Fluides quantiques de basse dimension et transition de Kosterlitz-Thouless

Le point critique de la transition BKT

Jean Dalibard

Chaire *Atomes et rayonnement*Année 2016-17

Bilan des cours précédents

Quel type d'ordre (cristallin, magnétique, superfluide,...) peut-on atteindre dans un système de basse dimension (2D ou 1D)?

Peierls, Mermin-Wagner-Hohenberg

A température non nulle et pour des interactions entre proches voisins, pas d'ordre à longue portée, plus précisément pas de brisure d'une symétrie continue

Dans un réseau carré de particules, on trouve

$$\langle (\boldsymbol{u_i} - \boldsymbol{u_0})^2 \rangle \propto T \log(R_i/a)$$

Bilan (suite): le cas du gaz de Bose

Approche champ classique : $\Phi(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_N)$ \longrightarrow $\psi(\boldsymbol{r}_1)\ldots\psi(\boldsymbol{r}_N)$

 $\psi(x,y)$: champ complexe caractérisé par une amplitude et une phase

$$\psi(\mathbf{r}) = \sqrt{\rho(\mathbf{r})} e^{i\theta(\mathbf{r})}$$

Pour un gaz en interaction répulsive à basse température, gel des fluctuations de densité pour les modes de grande longueur d'onde

$$\rightarrow \rho = N/L^2$$

Développement de Fourier de la phase

$$\theta(\mathbf{r}) = \sum_{\mathbf{q}} c_{\mathbf{q}} e^{i\mathbf{q}\cdot\mathbf{r}}$$

$$\rightarrow \langle [\theta(\mathbf{r}) - \theta(0)]^2 \rangle \propto T \ln(r/\lambda_T)$$

$$\lambda_T^2 = \frac{2\pi \, \hbar^2}{m k_{\rm B} T}$$

Bilan (fin) : le quasi-ordre à longue portée

Connaissant $\langle [\theta(\mathbf{r}) - \theta(0)]^2 \rangle$, on déduit la valeur de la fonction $G_1(r) = \langle \psi(\mathbf{r}) \ \psi^*(0) \rangle$

$$G_1(r) \approx \rho \left(\frac{\lambda_T}{r}\right)^{\alpha}$$

$$\alpha = \frac{1}{\rho \lambda_T^2} = \frac{1}{\mathcal{D}}$$

 \mathcal{D} : densité dans l'espace des phases

Résultat très différent de celui d'un gaz parfait : $G_1(r) \approx
ho \ {
m e}^{-r/\ell}$

$$\mathcal{D} = 10$$

But de ce cours

Le gel des fluctuations de densité qui conduit au quasi-ordre algébrique n'est effectif qu'à basse température

A haute température, les interactions doivent jouer un rôle mineur et on s'attend à retrouver le résultat du gaz parfait

Comment s'effectue la transition :

$$G_1(r) \approx \rho \left(\frac{\lambda_T}{r}\right)^{\alpha} \longrightarrow G_1(r) \approx \rho e^{-r/\ell}$$
 ?

Les briques élémentaires de cette transition BKT sont les vortex

$$\psi(x,y)$$
 $+$

Zéro de densité avec un enroulement de phase de n 2π , où n est un entier relatif

En pratique : $\pm 2\pi$

Pourquoi les vortex font perdre le quasi-ordre en phase

On se donne deux points A et B entre lesquels il existe une cohérence de phase importante si on se limite à l'influence des phonons

Si un vortex isolé a une probabilité significative d'apparaître au voisinage du segment AB, la phase relative va fluctuer fortement :

$$\phi \rightarrow \phi + \pi$$

Si les vortex isolés peuvent être présents avec une densité $\rho_{\rm v}$, on s'attend à perdre tout ordre en phase sur une distance $\sim \rho_{\rm v}^{-1/2}$

1.

Seuil d'apparition d'un vortex isolé

Les zéros du champ classique $\psi(x,y)$

On se donne à un instant t un champ classique fluctuant et on regarde sa partie réelle et sa partie imaginaire

Apparition et disparition des vortex

$$\operatorname{Re}\left[\psi(x,y)\right] = 0 \qquad \operatorname{Im}\left[\psi(x,y)\right] = 0$$

