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Part 1

A brief digest of some salient 	


previous results	



 



As opposed to Euclidean spaces 
characterised by translation symmetry, 
fractals possess a dilatation symmetry.

Fractals are self-similar objects



Fractal    ↔    Self-similar

Discrete scaling symmetry



Discrete scale invariance (DSI) 	
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f a x( ) = b f x( ), with fixed a,b( )

discrete scale invariance is expressed by a weaker version of 
scale invariance, i.e.,

whereas this relation is satisfied                   , for continuous 
scale invariance 

∀b a( )∈!
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Relation between the two cases : discrete vs. continuous

a,b( ) = 3,2( )

a,b( ) = 2,3( )

d = 1

d = 2

∀ a,b( )

Both satisfy                              but with fixed                              
for the fractals.

f a x( ) = b f x( ) a,b( )

m 3L( ) = 2m L( )

m 2L( ) = 2 m L( )

m 2L( ) = 3m L( )

∀b a( )∈!
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Continuous vs. discrete scale invariance

f a x( ) = b f x( )

Power laws are signature of scale invariance

General solution (by direct inspection)

f x( ) = C xα

α = lnb
lnawith

If satisfied                    (CSI),∀b a( )∈!

(CSI vs. DSI)

If satisfied                            (DSI),f a x( ) = b f x( ), with fixed a,b( )
whose general solution is

f x( ) = xα G ln x
lna

⎛
⎝⎜

⎞
⎠⎟

G u +1( ) = G u( )where                           is a 	


periodic function of period unity
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Continuous vs. discrete scale invariance

f a x( ) = b f x( )

General solution (by direct inspection)

f x( ) = C xα

α = lnb
lnawith
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(CSI vs. DSI)
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whose general solution is

f x( ) = xα G ln x
lna

⎛
⎝⎜

⎞
⎠⎟

G u +1( ) = G u( )where                           is a 	


periodic function of period unity

Break CSI into DSI ?



Complex fractal exponents and oscillations	
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For a discrete scale invariance,  f x( ) = xα G ln x
lna

⎛
⎝⎜

⎞
⎠⎟

G u +1( ) = G u( )and                         is a periodic function of period unity

Fourier expansion: f x( ) = cn x
α+i2πn

lna

n=−∞

∞

∑

The scaling quantity         is characterised by an infinite 
set of complex valued exponents, 

f x( )

dn =α + i 2πn
lna

Power laws with complex valued exponents are 
signature of discrete scale invariance (DSI)



Today’s program
!

• To investigate situations where continuous 
scale invariance is spontaneously broken into 
discrete scale invariance.	



• Physical examples (generically, Efimov 
physics).	



• Renormalisation group and limit cycles. 



Part 2

A simple example of continuous 	


scale invariance (a.k.a. conformal)	



in quantum physics	


 



Redefining

3 Schrödinger equation in a potential V (r) = ≠ ›
r2

3.1 Introduction

In quantum mechanics, two particles interacting by means of a spherically symmetric inverse squared potential

in d space dimensions (d ”= 1) obey the radial Schrödinger equation (~ = 1)

3
d2

dr2

+ d ≠ 1
r

d

dr
≠ l(l + d ≠ 2)

r2

4
Â (r) + 2µ›

r2

Â (r) = k2Â (r) (3.1)

where µ is the reduced mass, l is the orbital angular momentum and Â (r) is the radial part of the total wave

function. We look for bound state solutions k2 = ≠2µE. By using

’ = 2µ› ≠ l(l + d ≠ 2), (3.2)

(3.1) reduces to

ÂÕÕ (r) + d ≠ 1
r

ÂÕ (r) + ’

r2

Â (r) = k2Â (r) . (3.3)

This equation displays unexpected behavior which di�ers from an Hermitian Hamiltonian eigenvalue problem

(such as the hydrogen atom or harmonic oscillator). First, note that ’ is the only parameter in the problem

and it is dimensionless. This raises the question of existence of a characteristic energy scale to express the

eigenvalues kn. This absence of characteristic scale can be expressed as the invariance of (3.3) under the

scale transformation r æ ⁄r, k æ 1

⁄ k. In other words, to every normalizable wave function Â (r, k) solution

of (3.3), corresponding a family of wave function Â (⁄r, k) of energy (⁄k)2 for all ⁄ œ R solution of

3
d2

dr2

+ d ≠ 1
r

d

dr
+ ’

r2

4
Â (⁄r, k) = (⁄k)2 Â (⁄r, k) .

