  applica9ons	  (mesure	  de	  force,	  métrologie)	  

• 	  Spectroscopie	  des	  atomes	  dans	  le	  réseau	  

• 	  Dynamique	  chao9que,	  localisa9on	  d’Anderson	  



1.	  

Quelques	  hamiltoniens	  pour	  décrire	  	  
les	  réseaux	  dépendant	  du	  temps	  



Transforma8ons	  unitaires	  

On	  va	  considérer	  plusieurs	  hamiltoniens	  se	  déduisant	  les	  uns	  des	  autres	  	  
par	  transforma9on	  unitaire	  	  

Selon	  le	  problème	  considéré,	  on	  aura	  intérêt	  	  
à	  choisir	  l’un	  ou	  l’autre	  de	  ces	  hamiltoniens.	  

Ĥ0

Ĥ1 Ĥ2

Û1 Û2



Transla8on	  dans	  l’espace	  des	  impulsions	  :	  	  	  

Les	  deux	  transforma8ons	  unitaires	  u8les	  ici	  

Û1(t) = e�i x̂ p0(t)/~ Û1 x̂ Û
†
1 = x̂

Û1 p̂ Û
†
1 = p̂+ p0

i~dÛ1

dt

Û

†
1 = x̂ ṗ0 :	  ajoute	  un	  poten9el	  linéaire	  (force	  uniforme)	  

Transla8on	  dans	  l’espace	  des	  posi8ons	  :	  	  	  

i~dÛ2

dt

Û

†
2 = ẋ0 p̂ :	  ajoute	  un	  terme	  linéaire	  en	  	  	  	  	  	  	  	  	  (poten9el	  vecteur)	  p̂

Û2 x̂ Û
†
2 = x̂� x0

Û2 p̂ Û
†
2 = p̂

Û2(t) = e�i x0(t) p̂/~



Les	  trois	  hamiltoniens	  u8les	  

Û1 Û2

référenBel	  du	  laboratoire	  (galiléen)	  :	  
réseau	  en	  mouvement	  	  	  

référenBel	  du	  réseau	  :	  
potenBel	  fixe	  +	  force	  d’inerBe	  

Ĥ0(t) =
[p̂�A(t)]2

2m
+ V (x̂)

Ĥ1(t) =
p̂2

2m
+ V (x̂)� F (t) x̂ Ĥ2(t) =

p̂2

2m
+ V [x̂� x0(t)]

A(t) = mẋ0(t)

F (t) = �Ȧ(t) = �mẍ0(t)



2.	  

Hamiltonien	  du	  réseau	  vibrant	  	  
dans	  l’approxima8on	  des	  liaisons	  fortes	  

Dunlap-‐Kenkre	  (1986),	  Holthaus	  (1992)	  :	  	  
	  	  	  Comportement	  d’électrons	  dans	  des	  cristaux	  soumis	  à	  un	  champ	  électromagné9que	  

Pour	  des	  atomes	  froids	  :	  	  
	  	  	  	  Contrôle	  du	  coefficient	  tunnel	  pour	  favoriser	  la	  transi9on	  vers	  un	  isolant	  de	  MoV	  	  
	  	  	  	  Créa9on	  de	  champs	  magné9ques	  ar9ficiels	  ...	  	  

Il	  existe	  une	  valeur	  du	  champ	  oscillant	  pour	  laquelle	  le	  transport	  est	  complètement	  inhibé	  



Posi8on	  du	  problème	  

Réseau	  périodique	  1D	  infini,	  soumis	  à	  une	  vibra9on	  périodique	  en	  temps	  

x

V (x, t) = V0 sin
2[k(x� x0(t)]

x0(t) périodique	  de	  pulsa9on	  	  !
par	  exemple	  :	  	  x0(t) = x̄0 cos(!t)

On	  va	  restreindre	  la	  dynamique	  des	  atomes	  à	  

• 	  la	  bande	  d’énergie	  fondamentale	  	  

• 	  des	  transi9ons	  entre	  proches	  voisins	  

Hamiltonien	  	  de	  Hubbard	   V0 � Er Er = ~2k2/2m



L’hamiltonien	  de	  Hubbard	  pour	  un	  réseau	  secoué	  

Ĥ2(t) =
p̂2

2m
+ V [x̂� x0(t)]Point	  de	  départ	  :	  

On	  veut	  simplifier	  ceLe	  expression	  à	  l’approximaBon	  de	  Hubbard	  

On	  passe	  à	  la	  forme	  :	  	  	  Ĥ1(t) =
p̂2

2m
+ V (x̂)� F (t) x̂

Jg = 1/2

Je = 1/2

Je = 3/2
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�J
⇣
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⌘

T̂1 =
X
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�F (t)
X

j
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opérateur	  posi9on	  diagonal	  	  
dans	  la	  base	  de	  Wannier	  

F (t) = �mẍ0(t)

?	  



Hamiltonien	  de	  Hubbard	  (suite)	  

On	  prend	  donc	  en	  point	  de	  vue	  	  	  	  	  	  	  	  	  :	  	  Ĥ1

Ĥ1 = �J
⇣
T̂1 + T̂ †

1

⌘
� aF (t)

X

j

j |wjihwj |

Le	  point	  de	  vue	  intermédiaire	  	  	  	  	  	  	  	  est	  également	  intéressant	  :	  Ĥ0

Û1(t) = e�i x̂ p0(t)/~ �! Û1(t)|wj

i = e�i jap0(t)/~|w
j

i

J ei ap0(t)/~

J e�i ap0(t)/~

J ei ap0(t)/~

J e�i ap0(t)/~
j j + 1j � 1

Ĥ0(t) = Û †
1 (t)Ĥ1(t)Û1(t) + i~dÛ

†
1

dt
Û1On	  prend	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  ce	  qui	  donne	  :	  	  

= �J
⇣
T̂1 ei ap0(t)/~ + T̂ †

1 e�i ap0(t)/~
⌘

p0(t) = mẋ0

ModulaBon	  périodique	  des	  coefficients	  tunnels,	  qui	  deviennent	  complexes	  