Pas de vortex

Un zéro double : trou de densité sans enroulement de phase

Deux zéros simples d'enroulements opposés : une paire vortex-antivortex

Champ de vitesse d'un vortex

Exemple d'un vortex en ${m r}=0$: $\ \psi({m r})=\sqrt{\rho(r)}\ {
m e}^{{
m i} arphi} \qquad \theta({m r})=arphi$

$$\psi(\mathbf{r}) = \sqrt{\rho}$$

$$\theta(\mathbf{r}) = \varphi$$

$$oldsymbol{v}(oldsymbol{r}) = rac{\hbar}{m} oldsymbol{\nabla} heta \ = \ rac{\hbar}{mr} oldsymbol{u}_{arphi}$$

$$\oint \boldsymbol{v}(\boldsymbol{r}) \cdot d\boldsymbol{r} = 2\pi \frac{\hbar}{m}$$

Analogie magnéto-statique : champ magnétique créé par un fil rectiligne perpendiculaire au plan xy

Profil de densité au voisinage du centre du vortex minimisant l'énergie :

$$\xi = \frac{1}{\sqrt{2\tilde{g}\rho}}$$

longueur de cicatrisation

L'énergie d'un vortex

Energie cinétique (vortex au centre d'un disque de rayon R):

$$E_{\text{cin}} = \frac{1}{2} m \int \rho(\mathbf{r}) \, \mathbf{v}^2(\mathbf{r}) \, d^2 r \qquad v(\mathbf{r}) = \frac{\hbar}{mr}$$

$$\approx \frac{1}{2}m \rho \frac{\hbar^2}{m^2} \int_{\xi}^{R} \frac{1}{r^2} 2\pi r \, \mathrm{d}r$$

$$= \pi \frac{\hbar^2 \rho}{m} \ln(R/\xi)$$

Préfacteur : robuste

Argument du log : dépend de la modélisation du coeur

Diverge avec la taille du système!

Energie d'interaction : il faut créer un trou de taille ξ dans le fluide

$$\epsilon_0 \sim \frac{\hbar^2 \rho}{m} \ll E_{\rm cin}$$

Densité totale et densité superfluide

Discussion déjà abordée dans le cours précédent ; l'expression

$$E_{\text{cin}} = \frac{\hbar^2}{2m} \rho \int_{\xi}^{R} |\nabla \theta(\mathbf{r})|^2 d^2r \longrightarrow \pi \frac{\hbar^2 \rho}{m} \ln(R/\xi)$$

suppose que l'ensemble du fluide (de densité ρ) possède une rigidité en phase et est donc superfluide

Mais cette expression résulte d'une approximation où l'on ne prend en compte que les modes de grande longueur d'onde (coupure à courte distance)

Un moyen simple de réincorporer la physique à courte distance consiste à faire la substitution $\rho \longrightarrow \rho_s$

La densité superfluide $\rho_{\rm s}$ est à ce stade un paramètre phénoménologique

L'émergence d'un vortex isolé est-elle probable ?

Nombre de « cases » indépendantes où l'on peut placer ce vortex :

$$W \approx \frac{R^2}{\xi^2}$$

Probabilité pour qu'un vortex existe dans une de ces cases :

$$p \approx e^{-E_{\rm cin}/k_{\rm B}T}$$

En utilisant l'expression de l'énergie cinétique :

$$\frac{E_{\rm cin}}{k_{\rm B}T} = \frac{1}{k_{\rm B}T} \frac{\pi \hbar^2 \rho_s}{m} \ln(R/\xi) = \frac{\mathcal{D}_s}{2} \ln(R/\xi)$$

Probabilité pour une « case » donnée : $p \approx \exp\left[-\frac{\mathcal{D}_s}{2}\log\left(\frac{R}{\xi}\right)\right] = \left(\frac{\xi}{R}\right)^{\mathcal{D}_s/2}$

Probabilité totale :
$$\mathcal{P} = Wp \approx \left(\frac{\xi}{R}\right)^{-2 + \mathcal{D}_s/2}$$

L'émergence d'un vortex isolé est-elle probable (2)?

$$\mathcal{P} \approx \left(\frac{\xi}{R}\right)^{-2 + \mathcal{D}_s/2}$$

• Si $-2+\frac{\mathcal{D}_s}{2}>0$, c'est-à-dire $\mathcal{D}_s>4$, alors la probabilité \mathcal{P} tend vers 0 quand $R\to\infty$

Le coût énergétique est supérieur au gain entropique : pas de vortex isolé

• Si $\mathcal{D}_s < 4$, alors $\mathcal{P} > 1$!!! Les vortex prolifèrent...

Vortex isolés et perte de superfluidité

Anneau parcouru par un courant, correspondant à un enroulement de $2\pi N$ de la phase du champ $\psi(\boldsymbol{r})$

Ce courant est-il métastable?