Therefore, if it exists one bound state then there is a continuum (and not a discrete set) of related bound

states. This result is related to the non self adjointness of the corresponding Hamiltonian over the space of

square integrable functions L
2

. This is not property is not specific to the inverse squared potential. This

includes, potentials with higher order singularity [2,3] V (r) ≥ 1

rn , n Ø 3, and other examples [4]. There is

a standard way of dealing with this absence of self-adjointness. By adding further restrictions on the space on

which Ĥ operates, it can be shown that it is always possible to define a family of new operators Ĥ◊ associated

to Ĥ and self - adjoint. These restrictions appear in the form of boundary conditions specific to each new

operator Ĥ◊. The operators Ĥ◊, have the same formal expression but operate in a new space (L
2

restricted

by the corresponding boundary conditions). They are called ’self-adjoint extension’ of Ĥ [5], as discussed in

5

is the orbital angular momentum and l ! = 1

Illustration of scale invariance in quantum 
mechanics

Ĥ = − !
2

2µ
Δ − ξ

r2

In order to make the idea more explicit, consider the seemingly simple 
quantum problem : 	


!
Schrodinger equation for a particle of mass     in d-dimensions with an 
attractive (enough)                     potential.3 Schrödinger equation in a potential V (r) = ≠ ›

r2
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states. This result is related to the non self adjointness of the corresponding Hamiltonian over the space of

square integrable functions L
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. This is not property is not specific to the inverse squared potential. This

includes, potentials with higher order singularity [2,3] V (r) ≥ 1
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a standard way of dealing with this absence of self-adjointness. By adding further restrictions on the space on
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5

µ

d 2

dr2
+ d −1

r
d
dr

−
l l + d − 2( )

r2
⎛
⎝⎜

⎞
⎠⎟
ψ r( )+ 2µξ

r2
ψ r( ) = k2ψ r( )



This equation displays an unexpected behaviour distinct from	


hermitian Hamiltonian eigenvalue problems.

Consequence: Schrodinger eq. displays continuous scale invariance, i.e., 
it is invariant under the transformation:

The only parameter     in the problem is dimensionless : no characteristic 
length (energy) scale, e.g. Bohr radius                for the Coulomb potential.a0 = !

2

µe2

ζ

r→λr

k→ 1
λ
k

⎧

⎨
⎪

⎩
⎪

To every normalisable wave function             sol. of the Schr. eq.	


corresponds a family of wave functions               of energy          ,               ∀λ ∈!

ψ r,k( )
ψ λr,k( ) λk( )2

solution of

′′ψ r( )+ d −1
r

′ψ r( )+ ζ
r2
ψ r( ) = k2ψ r( )

d 2

dr2
+ d −1

r
d
dr

+ ζ
r2

⎛
⎝⎜

⎞
⎠⎟
ψ λr,k( ) = λk( )2ψ λr,k( )

ζ = 2µξ − l l + d − 2( )
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This equation displays an unexpected behaviour distinct from	


hermitian Hamiltonian eigenvalue problem.

Consequence: Schrodinger eq. displays continuous scale invariance, i.e., 
it is invariant under the transformation:
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corresponds a family of wave functions               of energy          ,               ∀λ ∈!

ψ r,k( )
ψ λr,k( ) λk( )2

solution of

′′ψ r( )+ d −1
r

′ψ r( )+ ζ
r2
ψ r( ) = k2ψ r( )

d 2

dr2
+ d −1

r
d
dr

+ ζ
r2

⎛
⎝⎜

⎞
⎠⎟
ψ λr,k( ) = λk( )2ψ λr,k( )

The existence of one bound state 	



implies those of a continuum of 

related bound states !