�aF (t) = ~! ⇠(t)

sans	  dimension	  



Etude	  expérimentale	  :	  groupe	  de	  Pise	  (E.	  Arimondo	  2007)	  

• 	  On	  charge	  de	  manière	  adiaba9que	  un	  condensat	  de	  rubidium	  dans	  un	  réseau	  	  
formé	  avec	  de	  la	  lumière	  de	  longueur	  	  	   � = 852 nm

x

⌫1 ⌫2

atomes	  dans	  	  
la	  bande	  fondamentale	  

voisinage	  de	  q = 0	


�1 0 1
0
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20

30

V0 = 8Er

V0/Er = 4 à 9

• 	  On	  montre	  que	  la	  dynamique	  (étalement	  d’un	  paquet	  d’ondes)	  des	  atomes	  dans	  le	  	  
	  	  réseau	  modulé	  est	  similaire	  à	  celle	  d’un	  réseau	  fixe	  et	  on	  mesure	  le	  taux	  tunnel	  J’ 	  

• 	  On	  branche	  une	  modula9on	  sinusoïdale	  de	  la	  différence	  de	  fréquence	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
en	  u9lisant	  des	  modulateurs	  acousto-‐op9ques	  indépendants	  sur	  chacun	  des	  faisceaux	  	  

⌫1 � ⌫2

V (x, t) = V0 sin
2[k(x� x0(t)] x0(t) = x̄0 cos(!t)



x

⌫1 ⌫2

Laser	  

Mesure	  du	  coefficient	  tunnel	  

x

⌫1 ⌫2

On	  coupe	  le	  laser	  assurant	  le	  confinement	  le	  long	  de	  l’axe	  x :	


On	  compare	  l’étalement	  en	  présence	  et	  en	  absence	  de	  modula9on	  du	  réseau	  

t
expansion

. 200 ms



Les	  résultats	  du	  groupe	  de	  Pise	  

Rapports	  des	  coefficients	  tunnel	  avec	  (J’)	  et	  sans	  (J)	  vibra9on	  pour	  

• 	  différentes	  fréquences	  de	  vibra9on	  du	  réseau	  	  
• 	  différentes	  profondeurs	  du	  réseau	  	  V0/Er

V (x, t) = V0 sin
2[k(x� x0(t)] x0(t) = x̄0 cos(!t)

• 	  différentes	  amplitudes	  de	  vibra9on	  	  	  	  	  	  	  	  	  (jusqu’à	  0.5 a)	  	  x̄0

!/2⇡

Courbe	  «	  universelle	  »	  en	  fonc8on	  de	  :	  

our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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J 0 > 0

J 0 < 0

our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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Les	  résultats	  du	  groupe	  de	  Pise	  (suite)	  

L’étalement	  en	  présence	  de	  réseau	  ne	  donne	  pas	  accès	  au	  signe	  du	  coefficient	  tunnel	  	  

Un	  temps	  de	  vol	  sans	  réseau	  et	  sans	  piège	  dipolaire	  de	  20	  ms	  	  
permet	  de	  tester	  la	  distribu9on	  en	  impulsion	  des	  atomes	  	  

• 	  Posi9on	  du	  maximum	  de	  la	  distribu9on	  	  
	  	  en	  impulsion	  (minimum	  de	  l’énergie	  dans	  
	  	  la	  zone	  de	  Brillouin)	  

• 	  Largeur	  des	  pics	  (cohérence	  du	  gaz,	  	  
	  	  	  ini9alement	  condensé)	  

our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
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Gaussian profile of the ground-state condensate atoms.
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jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
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the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
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We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,
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We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.
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tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,
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We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
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ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
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! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,
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9 and !=2! ! 3 kHz. The vertical dashed line marks the
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and Jeff < 0 (right). In both regions, a typical (vertically inte-
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We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,
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our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
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region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
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FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
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Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
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region of width equal to about 1=4 of the peak separation
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For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
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Cohérence	  à	  peu	  près	  	  
maintenue	  (sur	  100	  ms)	  si	  

et	  si	  on	  reste	  en	  dehors	  du	  	  
voisinage	  de	  l’annula9on	  de	  J’	


J ⌧ ~! ⌧ gap 0� 1



3.	  

Approche	  naïve	  à	  la	  localisa8on	  dynamique,	  
système	  à	  deux	  sites	  et	  réseau	  infini	  



Un	  modèle	  à	  deux	  sites	  

+	   -‐	  

|w+i |w�i

Ĥ = �J (|w+ihw�| + |w�ihw+|)

Ecriture	  en	  terme	  des	  matrices	  de	  Pauli	  :	  

�
x

=

✓
0 1
1 0

◆
�z =

✓
1 0
0 �1

◆

Problème	  formellement	  iden9que	  à	  celui	  d’un	  spin	  ½	  dont	  le	  moment	  magné9que	  
associé	  est	  couplé	  à	  deux	  champs	  magné9ques	  :	  

• 	  un	  champ	  constant	  B0 ,	  parallèle	  à	  l’axe	  x	

• 	  un	  champ	  oscillant	  B1 ,	  parallèle	  à	  l’axe	  z	  	  

Comment	  est	  modifiée	  la	  réponse	  du	  spin	  au	  champ	  B0	  	  (facteur	  de	  Landé)	  	  
du	  fait	  de	  la	  présence	  du	  champ	  oscillant	  B1	  ?	  

x = �a/2 x = +a/2

�1

2
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Ĥ = �J �̂
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2
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Spin	  dans	  un	  champ	  en	  oscilla8on	  rapide	  

Haroche,	  Cohen-‐Tannoudji,	  	  
Audouin,	  Schermann	  1970	  

~B(t) = B0~ux

+B1(t)~uz

B1(t) = ¯B1 cos(!t)

ˆH(t) =
~!0
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	  	  	  	  	  	  	  	  sépara9on	  entre	  les	  raies	  spectrales	  en	  présence	  de	  B1	  	  (sépara9on	  propor9onnelle	  à	  B0)	  