Si des vortex isolés existent dans l'anneau, ils peuvent traverser cet anneau :

$$N \to N \pm 1$$

Fluctuations du courant qui va s'amortir et tomber à 0

Une paire de vx de charges opposées n'a pas d'effet sur le courant permanent

2.

Une paire vortex - antivortex

Le champ de vitesse d'une paire de vortex

On superpose les champs de vitesse des deux vortex

Analogie magnétique : champ créé par deux fils parallèles parcourus par des courants opposés

Champ de structure dipolaire : décroît comme $1/r^2$ à l'infini au lieu de 1/r pour un vortex isolé

Energie d'un paire de vortex

L'énergie cinétique est maintenant donnée par une intégrale bien définie :

$$r$$
 grand :

$$v \propto \frac{1}{r^2}$$

$$v^2 \propto \frac{1}{r^4}$$

$$r$$
 grand : $v \propto rac{1}{r^2}$ $v^2 \propto rac{1}{r^4}$ $\int v^2(m{r}) \; \mathrm{d}^2 r$ converge

Le calcul de l'intégrale donne plus précisément

$$E_{\rm cin}(\ell) \approx 2\pi \; \frac{\hbar^2 \, \rho_s}{m} \; \ln \left(\frac{\ell}{\xi}\right)$$

Le coût en énergie d'interaction correspond à la création de deux trous de taille ξ

$$E_{
m int}=2\;\epsilon_0 \qquad {
m avec} \qquad \epsilon_0 \sim rac{\hbar^2
ho_s}{m}$$

Energie cinétique et énergie d'interaction sont comparables si $\ell \sim \xi$

Probabilité d'apparition d'une paire de vortex

Energie totale de la paire : $2\epsilon_0 + E_{\rm cin}(\ell)$

$$E_{\rm cin}(\ell) \approx 2\pi \; \frac{\hbar^2 \, \rho_s}{m} \; \ln \left(\frac{\ell}{\xi}\right)$$

Poids de Boltzmann pour l'apparition de la paire

$$\begin{split} \mathcal{P}(\ell) &= \exp\left\{-\frac{2\epsilon_0 + E_{\mathrm{cin}}(\ell)}{k_{\mathrm{B}}T}\right\} \\ &= y_0^2 \ \exp\left\{-\frac{E_{\mathrm{cin}}(\ell)}{k_{\mathrm{B}}T}\right\} \qquad y_0 \equiv \exp\left(-\frac{\epsilon_0}{k_{\mathrm{B}}T}\right) \text{: fugacit\'e d'un vortex} \\ &= y_0^2 \ \left(\frac{\xi}{\ell}\right)^{\mathcal{D}_s} \qquad \text{valable si} \ \ell \gtrsim \xi \end{split}$$

Si \mathcal{D}_s n'est pas très grande devant 1, probabilité non négligeable au moins pour des élongations ℓ comparables à ξ

Elongation moyenne d'une paire de vortex

Distribution de probabilité pour l'élongation ℓ

$$\mathcal{P}(\ell) \propto \left(rac{\xi}{\ell}
ight)^{\mathcal{D}_s}$$

Variance:
$$\langle (\boldsymbol{r}_a - \boldsymbol{r}_b)^2 \rangle = ?$$

$$\langle \ell^2 \rangle = \frac{\int_{\xi}^{+\infty} \ell^2 \, \mathcal{P}(\ell) \, 2\pi \ell \, d\ell}{\int_{\xi}^{+\infty} \mathcal{P}(\ell) \, 2\pi \ell \, d\ell} = \xi^2 \, \frac{\mathcal{D}_s - 2}{\mathcal{D}_s - 4}$$

diverge pour $\mathcal{D}_s o 4_+$

3.

Champ de vitesses et énergie d'une assemblée de vortex

Champs de vitesses longitudinaux et transverses

On se donne un champ de vitesses v(x,y)

Transformée de Fourier :
$$\hat{m v}(m q) = rac{1}{2\pi} \int \mathrm{e}^{-\mathrm{i} m q \cdot m r} \; m v(m r) \; \mathrm{d}^2 r$$

On peut toujours décomposer $\hat{m v}(m q)$ sous la forme : $\hat{m v}(m q) = \hat{m v}^{\parallel}(m q) + \hat{m v}^{\perp}(m q)$

