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In the previous lecture, we have discussed spectral
properties of infinite Fibonacci chains,

and apply them successfully to finite chains.

Quasi-periodic stack of dielectric layers of 2 types A B

Fibonacci sequence : F,=B; F,=A; F,,;= [Fj_z Fj_l]

Defines a cavity whose mode spectrum 1is fractal.



Scaled finite size Fi

8

4

bonacci chains

0O 0
06 ) 06H
0 - 0
02 02
1 45 1.5 1.55 1.6
OR

16 Vi

Density of modes

05
0} [a.u.]

0.55

bl

049 0495 05
®

The mode spectrum 1s self-similar

8

4

0
149 1.5
dx

M <0

0]




Scaled finite size Fibonacci chains
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Log-periodic oscillating structure is the
indisputable fingerprint of the underlying
fractal structure of the spectrum.
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Integrated Density ot States-Gap Labeling
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(p.q) € Z are topological invariants (Chern numbers).
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Today’s program

® [nvestigate topological properties of Fibonacci
chains.

® Nature and origin of Chern numbers

® How to obtain Chern numbers from scattering



We mentioned the existence of Chern numbers 1n the gap
labeling theorem.

Is there a relation with other occurrences of Chern
numbers (e.g. 1n the quantum Hall effect, topological
insulators, graphene...) ?

Not so obvious : in the previous cases, topology and
assoclated Berry connexion result from the existence of
underlying magnetic fields, Aharonov-Bohm fluxes,
Dirac structure...




Some basic ingredients (more technically),

e Non trivial manifold M (product of manifolds)

\\\ G
e Define over M a structure (fiber bundle) F e

Physics: M 1s the physical space, F 1s the representation of a
continuous symmetry group (field, order parameter,...)

e Define on F a connexion (“vector potential”’ A ) and a related
curvature (“magnetic field”B).

e Chern classes : define possible topological invariants on F.
Systematic expansion using invariant polynomials (Chern&Weil):

P(Q)=1+C1(Q)+C2(Q)+”'

NS

Chern classes



Example : M =R’ and the order parameter I = ‘W‘ e'”

Fiber : ' = C , Lie group U(l)

Connexion 1-form : @ =-i (Axdx + Aydy)

Curvature 2-form : Q=dw=-iB with B=9 A -9 A,

Invariant polynomial : P(Q)=1+¢,(Q)=1+ zﬁ
T
Chern number : — [e(@)=nez
21
A Flux
quantisation
over a closed condition.

manifold M

K. Mallick, E.A., “topological aspects of low dimensional systems”,
Les Houches, 1998



Example : Free electrons in a 2D crystal + magnetic field

Non trivial group of magnetic translations:

(Harper problem)

UU,=e"""U,U,

energy

N~

020

040 0.60 3).80
magnetic flux o = -

P,

Hofstadter butterfly

( U =e™

U2=ele

oczﬂ b _h
¢O O_e

Osadchy, Avron, (2001)



Fibonacci quasi-crystal : Is there a (Berry) connexion and
a corresponding curvature whose integral produces
corresponding Chern numbers ?

Is it possible to define a non trivial fiber bundle such as
the group of magnetic translations in the Harper model ?

Is there a quantity playing the role of a magnetic field ?



Topological features manitest through specific
properties of edge (gap) modes 1n the presence of
boundaries

Under certain (boundary) conditions, instead of observing
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These gap modes “move” through the gaps as a function
of a parameter ¢ yet to be determined

analogous to Conduction band

Energy
—
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To understand the existence and nature of edge states,
we need to discuss the different (equivalent) ways to
build a quasi-periodic chain.

 Concatenation

e Substitution matrix

e Characteristic function
e Cut & Project



Concatenation

Fibonacci sequence : F =B; F,=A; F., = [Fj_z Fj_l]

=3
A A l A l A A . A Al A A l A
f \ | |

The length of the chain 1s necessarily a Fibonacci number :
1,2,3,5,8,13,21...
It 1s thus not possible to generate a chain of arbitrary length.

17



Substitution matrix

Consider a substitution O acting on an alphabet of

two letters A and B : )
| AoBA M:(l I )
B—A 10

\

To this substitution, we associate a matrix M, whose columns give the
number of letters A and B which occurs in the transtforms.

A A A A l A A l A AR 3 A A . A
| | |
Fq 6

Fy Fa
Fs 3

Fs

By successive applications of 0 we generate a word F,,,, =0 (B)
of length F; » (@ Fibonacci number). The words o" (B)converge to
an 1nfinite sequence 0 (A)left invariant by O (fixed point).