	  	  	  	  	  	  	  	  	  sépara9on	  entre	  les	  raies	  spectrales	  en	  absence	  de	  B1	  	  	  
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FIG. 3. Plot of the ratio s/so as a function of yHq/cu.
The experimental points for Rb and H fit into the same
theoretical curve.

both experiments the ratio s/s, as a function of
the dimensionless quantity yH, /&u, proportional
to the rf field amplitude. It can be seen that the
experimental results for H' and Rb fjt into the
same curve.
These results can be understood if one consid-

ers that the microwave field h, cosset is a probe
which explores the energy diagram of the com-
pound system "atom+rf field" which we call the
atom "dressed" by the rf photons. We have al-
ready studied in great detail the effect of such a
"dressing" on the magnetic properties of an atom-
ic level. ' Let us recall briefly the results of the
theory in the simple case of hydrogen. The en-
ergy diagram of the free-hydrogen ground state
in the field H, is given on Fig. 2(a). In the pres-
ence of an rf field H, cos~t perpendicular to Ho,
these energy levels are modified. First, suppose
that B, is very small so that the coupling between
the atomic system and the rf photons can be ne-
glected. Then the energy levels of the compound
system will merely be the states

~ E, mF, n) rep-
resenting the atom in the state ( Em )F(E=1,0)
with n rf photons. present; the energy of these
states is (with h = 1) n~ if F = 0, and &, +m ~&uo
+n~ if I' = 1. In the I" = 1 states, the energy dia-
gram of the compound system will consist of
manifolds separated from each other by the en-
ergy ~; each manifold corresponds to a given
value of n and is split into three magnetic levels
corresponding to the three possible m~ values
[da.shed lines on Fig. 2(b)]. A microwave field
can induce only ~=1, &n=0 transitions [for ex-
ample when h, is perpendicular to H„only the
transitions A. and g of Fig. 2(b) are possible].
The selection rule &n=O results from the com-
mutation of microwave and rf variables. The
coupling with the rf field which we now take into

0 = 0, +(n—n')(d+(ggmg-g/ m/') psH,
must appear. They can be understood in terms

(2)

account occurs only in the F = 1 states and leads
to a kind of "renormalization" of the "unper-
turbed" system described above. It has two ef-
fects': First, it changes the slope of the energy
levels [full lines on Fig. 2(c)]; this corresponds
to R modification of the Lande factor g~ of the
hyperfine level E, which becomes now

ZF ZF~O(yFHy/~), yF 8F i"8,
where ~, is the zero-order Bessel function and
p~ the Bohr magneton. Second, the coupling
modifies the energy eigenstates: The "renorm-
alized" states ~E, m~, n)d are now admixtures of
the unperturbed states ~ E, m~', n') due to virtual
absorptions and emissions of rf quanta and no
longer correspond to a definite n value.

The modification of the Lande factor explains
our experimental observations. In the H-maser
experiment, we detect the maser oscillation on
the transition g, (~E =0;n) —~E = 1,m~ =+1;n)d)
[Fig. 2(c)] of the "dressed" atom which corre-
sponds, for B,=O, to the field-dependent transi-
tion p of the free atom [Fig. 2(a)]. The case of
Rb" is more complicated because both hyperfine
levels E=2, E'=1 are coupled to the rf field.
But relation (1) holds for both hyperfine levels
and since y~——-y~., and Jo is an even function,
g~ and g~. are modified in the same way and in
particular cancel for the same values of B,. For
this reason, the splitting s between the field-de-
pendent resonances must vary exactly as in the
hydrogen case. On Fig. 3 we have plotted in solid
lines the theoretical curve &o(y~H, /u) which fits
very well with the experimental points. We have
observed several oscil1.ations of s. Let us men-
tion that the variations of g~ are responsible for
other physical effects such as the modification of
the width of the zero-field level-crossing reso-
nance s (Hanle effect).'
As can be seen on Fig. 1 in the case of Rb",

the coupling with the rf field affects not only the
splitting s but also the intensity of the lines.
This is due to the modification of the magnetic
dipole matrix elements between the correspond-
ing perturbed eigenstates. Moreover, new tran-
sitions can now be induced between two eigen-
states ~E, m~, n)d and ~E', mF. ', n')d with differ-
ent n values (as n is no longer a good quantum
number, the se1.ection rule M=0 is no longer
valid). Thus, new sideband resonances at the
frequencies
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Le	  problème	  à	  deux	  sites	  
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Etat	  du	  système	  à	  l’instant	  t	
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Si	  	  	  	  	  	  	  	  	  oscille	  vite	  à	  l’échelle	  du	  temps	  tunnel	  	  	  	  	  	  	  	  	  	  ,	  il	  est	  u9le	  d’introduire	  	  
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Solu8on	  approchée	  du	  problème	  à	  deux	  sites	  
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Pour	  une	  modula9on	  sinusoïdale	  :	  	  
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FIG. 3. Plot of the ratio s/so as a function of yHq/cu.
The experimental points for Rb and H fit into the same
theoretical curve.

both experiments the ratio s/s, as a function of
the dimensionless quantity yH, /&u, proportional
to the rf field amplitude. It can be seen that the
experimental results for H' and Rb fjt into the
same curve.
These results can be understood if one consid-

ers that the microwave field h, cosset is a probe
which explores the energy diagram of the com-
pound system "atom+rf field" which we call the
atom "dressed" by the rf photons. We have al-
ready studied in great detail the effect of such a
"dressing" on the magnetic properties of an atom-
ic level. ' Let us recall briefly the results of the
theory in the simple case of hydrogen. The en-
ergy diagram of the free-hydrogen ground state
in the field H, is given on Fig. 2(a). In the pres-
ence of an rf field H, cos~t perpendicular to Ho,
these energy levels are modified. First, suppose
that B, is very small so that the coupling between
the atomic system and the rf photons can be ne-
glected. Then the energy levels of the compound
system will merely be the states