Related to the fact that the Hamiltonian      is not self-
adjoint over      , the space of square integrable functions.L2

Ĥ

These restrictions show up as boundary conditions specific 	


to each new operator Ĥθ

This is a more general property also characteristic of  	


potentials V r( ) ∼ 1rn , n ≥ 3

Adding further restrictions on the space on which	


operates, it is always possible to define a family of new 	


operators        associated to      and self-adjoint.  

Ĥ

Ĥθ Ĥ

All operators       have the same formal expression but act in 	


a new space (      restricted by the corresponding boundary 	


conditions).  They are called self-adjoint extensions of      .

L2
Ĥθ

Ĥ



For the case  

is scale invariant,                             and not self-adjoint Ĥ r→λr ⇒ Ĥ → 1
λ 2 Ĥ

Boundary conditions needed to find self-adjoint extensions	


break CSI spontaneously into DSI.

As a result, the energy spectrum appears in the form of a geometric 
sequence:

Note : no ground state for this spectrum. Breaking of continuous scale 	


invariance in the quantum domain is known as a scale anomaly.

Summary of the main results

Ĥ = − !
2

2µ
Δ − ξ

r2

ζ = 2µξ − l l + d − 2( )

kn ∝e
πn
Λ , n∈! Λ = ζ −ζ crwith

Leads to the remarkable result : for              ζ >ζ cr ζ cr =
d − 2( )2
4

with



An example of quantum anomaly is the Efimov effect  	


which occurs in the non relativistic quantum 3-body problem.

Efimov (1970) analysed the 3-nucleon system interacting through 	


zero-range interactions (    ). He pointed out the existence of universal 
physics at low energies,  

r0
E ≪"

2

mr0
2

When the scattering length     of the 2-body interaction becomes                          
there is a sequence of 3-body bound states whose binding energies are 
spaced geometrically  in the interval between         and   

a≫ r0a
!2
ma2

!2
mr0

2

As      increases, new bound states appear at critical values     of      	


that differ by a multiplicative factor         where                       	


 is a universal number. 

a a
s0 ≈1.00624

a∗

e
π
s0



2684 H.-W. Hammer and L. Platter

−κ*

1/a*1/a¢*
1/a

K

Figure 1. The Efimov plot for the three-body problem. We show K ≡ sgn(E)(m|E |)1/2/h̄ versus
the inverse scattering length 1/a. The solid lines denote some of the infinitely many branches of
Efimov states while the cross-hatching indicates the threshold for scattering states. Any one of the
quantities a∗, a′∗ and k∗ can be used to specify the branch labelled with n = n∗. All other states
follow from the discrete scaling symmetry. (Online version in colour.)

with an accumulation point at the three-body scattering threshold with a
geometric spectrum:

B(n)t = S−2(n−n∗)
0

h̄2k2∗
m
, (3.4)

where m is the mass of the particles and k∗ is the binding wavenumber of the
branch of Efimov states labelled by n∗ (figure 1). The geometric spectrum in
equation (3.4) is the signature of a discrete scaling symmetry with scaling factor
S0 ≈ 22.7. It is independent of the mass or the structure of the identical particles
and independent of the form of their short-range interactions. The Efimov effect
can also occur in other three-body systems if at least two of the three pairs have
a large S-wave scattering length but the numerical value of the asymptotic ratio
may differ from the value 22.72 ≈ 515.
A formal proof of the Efimov effect was subsequently given by Amado & Noble

