

Fonctions localisées à l'échelle du réseau et associées aux bandes d'énergie

Dans la définition $|w_{n,0}\rangle = \left(\frac{a}{2\pi}\right)^{1/2} \int_{-\pi/a}^{\pi/a} |\psi_{n,q}\rangle \, dq$ le choix de la phase de Particule libre Particule dans un réseau chaque onde de Bloch $|\psi_{n,q}\rangle \rightarrow e^{i\theta_n(q)}|\psi_{n,q}\rangle$ joue un rôle essentiel $\ket{w_{n,j}} \propto \int_{-\pi/a}^{\pi/a} e^{-ijaq} \ket{\psi_{n,q}} dq$ $|x\rangle = \int e^{-ixp/\hbar} |p\rangle dp$ $|w_{n,0}
angle \propto \int_{-\pi/a}^{\pi/a} |\psi_{n,q}
angle \, dq$ $|x=0
angle = \int |p
angle dp$ Walter Kohn (1959) Si le potentiel V(x) est pair [V(x) = V(-x)] et si les bandes d'énergie sont disjointes. alors il existe un choix unique de phase tel que : coef. de normalisation : $\left(\frac{a}{2\pi}\right)^{1/2}$ la fonction de Wannier est réelle • la fonction de Wannier est paire ou impaire vis à vis de x = 0 ou x = a / 2On peut vérifier que la fonction $w_{n,i}(x)$ se déduit de $w_{n,0}(x)$ par une translation • la fonction de Wannier décroît exponentiellement vite à l'infini de *j* périodes du réseau : $w_{n,i}(x) = w_{n,0}(x - ja)$ Propriétés des fonctions de Wannier $|w_{n,j}\rangle \propto \int_{-\pi/e}^{\pi/a} e^{-ijaq} |\psi_{n,q}\rangle dq$ Transformée de Fourier des fonctions de Wannier **Rappel :** la forme de Bloch $\psi_{n,q}(x) = e^{ixq}u_{n,q}(x)$ avec $u_{n,q}(x)$ périodique **Translation :** $w_{n,j}(x) = w_{n,0}(x - ja)$ permet d'écrire Il suffit de connaître une fonction de Wannier associée à la bande n $u_{n,q}(x) = \sum_{n,j=1}^{+\infty} C_{n,j}(q) e^{i j 2\pi x/a}$ **Inversion :** connaissant la fonction de Wannier associée à la bande n, on peut $\psi_{n,q}(x) = \sum_{i=1}^{+\infty} C_{n,j}(q) e^{i x(q+j 2\pi/a)}$ reconstruire toutes les fonctions de Bloch de cette bande peigne d'ondes planes $\psi_{n,q}(x) \propto \sum_{i=1}^{+\infty} w_{n,0}(x-ja) e^{ijaq}$ Introduisons la transformée de Fourier de la fonction de Wannier associée à la bande n**Orthogonalité :** $\int w_{n,j}(x) w_{n',j'}(x) dx = \delta_{n,n'} \delta_{j,j'}$ $\tilde{w}_n(\kappa) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} w_{n,0}(x) \ e^{-ix\kappa} \ dx$ orthogonalité interbandes orthogonalité intersites On peut alors montrer : $C_{n,j}(q) = \frac{1}{\sqrt{a}} \tilde{w}_n(q + 2\pi j/a)$ En particulier $w_{n,0}(x)$ et $w_{n,0}(x-a)$ sont orthogonales

Importance du choix de la phase des fonctions de Bloch

Largeur des bandes permises dans le cas $V_0 \gg E_r$

Pour le potentiel sinusoïdal. l'équation aux valeurs propres pour l'hamiltonien a la structure d'une équation de Mathieu. On dispose de plusieurs résultats analytiques dans la limite $V_0 \gg E_r$

Largeur de la bande fondamentale : $\frac{W_0}{E_r} \approx \frac{16}{\sqrt{\pi}} \left(\frac{V_0}{E_r}\right)^{3/4} \exp\left[-2\left(\frac{V_0}{E_r}\right)^{1/2}\right]$

variation exponentielle par rapport à la racine de la hauteur de la barrière caractéristique de l'effet tunnel

Rappel : E_r/h est d'ordre quelques kHz à quelques dizaines de kHz

Eléments de matrice des sauts entre voisins

L'élément de matrice est donné par

$$J_n(j) = \int w_{n,j}^*(x) \,\left(\frac{\hat{p}^2}{2m} + V(x)\right) \,w_{n,0}(x) \,dx$$

Quand la profondeur du réseau augmente, la zone de l'espace où $w_{n,0}(x)$ et $w_{n,j}(x)$ prennent toutes deux des valeurs significativement différentes de 0 diminue.