~ E, mF, n) rep-
resenting the atom in the state ( Em )F(E=1,0)
with n rf photons. present; the energy of these
states is (with h = 1) n~ if F = 0, and &, +m ~&uo
+n~ if I' = 1. In the I" = 1 states, the energy dia-
gram of the compound system will consist of
manifolds separated from each other by the en-
ergy ~; each manifold corresponds to a given
value of n and is split into three magnetic levels
corresponding to the three possible m~ values
[da.shed lines on Fig. 2(b)]. A microwave field
can induce only ~=1, &n=0 transitions [for ex-
ample when h, is perpendicular to H„only the
transitions A. and g of Fig. 2(b) are possible].
The selection rule &n=O results from the com-
mutation of microwave and rf variables. The
coupling with the rf field which we now take into

0 = 0, +(n—n')(d+(ggmg-g/ m/') psH,
must appear. They can be understood in terms
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account occurs only in the F = 1 states and leads
to a kind of "renormalization" of the "unper-
turbed" system described above. It has two ef-
fects': First, it changes the slope of the energy
levels [full lines on Fig. 2(c)]; this corresponds
to R modification of the Lande factor g~ of the
hyperfine level E, which becomes now

ZF ZF~O(yFHy/~), yF 8F i"8,
where ~, is the zero-order Bessel function and
p~ the Bohr magneton. Second, the coupling
modifies the energy eigenstates: The "renorm-
alized" states ~E, m~, n)d are now admixtures of
the unperturbed states ~ E, m~', n') due to virtual
absorptions and emissions of rf quanta and no
longer correspond to a definite n value.

The modification of the Lande factor explains
our experimental observations. In the H-maser
experiment, we detect the maser oscillation on
the transition g, (~E =0;n) —~E = 1,m~ =+1;n)d)
[Fig. 2(c)] of the "dressed" atom which corre-
sponds, for B,=O, to the field-dependent transi-
tion p of the free atom [Fig. 2(a)]. The case of
Rb" is more complicated because both hyperfine
levels E=2, E'=1 are coupled to the rf field.
But relation (1) holds for both hyperfine levels
and since y~——-y~., and Jo is an even function,
g~ and g~. are modified in the same way and in
particular cancel for the same values of B,. For
this reason, the splitting s between the field-de-
pendent resonances must vary exactly as in the
hydrogen case. On Fig. 3 we have plotted in solid
lines the theoretical curve &o(y~H, /u) which fits
very well with the experimental points. We have
observed several oscil1.ations of s. Let us men-
tion that the variations of g~ are responsible for
other physical effects such as the modification of
the width of the zero-field level-crossing reso-
nance s (Hanle effect).'
As can be seen on Fig. 1 in the case of Rb",

the coupling with the rf field affects not only the
splitting s but also the intensity of the lines.
This is due to the modification of the magnetic
dipole matrix elements between the correspond-
ing perturbed eigenstates. Moreover, new tran-
sitions can now be induced between two eigen-
states ~E, m~, n)d and ~E', mF. ', n')d with differ-
ent n values (as n is no longer a good quantum
number, the se1.ection rule M=0 is no longer
valid). Thus, new sideband resonances at the
frequencies
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Comment	  comprendre	  l’annula9on	  
du	  facteur	  de	  Landé	  

du	  coefficient	  tunnel	   ?	  

On	  remplace	  la	  modula9on	  sinusoïdale	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
par	  une	  modula9on	  carrée	  	  (plus	  simple	  analy9quement)	  	  

B1(t) = ¯B1 cos(!t)

t

+B̄1

�B̄1

B0

+B̄1

�B̄1

q
B̄2

1 +B2
0 ⇡ B̄1 +

B2
0

2B̄1

⇡ B̄1

Modifica9on	  du	  facteur	  de	  Landé	  :	  	   sinc
⇣⇡
2

!̄1

!

⌘
J0

⇣ !̄1

!

⌘
au	  lieu	  de	  	  

Premier	  zéro	  en	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  :	  le	  spin	  fait	  exactement	  un	  tour	  complet	  à	  chaque	  demi-‐période	  !	  	  !̄1 = 2!



Transposi8on	  de	  ce`e	  méthode	  approchée	  au	  réseau	  infini	  

J ei ap0(t)/~

J e�i ap0(t)/~

J ei ap0(t)/~

J e�i ap0(t)/~
j j + 1j � 1

Choisissons	  la	  version	  	  	  	  	  	  	  	  de	  l’hamiltonien	  avec	  des	  taux	  tunnel	  modulés	  

|�(t)i =
X

j

↵̃j(t) |wjiet	  écrivons	  l’état	  de	  l’atome	  sous	  la	  forme	  

Ĥ0

i~ ˙̃↵j = �J
�
ei⌘ ↵̃j�1 + e�i⌘ ↵̃j+1

�

⌘ = !

Z t

0
⇠(t0) dt0 = ap0(t)/~

chaîne	  d’équa9ons	  couplées	  :	  

avec	  :	  

On	  prend	  la	  moyenne	  sur	  une	  période	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
de	  ces	  équa9ons	  :	  

2⇡/!

i~ ˙̄↵j = �J 0 (↵̄j�1 + ↵̄j+1)

J 0 = J hei⌘i = J J0(⇠0)

équivalent	  à	  un	  réseau	  sta8que,	  	  
avec	  un	  taux	  tunnel	  J’	  

our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
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Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
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region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,
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4.	  