[17,18]. The Thomas and Efimov effects are closely related. The deepest three-
body bound states found by Thomas’ variational calculation can be identified
with the deepest Efimov states [19].
The universal properties in the three-body system with large scattering length

are not restricted to the Efimov effect. The dependence of three-body observables
on the scattering length is characterized by scaling behaviour modulo coefficients
that are log-periodic functions of a [20,21]. This behaviour is characteristic of
a system with a discrete scaling symmetry. We will refer to universal aspects
associated with a discrete scaling symmetry as Efimov physics.
In 1981, Efimov proposed a new approach to the low-energy few-nucleon

problem in nuclear physics that, in modern language, was based on perturbation
theory around the unitary limit [22]. Remarkably, this programme works
reasonably well in the three-nucleon system at momenta small compared with
Mp. It has been used as the basis of an EFT for nuclear physics at very low
energies [23,24].
Efimov formulated the three-body problem using hyperspherical coordinates

that are particularly well-suited for the analysis of few-body problems in
coordinate space. In this approach, the six independent coordinates of the

Phil. Trans. R. Soc. A (2011)
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∝sgn(E) E

Efimov spectrum

En =
!2κ ∗

2

2m
e
2πn
s0

As      increases, new bound states appear at critical values     of      	


that differ by a multiplicative factor         where                       	


 is a universal number. 

a a
s0 ≈1.00624

a∗

e
π
s0

Efimov quantum states have been beautifully evidenced 	


(Rudi Grimm (06), Randy Hulet (09),…) in ultracold gases using Feshbach 	


resonances.

Efimov showed that the corresponding 3-body pb. 	


reduces to a simple Schr. eq. with an effective 	


attractive potential :  V r( ) =−

s0 +
1
4

r2



Back to our spectral problem…	


 



How does it work ? 	


Solution of the spectral problem

Look for bound states. General solution:

′′ψ r( )+ d −1
r

′ψ r( )+ ζ
r2
ψ r( ) = k2ψ r( ) ζ = 2µξ − l l + d − 2( )

Modified Bessel functions

ζ >ζ cr ≡
d − 2( )2
4

⇔Λ2 > 0Assume now,

which does not provide a quantisation condition : 	


Hamiltonian is not self-adjoint.

ψ r( ) = 1
Z
r
2−d
2 KiΛ kr( ) ∼ 1

Z
r
2−d
2 kr( )iΛIt remains

for r→ 0

0
Λ = ζ −

d − 2( )2
4ψ r( ) = r

2−d
2 C1KiΛ kr( )+C2 IiΛ kr( )( ) with

Modified Bessel functions



so that     is not self-adjointĤ

 Self-adjoint ? 	


ψ 2 Ĥ

† ψ 1 = ψ 2 Ĥ ψ 1 ⇔ ′u2
∗ r( )u1 r( )−u2∗ r( ) ′u1 r( )( )

0

∞
= 0

∀ k1,k2 > 0

ÈÂ
2

| Ĥ† |Â
1

Í =
ˆ Œ

0

drrd≠1 Âú
2

Ĥ†Â
1

ˆ Œ

0

dr
1

ĤÂú
2

2
rd≠1Â

1

=
ˆ Œ

0

1
L̂u

2

2ú
u

1

=
ˆ Œ

0

uÕÕú
2

(r) u
1

+
ˆ Œ

0

–

r2

uú
2

(r) u
1

= uú
2

u
1

|Œ
0

≠
ˆ Œ

0

uÕú
2

(r) uÕ
1

(r) +
ˆ Œ

0

–

r2

uú
2

(r) u
1

= (uÕú
2

(r) u
1

≠ uú
2

(r) uÕ
1

(r)) |Œ
0

+
ˆ Œ

0

uú
2

(r) uÕÕ
1

(r) +
ˆ Œ

0

–

r2

uú
2

(r) u
1

= (uÕú
2

(r) u
1

≠ uú
2

(r) uÕ
1

(r)) |Œ
0

+
ˆ Œ

0

uú
2

(r) L̂u
1

(r)

= Èu
2

| L̂ |u
1

Í + (uÕú
2

(r) u
1

≠ uú
2

(r) uÕ
1

(r)) |Œ
0

.

Therefore

Ĥ = Ĥ† … (uÕú
2

(r) u
1

≠ uú
2

(r) uÕ
1

(r)) |Œ
0

= 0.