Eléments de matrice des sauts entre voisins

L'élément de matrice est donné par $J_n(j) = \int w_{n,j}^*(x) \,\left(\frac{\hat{p}^2}{2m} + V(x)\right) \,w_{n,0}(x) \,dx$

Quand la profondeur du réseau augmente, la zone de l'espace où $w_{n,0}(x)$ et $w_{n,i}(x)$ prennent toutes deux des valeurs significativement différentes de 0 diminue.

Spectre en énergie pour des potentiels très profonds

Si on néglige complètement les sauts entre voisins et si on linéarise au voisinage du fond des puits :

$$V(x) = V_0 \sin^2(kx) \approx V_0 k^2 x^2$$

$$V_0 \gg E_{\rm r}$$

Oscillateur harmonique de pulsation ω telle que $\hbar\omega = 2\sqrt{V_0E_{\rm r}}$, dont l'état fondamental a pour taille caractéristique $a_{\rm oh} = (\hbar/m\omega)^{1/2}$ et un spectre en $(n + 1/2)\hbar\omega$

Ce développement a un sens si $ka_{\rm oh} = \left(E_{\rm r}/V_0\right)^{1/4} \ll 1$

Pour fixer les idées, imposons $\,ka_{
m oh} \leq 1/2\,$, soit $\,V_0/E_{
m r} \geq 16$.

Pour $V_0 = 16E_r$, le quantum d'énergie pour l'oscillateur harmonique vaut $\hbar\omega = 8E_r$ \longrightarrow Etat fondamental à $4E_r$, premier état excité à $12E_r$

Simplification du terme d'interaction pour les liaisons fortes

• On se limite à la bande fondamentale

énergie d'interaction << gap entre la bande fondamentale et la 1^{ère} bande excitée $n_1 = n_2 = n_3 = n_4 = 0$

Recouvrement négligeable entre des fonctions de Wannier centrées sur différents sites

 $j_1 = j_2 = j_3 = j_4$: deux atomes n'interagissent entre eux que s'ils sont sur le même site

L'intégrale restante est la même pour tous les sites j : $\int w_{0,j}^4(x) \ dx$

$$\hat{H}_{\text{int}} \approx \frac{U}{2} \sum_{j} \hat{n}_{j} \left(\hat{n}_{j} - 1 \right)$$
 $U = g \int^{\circ} w_{0,0}^{4}(x) \, dx \approx \frac{g}{\sqrt{2\pi} \, a_{\text{ob}}}$

Interactions dans le modèle de Hubbard

Interactions à courte portée, modélisée par un potentiel de contact (à régulariser)

$$W(\vec{r_1} - \vec{r_2}) = g \ \delta(\vec{r_1} - \vec{r_2})$$
 $g = \frac{4\pi \hbar^2 a_d}{m}$ a_d : longueur de diffusion

Ecriture en seconde quantification (pour des bosons)

$$\hat{H}_{\rm int} = \frac{g}{2} \int \hat{\Psi}^{\dagger}(x) \, \hat{\Psi}^{\dagger}(x) \, \hat{\Psi}(x) \, \hat{\Psi}(x) \, dx \qquad (\text{version 1D})$$

où $\hat{\Psi}(x)$ est l'opérateur destruction d'une particule au point x, qui s'écrit en fonction des fonctions de Wannier

$$\hat{\Psi}(x) = \sum_{n,j} w_{n,j}(x) \ \hat{b}_{n,j} \qquad \qquad \hat{b}_{n,j} : \text{détruit une particule dans} \\ \text{la fonction de Wannier } w_{n,j}(x)$$

On arrive à une expression bien compliquée !!!

$$\hat{H}_{\text{int}} = \frac{g}{2} \sum_{n_1, j_1} \sum_{n_2, j_2} \sum_{n_3, j_3} \sum_{n_4, j_4} \hat{b}^{\dagger}_{n_3, j_3} \hat{b}^{\dagger}_{n_4, j_4} \hat{b}_{n_1, j_1} \hat{b}_{n_2, j_2}$$

$$\times \int w_{n_1, j_1}(x) \ w_{n_2, j_2}(x) \ w_{n_3, j_3}(x) \ w_{n_4, j_4}(x) \ dx$$