U8lisa8on	  du	  théorème	  de	  Bloch,	  
lien	  avec	  l’approche	  de	  Floquet	  	  



Le	  théorème	  de	  Bloch	  dans	  le	  cas	  dépendant	  du	  temps	  	  

On	  considère	  un	  hamiltonien	  dépendant	  du	  temps	  	  
et	  spa9alement	  périodique	  à	  chaque	  instant	  :	  

Ĥ(t) =
(p̂�A(t))2

2m
+ V (x̂, t)

V (x+ a, t) = V (x, t)

La	  forme	  de	  Bloch	  est	  préservée	  au	  cours	  de	  l’évolu9on	  :	  

�(x, t = 0) = e

iqx

u(x, t = 0) u(x, t = 0) :	  périodique	  de	  période	  a	


même	  quasi-‐moment	  q	

�(x, t) = e

iqx

u(x, t) u(x, t) :	  périodique	  de	  période	  a	


Démonstra9on	  :	   [Ĥ(t), T̂a] = 0 [Û(0 ! t), T̂a] = 0 Û) :	  opérateur	  d’évolu9on	  

Û(0 ! t)�(x, 0) = �(x, t) sont	  états	  propres	  de	  	  	  	  	  	  	  	  avec	  la	  même	  v.p.	  et	  	   T̂a) �(x, 0)

x



Evolu8on	  d’une	  onde	  de	  Bloch	  pour	  les	  trois	  hamiltoniens	  	  

Ĥ0(t) =
[p̂�A(t)]2

2m
+ V (x̂)Hamiltonien	  	  

Forme	  de	  Bloch	  conservée,	  	  

Hamiltonien	  	  Ĥ2(t) =
p̂2

2m
+ V [x̂� x0(t)]

Forme	  de	  Bloch	  conservée,	  	  

Hamiltonien	  	  Ĥ1(t) =
p̂2

2m
+ V (x̂)� F (t) x̂

Il	  n’est	  pas	  spa9alement	  périodique,	  mais	  il	  se	  déduit	  de	  	  	  	  	  	  	  	  par	  :	  	  Ĥ0

�(x, t) = Û1�0(x, t) = e

iq(t)x/~
u(x, t)

Û1(t) = e�i x̂ p0(t)/~

e

ixq

u(x, 0) ! e

ixq

u(x, t)

e

ixq

u(x, 0) ! e

ixq

u(x, t)

e

ixq

u(x, 0) ! e

ixq(t)
u(x, t)

q(t) = q(0)

q(t) = q(0)

q(t) = q(0)� p0(t)/~ = q(0) +
1

~

Z t

0
F (t0) dt0



Evolu8on	  d’une	  onde	  de	  Bloch	  (approx.	  à	  une	  bande)	  

Ĥ0(t) =
[p̂�A(t)]2

2m
+ V (x̂)L’hamiltonien	  	   devient	   Ĥ0(t) = �J

⇣
T̂1 ei ap0(t)/~ + T̂ †

1 e�i ap0(t)/~
⌘

CeVe	  solu9on	  est	  exacte	  dans	  le	  cadre	  du	  modèle	  à	  une	  bande	  

La	  valeur	  explicite	  de	  	  	  	  	  	  	  	  	  	  	  	  	  	  est	  obtenue	  en	  injectant	  	  
ceVe	  forme	  de	  solu9on	  dans	  l’équa9on	  de	  Schrödinger	  

�q(t)

J ei ap0(t)/~

J e�i ap0(t)/~

J ei ap0(t)/~

J e�i ap0(t)/~
j j + 1j � 1

La	  conserva9on	  de	  la	  forme	  de	  Bloch	  	  
e

ixq

u(x, 0) ! e

ixq

u(x, t) devient	  donc	  :	  

Il	  n’y	  a	  qu’une	  seule	  fonc9on	  périodique	  sur	  le	  réseau	  	  (à	  une	  constante	  mul9plica9ve	  près)	  :	  	  

! | (t)i = e�i�q(t)
X

j

ei jaq|wji

|ui =
X

j

|wji

| (0)i = e�i�q(0)
X

j

ei jaq|wji | (t)i = e�i�q(t)
X

j

ei jaq|wji



Evolu8on	  d’une	  onde	  de	  Bloch	  (suite)	  

La	  forme	  proposée	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  est	  par	  construc9on	  	  

des	  ondes	  de	  Bloch	  un	  état	  propre	  de	  l’hamiltonien	  	  

avec	  la	  valeur	  propre	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  où	  	  	  	  

| (t)i = e�i�q(t)
X

j

ei jaq|wji

Ĥ0(t) = �J
⇣
T̂1 ei ap0(t)/~ + T̂ †

1 e�i ap0(t)/~
⌘

E[q � p0(t)/~] E[q] = �2J cos(aq)

L’équa9on	  de	  Schrödinger	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s’écrit	  donc	  	  i~d| (t)i
dt

= Ĥ0(t)| (t)i

~�̇q = E[q � p0(t)/~] �q(t) = �q(0) +
1

~

Z t

0
E[q � p0(t

0)/~] dt0

x0(t) = x̄0 cos(!t)

p0(t) = �m!x̄0 sin(!t) ⇠0 = �m!ax̄0/~

�q(T ) = �q(0)�
2J

~ cos(aq) J0(⇠0)

Pour	  une	  modula9on	  sinusoïdale	  de	  période	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  :	  	  T = 2⇡/!



«	  Stroboscopie	  »	  et	  quasi-‐énergie	  

Phase	  accumulée	  après	  n	  périodes	  T	  :	   �q(nT )� �q(0) =
1

~

Z nT

0
E[q � p0(t

0)/~] dt0

= n [�q(T )� �q(0)]

Si	  on	  regarde	  la	  valeur	  de	  l’onde	  de	  Bloch	  aux	  instants	  0, T, 2T,	  ...	  on	  trouve	  	  

0 T 2T nT
t

| (0)i e�i✏(q)T/~| (0)i e�i✏(q) 2T/~| (0)i e�i✏(q) nT/~| (0)i

Posons	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  :	  «	  quasi-‐énergie	  »	  	  ✏(q) =
~
T

[�q(T )� �q(0)] = �2J cos(aq) J0(⇠0)

Avec	  ceVe	  stroboscopie	  de	  période	  T,	  l’évolu9on	  est	  iden9que	  à	  celle	  d’une	  onde	  	  
de	  Bloch	  dans	  un	  réseau	  indépendant	  du	  temps,	  moyennant	  la	  subs9tu9on	  :	  	  

E(q) = �2J cos(aq) ✏(q) = �2J cos(aq) J0(⇠0)

Aucune	  hypothèse	  sur	  le	  rapport	  	  	  	  	  	  	  	  	  	  	  	  	  n’a	  été	  nécessaire	  !	  J/~!