Le champ de vitesses étudié au cours précédent et lié aux phonons

$$\theta(\mathbf{r}) = \sum_{\mathbf{q}} c_{\mathbf{q}} e^{i\mathbf{q}\cdot\mathbf{r}}$$
 $\mathbf{v}(\mathbf{r}) = \frac{\hbar}{m} \nabla \theta(\mathbf{r})$ $\hat{\mathbf{v}}(\mathbf{q}) \propto i \mathbf{q} c_{\mathbf{q}}$

est purement longitudinal

Champ de vitesses liés aux vortex

On se donne une assemblée de vortex caractérisée par $\{Q_j, m{r}_j\}$

Minimisation de l'énergie cinétique compte tenu de cette contrainte :

$$E_{\rm cin} = rac{\hbar^2
ho_s}{2m} \int \left[{f \nabla} heta({m r}) \right]^2 \, {
m d}^2 r \qquad \longrightarrow \qquad
abla^2 heta = 0 \qquad {
m \'equation de Laplace 2D}$$

Solution obtenue à partir de $\nabla^2 \left[\ln(r) \right] = 2\pi \, \delta({m r})$

$$\boldsymbol{v}(\boldsymbol{r}) = -\frac{\hbar}{m} \boldsymbol{\nabla} \times \left[\boldsymbol{u}_z \int \ln |\boldsymbol{r} - \boldsymbol{r}'| \; \rho_v(\boldsymbol{r}') \; \mathrm{d}^2 r' \right]$$

- Somme des champs de vitesses générés par chaque vortex
- Champ de vitesses purement transverse : \longrightarrow $oldsymbol{v}^\perp(oldsymbol{r})$

Bilan concernant le champ de vitesses superfluide

Nous avons identifié deux composantes que nous traiterons comme découplées :

• Le champ de vitesses lié aux phonons, purement longitudinal et caractérisé par les coefficients de Fourier de la phase $\theta(r)$

$$\theta(\mathbf{r}) = \sum_{\mathbf{q}} c_{\mathbf{q}} e^{i\mathbf{q}\cdot\mathbf{r}}$$
 $\mathbf{v}_{s}^{\parallel}(\mathbf{r}) = i\frac{\hbar}{m} \sum_{\mathbf{q}} \mathbf{q} c_{\mathbf{q}} e^{i\mathbf{q}\cdot\mathbf{r}}$

• Le champ de vitesses lié aux vortex, purement transverse et caractérisé par la densité de vortex

$$\rho_v(\boldsymbol{r}) = \sum_j Q_j \ \delta(\boldsymbol{r} - \boldsymbol{r}_j)$$

Probabilité d'obtenir une configuration donnée pour cette composante superfluide :

$$\exp\left[-E\left(\{c_{\boldsymbol{q}}\},\{Q_{j},\boldsymbol{r}_{j}\}\right)/k_{\mathrm{B}}T\right]$$

4.

Transition superfluide dans un fluide 2D

Les deux propriétés caractéristiques de la superfluidité :

- Existence de courants permanents métastables
- Rigidité en phase, expérience du récipient tournant

La rigidité en phase

Les conditions aux limites habituelles (périodiques) :

$$\psi(x+L,y) = \psi(x,y+L) = \psi(x,y)$$

On calcule alors l'énergie libre F(0)

On « tord » maintenant la phase des conditions aux limites selon une direction:

$$\psi(x+L,y) = e^{i\Theta} \psi(x,y)$$
 $\psi(x,y+L) = \psi(x,y)$ $\Theta \ll 1$

Interprétation physique : passage dans un référentiel tournant

Quel est le coût énergétique de cette torsion en phase ? $F(\Theta) = F(0) + \alpha \Theta^2 + \dots$

Par définition :
$$\rho_s = \frac{m}{\hbar^2} \left. \frac{\partial^2 F}{\partial \Theta^2} \right|_{\Theta=0}$$
 (énergie en $\left. \frac{\hbar^2}{2m} \, \rho_s \, \int |\nabla \theta({m r})|^2 \, \, \mathrm{d}^2 r \, \right)$

Conditions aux limites tordues et énergie cinétique

Le champ de vitesse avec des conditions aux limites tordues :

 $\psi(x+L,y)={
m e}^{{
m i}\Theta}\;\psi(x,y)\;\;$ peut être réalisé par un gradient de phase uniforme Θ/L , c'est-à-dire le champ de vitesse additionnel $\;m{v}_\Theta=rac{\hbar\Theta}{mL}m{u}_x$