Energie d'interaction à trois dimensions

A trois dimensions, à partir de

$$(-\vec{r_2}) = g \; \delta(\vec{r_1} - \vec{r_2})$$
 $g = rac{4\pi \hbar^2 a_d}{m}$ a_d : longueur de diffusion

0

 \hat{H}_{int}

 $W(\vec{r_1})$

$$\approx \frac{U^{(3D)}}{2} \sum_{\vec{j}} \hat{n}_{\vec{j}} \left(\hat{n}_{\vec{j}} - 1 \right) \qquad \qquad \frac{U^{(3D)}}{E_{\rm r}} = \sqrt{\frac{8}{\pi}} k a_d \left(\frac{V_0}{E_{\rm r}} \right)^{3/4}$$

En dehors d'une résonance de diffusion, a_d est d'ordre nanométrique : pour $V_0/E_{
m r} pprox 10$ à 30, on trouve $U^{
m (3D)}/E_{
m r} pprox 0.01$ à 1

$$= \underbrace{B}_{\text{cellule } i}^{J'} \underbrace{A}_{\text{cellule } i}^{J} \underbrace{A}_{\text{cellule } i+1}^{J'}$$

On reporte la forme de Bloch $|\psi_q\rangle = \sum_j e^{ijaq} \left(\alpha_q |w_{A,j}\rangle + \beta_q |w_{B,j}\rangle \right)$ dans l'hamiltonien $\hat{H} = -J \sum_j |w_{B,j}\rangle \langle w_{A,j}| - J' \sum_j |w_{A,j+1}\rangle \langle w_{B,j}| + \text{h.c.}$

On obtient le même système 2x2 en chaque site du réseau :

 $\hat{\mathcal{H}}(q) \begin{pmatrix} \alpha_q \\ \beta_q \end{pmatrix} = E \begin{pmatrix} \alpha_q \\ \beta_q \end{pmatrix} \qquad \qquad \hat{\mathcal{H}}(q) = - \begin{pmatrix} 0 & J + J'e^{-iaq} \\ J + J'e^{iaq} & 0 \end{pmatrix}$

hamiltonien dans l'espace réciproque

Ce modèle de Hubbard à deux sites est équivalent au problème d'un spin ½ dont l'hamiltonien dépend d'un paramètre continu q (ou \vec{q} à plusieurs dimensions)

Des propriétés topologiques non triviales peuvent émerger du fait de l'invariance $q
ightarrow q + 2\pi/a$

Le super-réseau (suite)

$$= \underbrace{B}^{J'} \underbrace{A}^{J} \underbrace{B}^{J'} \underbrace{A}^{J} \underbrace{B}^{J'} \underbrace{B}$$

Les bandes d'énergie pour ce super-réseau : valeurs propres de

$$\hat{\mathcal{H}}(q) = \begin{pmatrix} 0 & -J - J'e^{-iaq} \\ -J - J'e^{iaq} & 0 \end{pmatrix}$$

$$E(q) = \pm \left| J + J'e^{iaq} \right| = \pm \left(J^2 + J'^2 + 2JJ'\cos(aq) \right)^{1/2}$$

Le super-réseau (suite)

Les bandes d'énergie pour ce super-réseau : valeurs propres de

$$\hat{\mathcal{H}}(q) = \begin{pmatrix} 0 & -J - J'e^{-iaq} \\ -J - J'e^{iaq} & 0 \end{pmatrix}$$
$$E(q) = \pm \left| J + J'e^{iaq} \right| = \pm \left(J^2 + J'^2 + 2JJ'\cos(aq) \right)^{1/2}$$

bandes rouges et bleues : $J = J_0$, $J' = J_0/2$ bandes noires : $J = J' = 3J_0/4$

Réalisation expérimentale d'un super-réseau

Fölling et al. 2007 :

Contrôle des intensités et de la phase relative des deux ondes stationnaires à l'emplacement des atomes

Manipulation de l'effet tunnel via l'interaction entre deux atomes

Utilisation d'une déformation des puits et de la méthode de dépliement de bande pour mesurer séparément l'occupation des sites A et B :