La	  méthode	  de	  Floquet	  

Méthode	  générale	  pour	  traiter	  une	  évolu9on	  hamiltonienne,	  avec	  	  
un	  hamiltonien	  	  	  	  	  	  	  	  	  	  	  dépendant	  périodiquement	  du	  temps	  de	  période	  T.	  	  Ĥ(t)

Si	  	  	  	  	  	  	  est	  en	  fait	  indépendant	  du	  temps,	  l’opérateur	  d’évolu9on	  vérifie	  	  	  	  

ˆU(T ) = exp(�i ˆHT/~) Û(T ) |�↵i = e�iE↵T/~ |�↵i

où	  les	  	  	  	  	  	  	  	  	  	  	  sont	  les	  états	  propres	  de	  	  	  	  	  	  	  d’énergie	  	  	  |�↵i Ĥ E↵

Ĥ

ĤSi	  	  	  	  	  	  dépend	  du	  temps,	  on	  peut	  encore	  diagonaliser	  	  	  	  	  	  	  	  	  	  	  	  (unitaire)	  et	  	  
meVre	  les	  valeurs	  propres	  (nombre	  de	  module	  1)	  sous	  la	  forme	  	  	  	  	  	  

Û(T )
e�i✏↵T/~

Û(T )|�↵i = e�i✏↵T/~|�↵i
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La	  méthode	  de	  Floquet	  et	  le	  réseau	  vibrant	  

x

La	  méthode	  de	  Floquet	  nécessite	  la	  recherche	  	  
des	  états	  propres	  de	  l’opérateur	  d’évolu9on	  	  
sur	  une	  période	  temporelle	  	  T = 2⇡/!

La	  forme	  de	  Bloch	  est	  préservée	  lors	  de	  l’évolu9on,	  	  
ainsi	  que	  le	  quasi-‐moment	  q	  (pour	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  	  Ĥ0, Ĥ2

Ses	  états	  propres	  	  	  	  	  	  	  	  	  	  	  	  sont	  des	  combinaisons	  linéaires	  
des	  états	  de	  Bloch	  	  	  	  	  	  	  	  	  	  	  	  	  	  des	  bandes	  jugées	  per9nentes	  

|�↵i
| n,qi

La	  seule	  ac9on	  possible	  «	  non	  triviale	  »	  de	  l’opérateur	  	  
d’évolu9on	  est	  de	  mélanger	  les	  bandes.	  	  
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Dans	  l’approxima9on	  à	  une	  bande	  du	  modèle	  de	  Hubbard,	  les	  états	  	  	  	  	  	  	  	  	  	  	  	  	  sont	  	  
états	  propres	  de	  	  	  	  	  	  	  	  	  	  	  	  	  et	  l’effet	  de	  l’évolu9on	  se	  résume	  à	  la	  phase	  
acquise	  par	  chaque	  état	  de	  Bloch	  sur	  une	  période	  T.	  	  
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L’absence	  de	  diffusion	  pour	  	  J0(⇠0) = 0

Paquet	  d’ondes	  ini9al	   | (0)i =
Z

Z.B.
C(q) | qi dq dans	  la	  bande	  fondamentale	  

| qi ✏(q) = �2J cos(aq) J0(⇠0)e�i✏(q)T/~| qidurée	  T	  

our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
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sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
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the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.
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Brillouin zone. In the expression for V , hmax is the mean
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On	  choisit	  une	  modula9on	  telle	  que	   J0(⇠0) = 0

| (T )i =
Z

Z.B.
C(q) e�i✏(q)T/~ | qi dq

devient	  dans	  ce	  cas	  :	  	  | (T )i = | (0)i

La	  rela9on	  générale	  	  

Le	  paquet	  d’ondes	  se	  reconstruit	  de	  manière	  iden9que	  toutes	  les	  périodes	  !	  	  	  

Pas	  de	  diffusion	  spaBale	  	  

Dévia9on	  possible	  si	  les	  sauts	  à	  deux	  (ou	  plus)	  sites	  sont	  significa9fs	  	  



5.	  

Réseau	  vibrant	  à	  deux	  dimensions	  :	  
l’expérience	  d’Hambourg	  



Le	  réseau	  op8que	  triangulaire	  
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Le	  laser	  formant	  le	  réseau	  est	  désaccordé	  	  
sur	  le	  rouge	  de	  la	  résonance	  atomique	  	  	  

Les	  atomes	  sont	  piégés	  aux	  minima	  de	  	  
l’intensité	  totale	  :	  
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On	  forme	  ainsi	  un	  réseau	  triangulaire,	  	  
dont	  les	  sites	  sont	  localisés	  sur	  	  
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La	  modula8on	  temporelle	  du	  réseau	  triangulaire	  
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On	  ob9ent	  un	  hamiltonien	  de	  Hubbard	  avec	  deux	  coefficients	  tunnel	  J’	  et J’’	


Les	  fonc9ons	  propres	  sont	  (comme	  toujours)	  des	  fonc9ons	  de	  Bloch	  :	   | ~qi =
X

~j

ei~r~j ·~q |w~ji

Energies	  :	  	   E(~q) = �2 [J 0
cos(~a1 · ~q) + J 0

cos(~a2 · ~q) + J 00
cos((~a1 � ~a2) · ~q)]



Les	  minima	  de	  l’énergie	  dans	  le	  réseau	  modulé	  

E(~q) = �2 [J 0
cos(~a1 · ~q) + J 0

cos(~a2 · ~q) + J 00
cos((~a1 � ~a2) · ~q)] a1a2
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Si	  on	  change	  le	  signe	  de	  J’	  et/ou	  J’’,	  le	  minimum	  de	  l’énergie	  se	  déplace	  dans	  la	  zone	  de	  Brillouin	  
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configurations in the quantum spin case arising
from the competition between interactions and
the geometry of the lattice has been studied in
many different contexts (3, 4). Classical frustrated
spin systems also show intriguing properties
(5–7), such as highly degenerate ground states,
and emergent phenomena, such as artificial mag-
netic fields and monopoles observed in spin ice.