18



Characteristic function
(B. Stmon, J.M. Luck, Krauss & Zilberberg, PRL, 2012.

g feoslomne so)oer )] 717 B
Fo=l o 2o 2n] & DONAININIENN

The angle ¢ appears as a new and legitimate degree of
freedom. It 1s usually 1gnored.

when @) is not ignored it is considered a nuisance,
not here!



Cut & Project method (maps)

Very active branch in maths of tiling, dynamical systems,

(classical) information theory,....

Duneau & Katz
Moody, Meyer
Pinsner, Voiculescu
Mendes-France, Allouche
Bombieri, Taylor,

Kellendonk, Grimm,
Queffelec, Bellissard, ......

Generate both periodic and quasi-periodic (quasicrystals) structures.

A brief tutorial for practical implementation in 1D.



Start from a 2D periodic lattice L = Z°

y = bx+const

ABAABABAABARE



For a rational slope : periodic superlattice

y =2%x+const

For an 1rrational slope : quasi-periodic structure

T:(1+\/§%

golden mean




All the four previous methods are equivalent and allow
to generate infinite quasi-periodic Fibonacci chains.

But they involve important and interesting differences :

@® Substitution and concatenation generate fixed

structures : chains of length given by a Fibonacci number.

® C&P and characteristic functions do not involve constraint

on the length.

More importantly, they allow for an additional degree of
freedom, the phase () which appears in the characteristic

function a

oproach.

Meaning of this elusive phase ¢ in the C&P approach ?



Characteristic function C&P method

2, :Sign[cos(zﬂn ! +¢)_COS(7”—1)} Is it possible to give a meaning
to the phase A¢within the C&P method ?

¢ 1s usually an innocuous and thus
ignored modulation phase. .

For an infinite (Fibonacci) structure :

¢0_=3ro=3r1" .

Define instead

y= T x+const

X, = sign[cos(27m’t'_l +¢.+ A¢) - COS(”T_l )}

T:(1+x/§%

golden mean
24



Characteristic function C&P method

2, :Sign[cos(zﬂn ! +¢)_COS(7”—1)} Is it possible to give a meaning
to the phase A¢within the C&P method ?

¢ 1s usually an innocuous and thus
ignored modulation phase.

For an infinite (Fibonacci) structure :

¢0_=3ro=3r1"

Define instead

X, = sign[cos(27m’t'_l +¢.+ A¢) - COS(”T_l )}

(1 + x/gy We better understand the meaning of A¢@
T =
2

golden mean
25



C&P method - Properties AQ

e Each value of the phase A¢@ accounts for an existing
segment of the infinite Fibonacci chain.

o AQ is 2 7-periodic.

e AQ corresponds to a translation (along the chain) cycle

Ap=2mt"" An

26
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How a change of phase 1s implemented along the chain ?
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How a change of phase 1s implemented along the chain ?

1

Translation
AW :;:L--_----. ...... .. .. ...... ...... ... .. ...... . .......
2
10?- I-l-l - 3!2-1-1 - .1Iu-



A structural degree of freedom

Scanning A¢ generates local structural changes.

These changes have a meaning only for a finite length chain

|J| BAABAB
BABAAB

80

Letter number



A structural degree of freedom
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Is there a symmetry of the Fibonacci chain probed

31

when scanning the phase over a period ?



Palindromicity

Scanning the phase A¢drives the chain through a palindromic cycle.

Palindrome ?

Palindrome
& STRESSEY
R\ By t "
lhie L \| VESSERTS

spelled

| " backwards




Palindromicity

Scanning the phase A@drives the chain through a palindromic cycle.

Fibonacci chains generated using substitution or concatenation
are “almost” palindromic.

They correspond to Ap=0 = ¢p=¢_=3r7"

and a length equal to a Fibonacci number N,

Palindrome
S 1 A B

An 1nfinite chain contains arbitrary long palindromic substructures




Alternatively, using characteristic function or C&P to generate
chains, allows to monitor A¢and to consider arbitrary lengths.

Define a function to account for deviation from
structural palindromicity

0.8

Fibonacci.

n(¢): Deviation from a palindrome
o
S




The deviation from palindromicity saturates.

ot
o

76.3%

n(¢): Deviation from a palindrome

Ad/n

"AA" Occurrence

o o
N N
N w

o
N
—

0.2

23.7%

pd

+ Occurrence |
—Fit

0.26/
0.25;
0.24;
023 .
0.22}
0.21;
135 140 145 150 |
0 2000 4000
Length

The saturation value depends on the C&P slope, 1.€.,

on type of quasi-periodic potential.

For the Fibonacci chain, the saturation corresponds to the occurrence
of [AA] doublets, knowing that [BB] doublets are forbidden.



Are there spectral consequences
of these structural properties ?

No !

Almost No...