However, taking

u
1

(r) =
Ô

rKi� (k
1

r)

u
2

(r) =
Ô

rKi� (k
2

r)

with k
1

”= k
2

yields

(uÕú
2

(r) u
1

≠ uú
2

(r) uÕ
1

(r)) |Œ
0

Ã sin
3

� log
3

k
1

k
2

44
”= 0

and therefore Ĥ is not self-adjoint2. To cure this, we add the following additional boundary condition to the

normalizable eigenfunctions (3.8)

(uÕú
2

(r) u
1

≠ uú
2

(r) uÕ
1

(r)) |Œ
0

= 0 … sin
3

� log
3

k
1

k
2

44
= 0 (3.9)

for all k
1

”= k
2

and k
1

, k
2

> 0. By Solving (3.9) for k
1

, k
2

we get

k
1

k
2

= e
fin
� © ⁄n … kn = k

0

e
fin
�

!
k

0

is mod e
fi
�

"
(3.10)

2
There is a more basic way to test whether an operator is self-adjoint by calculating it’s deficiency indices and using a

theorem by Von-Neumann [3, 4]. In addition to testing the self-adjointness one can use the theorem to predict how many self-

adjoint extensions the considered operator has. In our case, as we will see, there is an infinite number of self-adjoint extensions

parameterized by a U (1) parameter.

9

and

Solving for k1,k2 k1
k2

=e
πn
Λ ≡ λ n⇔ kn = k0 e

πn
Λ n∈!

′u2
∗ r( )u1 r( )−u2∗ r( ) ′u1 r( )( )
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∞
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k2

⎛
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⎞
⎠⎟

⎛

⎝⎜
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⎧
⎨
⎪

⎩⎪
defining
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theorem by Von-Neumann [3, 4]. In addition to testing the self-adjointness one can use the theorem to predict how many self-

adjoint extensions the considered operator has. In our case, as we will see, there is an infinite number of self-adjoint extensions
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with ⇒

To cure this, we add the additional boundary condition:
The Efimov parameter should be determined by an exact solution of the 	


3-body problem which properly takes into account the short distance 
physics (which cannot be of the form        all the way to           ).r→ 01

r2

k0     is an arbitrary energy parameter introduced for 	


dimensional considerations : Efimov parameter

k1
k2

=e
πn
Λ ≡ λ n⇔ kn = k0 e

πn
Λ n∈!

Efimov spectrum



 The Efimov spectrum 	


k1
k2

=e
πn
Λ ≡ λ n⇔ kn = k0 e

πn
Λ

• The Efimov spectrum is invariant under a discrete scaling w.r.t. the 
parameter :

λ ≡e
π
Λ Λ = ζ −

d − 2( )2
4

ζ = 2µξ − l l + d − 2( )where

kn ; n∈!{ }→ λkn ; n∈!{ } = kn+1 ; n∈!{ } = kn ; n∈!{ }

• The eigenfunctions : ψ n (r) = 2 sinh πΛ( )
πΛ

kn r
2−d
2 KiΛ (knr)

are also invariant under a discrete scaling transformation :

ψ n (λ r) =λ
2−d
2 ψ n (r)

ψ n (r) = !( )r
2−d
2 cos Λ ln knr( )+φ( )+O r2( )( ) (Single harmonic approx.)



Density of states ρ E( ) = δ E − En( )
n∈!
∑

ρ λ 2 E( ) =2µ δ λ 2 k2 − kn
2( )

n∈!
∑ ="=λ −2 ρ E( )

ρ E( ) = 1
E
G lnE

lnλ
⎛
⎝⎜

⎞
⎠⎟

G u +1( ) = G u( )where 

Conclusion : The original continuous scaling symmetry 

so that

r→λr

k→ 1
λ
k

⎧

⎨
⎪

⎩
⎪

∀λ ∈! is broken into a discrete scaling symmetry

k1
k2

=e
πn
Λ ≡ λ n⇔ kn = k0 e

πn
Λ

Underlying effective fractal structure ?