Despite the interest in magnetically frustrated
systems, their experimental realization and char-
acterization in “natural” solid-state devices still
poses a major challenge. Recently, there have
been considerable advances in the direction of
simulating quantum magnetism (8–15). We re-
port on a versatile simulator for large-scale classical
magnetism on a two-dimensional (2D) triangu-
lar optical lattice (16) by exploiting the motional
degrees of freedom of ultracold bosons (17). The
cornerstone of our simulation is the independent
tuning of the nearest-neighbor coupling elements
J and J ′ (Fig. 1) by introducing a fast oscillation
of the lattice (18). In particular, we can even
control the sign of these elements (19, 20), thus
allowing for ferromagnetic or antiferromagnetic
coupling schemes. Hence, we gain access to the
whole diversity of expected complex magnetic
phases in our 2D triangular system and can study
large-system phase transitions as well as spon-
taneous symmetry-breaking caused by frustration.
With our approach, the easily achievable Bose-
Einstein condensate (BEC) temperatures are suf-
ficient to observe Néel-ordered and spin-frustrated
states. This is an advantage when compared with
systems based on superexchange interaction
(10), which demand much lower temperatures.

For weak interactions, ultracold bosonic atoms
in an optical lattice form a superfluid state [in our
2D array of tubes: lattice depth is 5.6Er (where Er
is the recoil energy of the lattice), on-site inter-
action U = 0.004Er, single-particle tunneling
J̃ ¼ 0:002Er, and a maximum of 250 particles
per tube]. In this case, the atoms at each site i of
the lattice have a well-defined local phase qi that
can, as a central concept here, be identified with
a classical vector spinSi ¼ [cos(qi),sin(qi)] (see
also Fig. 1). Long-range order of these local
phases (spins) is imprinted by the minimiza-
tion of the energy

E(fqig) ¼ − ∑
〈i, j〉

Jij cos(qi − qj)

¼ − ∑
〈i, j〉

JijSi ⋅ Sj ð1Þ

where the sum extends over all pairs of neigh-
boring lattice sites. Note that we study large
systems of ~1000 populated lattice sites. As a
second central concept, the tunneling matrix ele-

ments Jij assume the role of the “spin-spin”
coupling parameters between neighboring lattice
sites: Positive Jij correspond to ferromagnetic
interaction, and negative Jij are consistent with
antiferromagnetic interaction. The most impor-
tant feature of our approach is the independent
tuning of the tunneling parameters J and J′ along
two directions (Fig. 1) via an elliptical shaking
of the lattice (17). This leads to various ferro-
magnetic, antiferromagnetic, and mixed-spin con-
figurations (Fig. 2). In the situation where all
tunneling parameters are positive (J, J′ > 0), the
spins align parallel, and we associate this with a
fully ferromagnetically ordered phase. This is
identical to the ordering observed without shak-
ing. When, for example, the signs of the J ′ cou-
plings are inverted (J > 0, J′ < 0), the new
ground state of the system is of rhombic order:
Along the direction of negative coupling, the
spins arrange in antiferromagnetic order, where-
as the coupling in J direction remains ferromag-
netic. The other configurations shown in Fig. 2

(spiral and chain order) can be explained in a
similar fashion. Each of these spin configura-
tions has its own, unique quasi-momentum dis-
tribution, which serves as a clear signature for
identification via standard time-of-flight imaging
techniques (18). The experimental data obtained
for the different cases are presented in Fig. 2.

The rich variety of spin orders as a function
of the control parameters J and J′ can be mapped
into the phase diagram (Fig. 3A). The background
colors are meant to guide the eye and indicate
the different spin configurations as expected from
the minimization of the energy function (Eq. 1).
We assign a symbol, representing the respective
phase, to each data point by comparing the mea-
sured momentum distribution with the one ob-
tained from theoretical calculations (17). The
measured data matches very well with theory
(18). The phase diagram has several interest-
ing features that can be understood from the
energy function (Eq. 1): First, the ferromagnetic
phase (F) on the right-hand side (J′ > 0) extends
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Fig. 1. Illustration of a
single plaquette within a
large-scale triangular lat-
tice. The accessible, inde-
pendent control parameters
J and J′ are highlighted. The
local phase of the atoms
residing on a single lat-
tice site is mapped onto a
classical vector spin (red ar-
rows). The coupling param-
eters J and J′ can be tuned ferro- or antiferromagnetically and determine the resulting spin configuration.

Fig. 2. Spin configura-
tions in a triangular lattice
and their experimental
signatures. Sketches of
small parts of the six rel-
evant spin-orders, which
can be realized within
the large-scale lattice
by tuning J and J′, are
shown. Solid and dashed
lines indicate ferro- and
antiferromagnetic cou-
plings, respectively. In
the spiral cases, two en-
ergetically degenerate
spin configurations exist.
The corresponding ex-
perimentally observed
momentum distributions
show distinct signatures.
The axes in the experi-
mental data mark the
absolute position of the
peaks. The pictures rep-
resent averages of sev-
eral experimental runs.
In the two spiral cases,
because both ground-
state configurations randomly appear, the signature of both modes is present in the average of con-
secutive pictures (see Fig. 4).
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configurations in the quantum spin case arising
from the competition between interactions and
the geometry of the lattice has been studied in
many different contexts (3, 4). Classical frustrated
spin systems also show intriguing properties
(5–7), such as highly degenerate ground states,
and emergent phenomena, such as artificial mag-
netic fields and monopoles observed in spin ice.

Despite the interest in magnetically frustrated
systems, their experimental realization and char-
acterization in “natural” solid-state devices still
poses a major challenge. Recently, there have
been considerable advances in the direction of
simulating quantum magnetism (8–15). We re-
port on a versatile simulator for large-scale classical
magnetism on a two-dimensional (2D) triangu-
lar optical lattice (16) by exploiting the motional
degrees of freedom of ultracold bosons (17). The
cornerstone of our simulation is the independent
tuning of the nearest-neighbor coupling elements
J and J ′ (Fig. 1) by introducing a fast oscillation
of the lattice (18). In particular, we can even
control the sign of these elements (19, 20), thus
allowing for ferromagnetic or antiferromagnetic
coupling schemes. Hence, we gain access to the
whole diversity of expected complex magnetic
phases in our 2D triangular system and can study
large-system phase transitions as well as spon-
taneous symmetry-breaking caused by frustration.
With our approach, the easily achievable Bose-
Einstein condensate (BEC) temperatures are suf-
ficient to observe Néel-ordered and spin-frustrated
states. This is an advantage when compared with
systems based on superexchange interaction
(10), which demand much lower temperatures.