We have already calculated and measure the spectrum 1n details



Scaled finite size Fibonacci chains
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Integrated Density ot States-Gap Labeling
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All these characteristics are independent of the phase A¢

in the gap labeling theorem ?

How do we obta

Using the substitution matrix approach



The gap labelling theorem



Substitution matrix

Consider a substitution O acting on an alphabet of

two letters A and B : )
| AoBA M:(l I )
B—A 10

\

To this substitution, we associate a matrix M, whose columns give the
number of letters A and B which occurs in the transtforms.

A A A A l A A l A AR 3 A A . A
| | |
Fq 6

Fy Fa
Fs 3

Fs

By successive applications of 0 we generate a word F,,,, =0 (B)
of length F; » (@ Fibonacci number). The words o" (B)converge to
an 1nfinite sequence 0 (A)left invariant by O (fixed point).

41



Densities (a’ 4 5d B) of letters in the fixed point
infinite Fibonacci chain g~ (A)are given by the components of
the positive eigenvector:
(g )
A

\dB)

v, =

of the matrix M with highest eigenvalue normalised so that d, +d, =1

For the Fibonacci chain, eigenvalues of M are solutions of x*—x—1=0
d,=7-1
namely, (T,T‘l) and v, :[ § ]

d,=2—-1
1++/5

golden mean »



In order to state the gap labeling theorem, we need also the substitution
matrix for two letters. The possible words with 2 letters are:

( )
r o(AA)= ABAB y (1) (1) (1)
O 3 A—AB o(AB)= ABA 2 1o
o (BB)= AA Substitution matrix

For the Fibonacci chain, eigenvalues of M ,are
solutions of (2 —x—1)=0

1.e., with the same highest eigenvalue T and the corresponding

(4, =21-3
normalised eigenvector v, =| d,=2-7
dy, =2-7

\ J

Note: frequency of AA in the infinite chain : d,, =27-3= 23.730



The deviation from palindromicity saturates.

ot
o

76.3%

n(¢): Deviation from a palindrome

Ad/n

"AA" Occurrence

o o
N N
N w

o
N
—

0.2

23.7%

pd

+ Occurrence |
—Fit

0.26/
0.25;
0.24;
023 .
0.22}
0.21;
135 140 145 150 |
0 2000 4000
Length

The saturation value depends on the C&P slope, 1.€.,

on type of quasi-periodic potential.

For the Fibonacci chain, the saturation corresponds to the occurrence
of [AA] doublets, knowing that [BB] doublets are forbidden.



Gap labeling theorem (poor man’s version) : for a Hamiltonian
determined by a substitution on a finite alphabet, the values of the
integrated density of states (counting function) on the spectral gaps in
[0,1] belong to Z[*ﬁ] generated by the components of the normalised
eigenvectors(v,,v, )with maximal eigenvalue 7 of M and M, .

For the Fibonacci chain, it gives directly,

N(e,,)=(Zz+7"Z)N[0.1]

e N(egap)zp qr~

The 2 integers [p,q] 1n the gap counting function are Chern numbers.



The substitution matrix approach does not involve the structural
modulation phase A¢ which (as we saw) 1s irrelevant for the
infinite chain.

Important consequence : the counting function in the spectral gaps
is independent of the structural modulation phase A¢

More generally, the counting function (and the density of states)
over the whole spectrum 1s independent of the structural phase A¢

How to see it : scattering formalism and the Krein-Schwinger formula



Intermezzo : Scattering
formalism - Krein-
Schwinger formula



Scattering formalism

It offers a general and elegant framework 1n order to investigate spectral
properties and transport (Landauer approach)

Here, we consider 1D systems only.

A (quantum,wave) system with a potential (defined w.r.t. a free part )
1s enclosed 1n a “black box”. We probe it using scattering waves.

With obvious notations, the
(unitary) scattering matrix 1s :

P (o) = (70 ) () =5 ()

. . 10
It can be diagonalised as (8 eicpz)

Defining the total phase shift : 6(k) = (¢1(k) + ¢a(k))/2



Assume that the scattering potential decreases fast enough
and enclose the system 1n a large “blackbox” of size L

(much larger than the system size). Apply periodic boundary
conditions to this box, namely,

(0)=y(L) = ip+op =oget +ige L
' (0) =9y (L) = ik(ip—op) = ik(oReikL _ Z-Re—ikL)

These algebraic equations can be written as a spectral condition:

det (1 — elkL (2 é) S(k)) = 0.