Part 3

 Rephrasing the same problem 	


from another point of view	



 



Renormalisation group (RG) and limit cycles
It is interesting to re-phrase the previous problem using the	



language of RG transformations. 

Why ?

• It provides another (more physical ?) point of view 	


    on the                      problem.	


!
• It allows to insert that problem in a broader perspective.	


!
• to make a connexion with other physical problems.                                     

3 Schrödinger equation in a potential V (r) = ≠ ›
r2

3.1 Introduction

In quantum mechanics, two particles interacting by means of a spherically symmetric inverse squared potential

in d space dimensions (d ”= 1) obey the radial Schrödinger equation (~ = 1)

3
d2

dr2

+ d ≠ 1
r

d

dr
≠ l(l + d ≠ 2)

r2

4
Â (r) + 2µ›

r2

Â (r) = k2Â (r) (3.1)

where µ is the reduced mass, l is the orbital angular momentum and Â (r) is the radial part of the total wave

function. We look for bound state solutions k2 = ≠2µE. By using

’ = 2µ› ≠ l(l + d ≠ 2), (3.2)

(3.1) reduces to

ÂÕÕ (r) + d ≠ 1
r

ÂÕ (r) + ’

r2

Â (r) = k2Â (r) . (3.3)

This equation displays unexpected behavior which di�ers from an Hermitian Hamiltonian eigenvalue problem

(such as the hydrogen atom or harmonic oscillator). First, note that ’ is the only parameter in the problem

and it is dimensionless. This raises the question of existence of a characteristic energy scale to express the

eigenvalues kn. This absence of characteristic scale can be expressed as the invariance of (3.3) under the

scale transformation r æ ⁄r, k æ 1

⁄ k. In other words, to every normalizable wave function Â (r, k) solution

of (3.3), corresponding a family of wave function Â (⁄r, k) of energy (⁄k)2 for all ⁄ œ R solution of

3
d2

dr2

+ d ≠ 1
r

d

dr
+ ’

r2

4
Â (⁄r, k) = (⁄k)2 Â (⁄r, k) .

Therefore, if it exists one bound state then there is a continuum (and not a discrete set) of related bound

states. This result is related to the non self adjointness of the corresponding Hamiltonian over the space of

square integrable functions L
2

. This is not property is not specific to the inverse squared potential. This

includes, potentials with higher order singularity [2,3] V (r) ≥ 1

rn , n Ø 3, and other examples [4]. There is

a standard way of dealing with this absence of self-adjointness. By adding further restrictions on the space on

which Ĥ operates, it can be shown that it is always possible to define a family of new operators Ĥ◊ associated

to Ĥ and self - adjoint. These restrictions appear in the form of boundary conditions specific to each new

operator Ĥ◊. The operators Ĥ◊, have the same formal expression but operate in a new space (L
2

restricted

by the corresponding boundary conditions). They are called ’self-adjoint extension’ of Ĥ [5], as discussed in

5



r→ 0
The need of self-adjoint extensions results from the ill-defined 	


behaviour of the potential                    for            and  from 	


the absence of characteristic length.
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The Schr. eq. becomes : d 2

dr2
+ d −1

r
d
dr

−
l l + d − 2( )

r2
+ ξ
rs

⎛
⎝⎜

⎞
⎠⎟
ψ r( ) = −2µEψ r( )

L0 < r < ∞

L0
′ψ L0( )

ψ L0( ) = g0 + mixed boundary conditions                    to encode the short 	


distance contribution.

The cutoff      is a physical parameter : characteristic scale at which 	


the potential        is altered as a result of additional short 	


range interactions.	



L0
Vl (r)

• To cure these problems, introduce a short distance radial cutoff       	


so that                     for             and some unknown short range  	


!
structure                           .  

L0
r > L0

Vs r( ) for r < L0

Vl r( ) = ξ
rs
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so that                     for             and some unknown short range  	
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structure                           .  