Champ de vitesse total : $oldsymbol{v} = oldsymbol{v}_\Theta + oldsymbol{v}_s$: phonons + vortex

$$E_{c}[\Theta, \mathbf{v}_{s}] = \frac{m\rho_{s}^{(0)}}{2} \int (\mathbf{v}_{\Theta} + \mathbf{v}_{s})^{2} d^{2}r$$

$$= \frac{mL^{2}\rho_{s}^{(0)}}{2}v_{\Theta}^{2} + \frac{m\rho_{s}^{(0)}}{2} \int \mathbf{v}_{s}^{2} d^{2}r + m\rho_{s}^{(0)}\mathbf{v}_{\Theta} \cdot \int \mathbf{v}_{s} d^{2}r$$

Choix d'une échelle de longueur a: les fluctuations de phase et de densité dont l'échelle de longueur est < a sont prises en compte par la substitution $~
ho
ightarrow
ho_s^{(0)}$

Energie libre et corrélations en vitesses

Energie d'une configuration phonons + vortex : $E\left[\Theta,\{c_{m{q}}\},\{Q_j,m{r}_j\}\right] = E\left[\Theta,m{v}_s\right]$

- Fonction de partition : $\mathcal{Z}(\Theta) = \sum_{\{m{v}_s\}} \exp\left(-\frac{E[\Theta, m{v}_s]}{k_{\mathrm{B}}T}\right)$
- Energie libre : $F(\Theta) = -k_{\rm B}T \ln[\mathcal{Z}(\Theta)]$

avec l'énergie cinétique sous la forme :
$$[\ldots]v_\Theta^2 + [\ldots]\int v_s^2 + [\ldots] v_\Theta \cdot \int v_s$$

Résultat du calcul à l'ordre 2 inclus en Θ :

$$F(\Theta) \approx \frac{1}{2} m L^2 \rho_s^{(0)} v_{\Theta}^2 + F(0) + \text{terme croisé}$$

dont on déduit la densité superfluide prenant en compte les phonons+vortex :

$$\rho_s = \rho_s^{(0)} - \frac{m(\rho_s^{(0)})^2}{k_B T} \frac{1}{L^2} \iint \langle v_{s,x}(\mathbf{r}) \ v_{s,x}(\mathbf{r}') \rangle \ d^2 r \ d^2 r'$$

Réduction possible $ho_s^{(0)}
ightarrow
ho_s$ du fait des phonons et des vortex

Densité superfluide et position des vortex

On part de
$$\rho_s = \rho_s^{(0)} - \frac{m(\rho_s^{(0)})^2}{k_{\rm B}T} \; \frac{1}{L^2} \; \iint \langle v_{s,x}({\pmb r}) \; v_{s,x}({\pmb r}') \rangle \; {\rm d}^2 r \; {\rm d}^2 r'$$

et on utilise la décomposition du champ de vitesses $m{v}_s(m{r}) = m{v}_s^\parallel(m{r}) + m{v}_s^\perp(m{r})$ phonons vortex

Contribution des phonons :
$$\int {m v}^{\parallel}({m r}) \ {
m d}^2 r = rac{\hbar}{m} \int {m
abla} heta \ {
m d}^2 r = 0$$

Les phonons ne réduisent pas la densité superfluide!

Contribution des vortex : on a relié au §3 leur champ de vitesse à leur densité $ho_{
m v}$

$$\rho_s = \rho_s^{(0)} + \frac{\pi^2 \hbar^2}{m k_{\rm B} T} (\rho_s^{(0)})^2 \int r^2 \langle \rho_v(\mathbf{r}) \rho_v(0) \rangle d^2 r$$

ou encore :
$$\mathcal{D}_s = \mathcal{D}_s^{(0)} + \frac{\pi}{2} (\mathcal{D}_s^{(0)})^2 \int r^2 \langle \rho_v(\boldsymbol{r}) \; \rho_v(0) \rangle \; \mathrm{d}^2 r$$

Calcul perturbatif

On va évaluer
$$\mathcal{D}_s = \mathcal{D}_s^{(0)} + \frac{\pi}{2} (\mathcal{D}_s^{(0)})^2 \int r^2 \ \langle \rho_v(\boldsymbol{r}) \ \rho_v(0) \rangle \ \mathrm{d}^2 r$$

à partir d'un développement en puissances de $\,y_0 \equiv \exp\left(-rac{\epsilon_0}{k_{\mathrm{B}}T}
ight)\,$ (fugacité d'un vx)

Rappel : loi de probabilité pour l'élongation d'une paire $\,\mathcal{P}(r) \propto \left(rac{1}{r}
ight)^{\mathcal{D}_s^{(0)}}$