Spectral condition: (1 kL ((1) (1)> S(k)) _

leads to a relation between the total phase shift
and the possible wave vectors : mn 5(ky)

From this relation we obtain the change of density of states :
(k) — oo (k) = LK) since
O = PO = 7 Tk
t

_ J det S(k) = 2iolk) —
= ElmﬁlndetS(k) pr

An exemple of the general Krein-Birman-Schwinger relation :

Tr [P(H) — ®(Hy)| = /:)o dEZ%% In detS(E)

where ®(H) is a regular function of the Hamiltonian.



End of the intermezzo



Fibonacci chain embedded between free spaces
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But...since the phase A¢ measures the deviation from palindromicity,
it should show up in the difference between the 2 scattering configurations,

l' =|t|e"
é HM“HH“““ “”““HHNH‘”“I‘

r =re

~|
II

(X should depend on the structural phase A¢g

ot
o

n(¢): Deviation from a palindrome

53
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But...since the phase A¢ measures the deviation from palindromicity,
it should show up in the difference between the 2 scattering configurations,

i = _ |57 010
W — t r —‘r‘e
I [ ‘tle
;: =|F‘€le h g io . e
— a
r =re

1f

t =tle

Two different wave vectors 54



On which physical quantity do we see a A¢ dependence ?

On boundary (edge) states...since scattering states are
independent of the structural phase A¢

How to relate boundary (edge) states to the
scattering formalism ?

55



Creating edge modes

 Edge modes show up in most finite superlattices at gap frequencies
which depend on boundary conditions:

A. Boundary states due to a “closed” boundary condition (e.g., mirror)
B. Interface modes

C. Detfect modes

 Edge modes have the same origin and are of topological nature.



Work with a closed boundary
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Gap modes move through gaps 1n a discrete staircase which depends on the
contrast of the Fibonacci letters. —
SN

B ABAABABAABAABABAAIB A 80% :z::fcil
Fo Fol L ' A , | contrast

Fs F4 Fs Fs 1 15%
contrast

0 02 04 06 08
(6,0

Behaviour intrinsic to the discrete nature of the chain
(unlike Harper or Aubry-Andre models).



Gap modes move through gaps 1n a discrete staircase which depends on the

contrast of the Fibonacci letters.
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Relation to the palindromic cycle

for all gaps

N
0

=/
=/
2/

&
MR

S

el P

IR RTRT R R BN

%

A A
s

[

"




Relation to the gap labelling and Chern numbers

15
" s
Chern numbers [p,q] describe the behaviour of topological

edge states 1n the gaps when changing the structural
phase angle A¢i.e., while moving away from palindromicity.



Relation between the Chern numbers (for each gap) and

the scattering matrix
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a, (w,A¢) defines the spectral deviation from palindromicity

It depends on :

e the Chern number q in a gap

e on the frequency in the gap (spectral quantity)
o the structural phase angle A¢

e 1t does not saturate unlike structural palindromicity



Winding number of the spectral deviation from palindromicity

(xq(a)gap,Agb)

0.47

0472

0.474
2nd/n

5%
0 02905 0291 02915 0292
2nd/A

%232 0234 0236 0238
2nd/h

The Chern number ¢ of a gap and ¢, (a)gap,Agb)are related.



B

Relation between the Chern numbers (for each gap) and
— |”7‘ei¢9

the scattering matrix
[ =|te" 3

O depends on the structural phase A¢:  a,(w,Ap)=6,-6,=26

q

i6,

[ =|le

W,
1

~|
Il
S|
mﬁt
3

The Chern number q 1s the winding number of the reflected
phase shift 6, (A¢) associated to the structural phase.

6, (Ap=2m)-6,(Ap=0)
2r

q:

The Chern number q 1s half the winding number of the spectral
deviation from palindromicity «, (a) wap ,A¢) associated to the structural phase.




Summary-Further directions

e Topological structure of finite size quasi-periodic chains
induced by the palindromic symmetry (non trivial fiber bundle)

e Direct relation between scattering data (chiral reflection phase)

—

o, (0,A9)=0,-6,=20

q

and the gap labelling Chern numbers.

o C&P and scattering theory give a simple way to calculate/measure
Chern numbers.



o Effective Fabry-Perot condition : systematic and simple design of

topological mirrors. _z_ | A
™ . 7 2
it S ".

e A simple resonance condition allows to calculate the position of
the gap modes.

— Fibo(55)-48-0biF (55)

AK) BB, AK) Bl L RS

LFP(k): - -m-—-, mEZ 4 -l ) -
S ol Wl
B 10° LeeeePegzey botaedt 4 . M cafococted

e Spatial structure of the topological modes.
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Casimir effect between topological mirrors.
Topological origin of fractional charge (polyacetylene, SSH)
Quantum anomaly for relativistic fermions (Jackiw, Rebbi)

Topological invariants (Atiyah-Singer index theorem),
relation to scattering theory.



Thank you tor your attention.