For weak interactions, ultracold bosonic atoms
in an optical lattice form a superfluid state [in our
2D array of tubes: lattice depth is 5.6Er (where Er
is the recoil energy of the lattice), on-site inter-
action U = 0.004Er, single-particle tunneling
J̃ ¼ 0:002Er, and a maximum of 250 particles
per tube]. In this case, the atoms at each site i of
the lattice have a well-defined local phase qi that
can, as a central concept here, be identified with
a classical vector spinSi ¼ [cos(qi),sin(qi)] (see
also Fig. 1). Long-range order of these local
phases (spins) is imprinted by the minimiza-
tion of the energy

E(fqig) ¼ − ∑
〈i, j〉

Jij cos(qi − qj)

¼ − ∑
〈i, j〉

JijSi ⋅ Sj ð1Þ

where the sum extends over all pairs of neigh-
boring lattice sites. Note that we study large
systems of ~1000 populated lattice sites. As a
second central concept, the tunneling matrix ele-

ments Jij assume the role of the “spin-spin”
coupling parameters between neighboring lattice
sites: Positive Jij correspond to ferromagnetic
interaction, and negative Jij are consistent with
antiferromagnetic interaction. The most impor-
tant feature of our approach is the independent
tuning of the tunneling parameters J and J′ along
two directions (Fig. 1) via an elliptical shaking
of the lattice (17). This leads to various ferro-
magnetic, antiferromagnetic, and mixed-spin con-
figurations (Fig. 2). In the situation where all
tunneling parameters are positive (J, J′ > 0), the
spins align parallel, and we associate this with a
fully ferromagnetically ordered phase. This is
identical to the ordering observed without shak-
ing. When, for example, the signs of the J ′ cou-
plings are inverted (J > 0, J′ < 0), the new
ground state of the system is of rhombic order:
Along the direction of negative coupling, the
spins arrange in antiferromagnetic order, where-
as the coupling in J direction remains ferromag-
netic. The other configurations shown in Fig. 2

(spiral and chain order) can be explained in a
similar fashion. Each of these spin configura-
tions has its own, unique quasi-momentum dis-
tribution, which serves as a clear signature for
identification via standard time-of-flight imaging
techniques (18). The experimental data obtained
for the different cases are presented in Fig. 2.

The rich variety of spin orders as a function
of the control parameters J and J′ can be mapped
into the phase diagram (Fig. 3A). The background
colors are meant to guide the eye and indicate
the different spin configurations as expected from
the minimization of the energy function (Eq. 1).
We assign a symbol, representing the respective
phase, to each data point by comparing the mea-
sured momentum distribution with the one ob-
tained from theoretical calculations (17). The
measured data matches very well with theory
(18). The phase diagram has several interest-
ing features that can be understood from the
energy function (Eq. 1): First, the ferromagnetic
phase (F) on the right-hand side (J′ > 0) extends
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Fig. 1. Illustration of a
single plaquette within a
large-scale triangular lat-
tice. The accessible, inde-
pendent control parameters
J and J′ are highlighted. The
local phase of the atoms
residing on a single lat-
tice site is mapped onto a
classical vector spin (red ar-
rows). The coupling param-
eters J and J′ can be tuned ferro- or antiferromagnetically and determine the resulting spin configuration.

Fig. 2. Spin configura-
tions in a triangular lattice
and their experimental
signatures. Sketches of
small parts of the six rel-
evant spin-orders, which
can be realized within
the large-scale lattice
by tuning J and J′, are
shown. Solid and dashed
lines indicate ferro- and
antiferromagnetic cou-
plings, respectively. In
the spiral cases, two en-
ergetically degenerate
spin configurations exist.
The corresponding ex-
perimentally observed
momentum distributions
show distinct signatures.
The axes in the experi-
mental data mark the
absolute position of the
peaks. The pictures rep-
resent averages of sev-
eral experimental runs.
In the two spiral cases,
because both ground-
state configurations randomly appear, the signature of both modes is present in the average of con-
secutive pictures (see Fig. 4).
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Simula8on	  du	  magné8sme	  sur	  réseau	  

Dans	  la	  direc9on	  z,	  le	  poten9el	  confinant	  les	  atomes	  
est	  beaucoup	  plus	  mou.	  

Série	  de	  fils	  d’atomes	  parallèles,	  chaque	  fil	  étant	  dans	  	  
un	  état	  «	  micro-‐condensat	  »	  de	  Bose-‐Einstein	  avec	  une	  
phase	  bien	  définie	  

B = {j1~a1 + j2~a2}
✓j1,j2

terme	  de	  saut	  entre	  voisins:	  

Nouvelle	  interpréta9on	  de	  l’hamiltonien	  de	  Hubbard	  :	  

|wj1,j2ihwj01,j
0
2
| b̂†j1,j2 b̂j01,j02 ei✓j1,j2 e

�i✓j01,j02

Energie	  d’une	  configura9on	  de	  microcondensats	  donnée	  

E
�
{✓~i}

�
= �N

X

h~i,~ji

J~i,~j cos(✓~i � ✓~j)
approximaBon:	  même	  	  
amplitude	  	  	  	  	  	  	  	  	  	  à	  tous	  les	  sites	  

p
N

Equivalent	  à	  un	  réseau	  de	  spins	  classiques	  en	  interac9on	  :	  les	  figures	  de	  temps	  de	  vol	  
révèlent	  les	  différentes	  phases	  d’équilibre	  selon	  le	  signe	  et	  l’anisotropie	  de	  l’interac9on	  

ferromagnéBque,	  rhombique,	  spirale	  