On en déduit :

$$\mathcal{D}_s = \mathcal{D}_s^{(0)} - 2\pi^2 (\mathcal{D}_s^{(0)})^2 y_0^2 \int_a^{+\infty} \left(\frac{a}{r}\right)^{\mathcal{D}_s^{(0)} - 3} \frac{\mathrm{d}r}{a}$$

où a représente l'échelle de la longueur en dessous de laquelle les fluctuations de phase et de densité sont prises en compte via $~
ho o
ho_s^{(0)}$

Le deuxième terme représente la réduction de la densité superfluide due à la présence de paires de vortex d'élongation supérieure à a

Ecriture équivalente :
$$\frac{1}{\mathcal{D}_s} = \frac{1}{\mathcal{D}_s^{(0)}} + 2\pi^2 y_0^2 \int_a^{+\infty} \left(\frac{a}{r}\right)^{\mathcal{D}_s^{(0)} - 3} \frac{\mathrm{d}r}{a}$$

Le principe de la renormalisation

On passe de a à a (1+arepsilon) pour intégrer un peu plus de fluctuations dans $\mathcal{D}_s^{(0)}$

$$\frac{1}{\tilde{\mathcal{D}}_{s}^{(0)}} = \frac{1}{\mathcal{D}_{s}^{(0)}} + 2\pi^{2}y_{0}^{2} \int_{a}^{a(1+\varepsilon)} \left(\frac{a}{r}\right)^{\mathcal{D}_{s}^{(0)}-3} \frac{\mathrm{d}r}{a}$$

puis on fait une transformation d'échelle pour ramener a (1+ ε) sur a

$$\tilde{y}_0 = y_0 \left(1 + \varepsilon \right)^{\left(4 - \mathcal{D}_s^{(0)} \right)/2}$$

On obtient alors une évolution couplée de $\left[\mathcal{D}_s^{(0)},y_0
ight]$ quand on répète cette procédure

$$\frac{\mathrm{d}[\mathcal{D}_s^{(0)}]^{-1}}{\mathrm{d}\varepsilon} = 2\pi^2 y_0^2 \qquad \qquad \frac{\mathrm{d}y_0}{\mathrm{d}\varepsilon} = \frac{1}{2} \left(4 - \mathcal{D}_s^{(0)} \right) y_0$$

Vers quoi converge-t-on?

Le résultat de la renormalisation BKT

$$\frac{\mathrm{d}[\mathcal{D}_s^{(0)}]^{-1}}{\mathrm{d}\varepsilon} = 2\pi^2 y_0^2$$

$$\frac{\mathrm{d}y_0}{\mathrm{d}\varepsilon} = \frac{1}{2} \left(4 - \mathcal{D}_s^{(0)} \right) y_0$$

Confirme la valeur critique universelle $\mathcal{D}_s=4$

- Si on part de $\mathcal{D}_s > 4$ avec une fugacité y_0 assez petite (un trou de vortex coûte de l'énergie), on finit avec $\mathcal{D}_s > 4$ et $y_0 = 0$: les vortex sont effacés.
- Si on part de $\mathcal{D}_s < 4$, alors on finit avec $\mathcal{D}_s = 0$: perte complète de superfluidité

Les fonctions thermodynamiques usuelles sont continues au point de transition

Les premières études avec des fluides quantiques

Expériences menées à l'Université de Cornell, groupe de J. Reppy, 1977-89

Film d'hélium de 1 à 10 couches atomiques adsorbées sur une feuille de mylar de surface de l'ordre du m²

Détection de la fraction superfluide par une expérience de « récipient tournant »

Fréquence d'oscillation $\sim \, 2.6 \, \mathrm{kHz}$ mesurée avec une précision relative de 5 $10^{\text{-9}}$

(2 pico secondes)

La transition superfluide BKT avec un film d'hélium

Bishop & Reppy, Phys. Rev. Lett. 40, 1727 (1978) Phys. Rev. B 22, 5171 (1980)

La prise en compte de l'aspect dynamique (fréquence de mesure 2.6 kHz) conduit à un excellent accord théorie-expérience $\Delta \mathcal{D}_s = 4$

Confirmation de la loi concernant le saut universel

En résumé

La transition BKT se produit entre deux types d'états

Loi universelle sur la valeur de la densité superfluide : $\,\mathcal{D}_s=
ho_s\lambda_T^2\proptorac{
ho_s}{T_c}$

A ce stade, nous n'avons pas d'information sur le lien entre T_c et la densité totale ho