L0
r > L0

Vs r( ) for r < L0

Vl r( ) = ξ
rs

Obtain a complete solution, function of a set of parameters L0,ξ,
g0(
)



Perform a RG transformation : change the cutoff distance L0 → L

L→ L + dL ≡λL

Integrate out the Sch. eq. in the range                 and obtain an 	


equivalent effective description with a new cutoff 

L,L + dL[ ]

0 < λ −1≪1with

 and a new set of  mixed boundary conditions                   
λL

′ψ λ L( )
ψ λ L( ) = g λ L( )

with a new coupling constant     and boundary cond. ξ g L( )

New Schr. eq. defined in the range λ L < r < ∞

Vl r( ) = ξ
rs



The rescaling 
′r = r λ
′E = E λ 2

⎧

⎨
⎪

⎩
⎪

L dg
dL

= 2 − d( )g − g2 − 2µξL2−s + l l + d − 2( )− 2L2µE

The 2 previous eqs. are the renormalisation group (RG) eqs. and we 	


define the corresponding     -functions : β βξ ,g ≡

∂ ξ,g( )
∂lnL

ξ →ξ λ 2−s⇔ L dξ
dL

= 2 − s( )ξleaves the Schr. eq. unchanged provided	


 

L→ L + dL ≡λL 0 < λ −1≪1with

We can also relate            to          :g L( )g λ L( )

βξ = 2 − s( )ξ
βg = 2 − d( )g − g2 − 2µξL2−s + l l + d − 2( )− 2L2µE

⎧
⎨
⎪

⎩⎪

βξ = 2 − s( )ξ



Assume low energy compared to potential and centrifugal barriers:  

2L2µ E ≪ 2µξ− l l + d − 2( )

s = 2

RG eqs. simplify to:

ζ ± =
2 − d
2

±
d − 2( )2
4

−ζ

βξ =0

βg = 2 − d( )g − g2 −ζ =− g −ζ +( ) g −ζ −( )

βξ =0

βg = 2 − d( )g − g2 −ζ =− g −ζ +( ) g −ζ −( )
: the coupling is scale invariant

ζ = 2µξ − l l + d − 2( )

βξ = 2 − s( )ξ
βg = 2 − d( )g − g2 − 2µξL2−s + l l + d − 2( )− 2L2µE

⎧
⎨
⎪

⎩⎪

βξ = 2 − s( )ξ

Take           i.e., Vl r( ) = ξ
rs V r( ) = ξ

r2

and with



Evolution of the coupling g L( )

λL
′ψ λ L( )

ψ λ L( ) = g λ L( ) Accounts for the change of boundary conditions                   

ζ ± =
2 − d
2

±
d − 2( )2
4

−ζ

ζ <ζ cr ≡
d − 2( )2
4For                            : two real fixed points ζ + ,ζ −( )

unstable 
stable βg = 0⇔g(L) = const.

Complete and well behaved solution of the Schr. eq. 

Where the problem was ?

βξ =0

βg = 2 − d( )g − g2 −ζ =− g −ζ +( ) g −ζ −( )



How does it work ? 	


Solution of the spectral problem

Look for bound states. General solution:
0

′′ψ r( )+ d −1
r

′ψ r( )+ ζ
r2
ψ r( ) = k2ψ r( ) ζ = 2µξ − l l + d − 2( )

Λ = ζ −
d − 2( )2
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the requirement of self-adjointness of the Hamiltonian can be viewed in this picture by a transition of the

RG flow from an IR and UV fixed points to the elimination of the fixed points and emergence of limit cycle

solutions. The Efimov spectrum given in (3.10), can be equivalently obtained from in the overcritical regime
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We have seen in section 4.1 that the renormalization group formulation of the inverse square interaction

yields a RG limit cycle for ’ > ’cr (or alternatively for su�ciently large coupling ›). For ’ < ’cr the RG
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Figure 4.2: The boundary condition g (L) as a function of ln(L/L
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equation give rise to two fixed solutions that get closer for an increasing ’, merge and vanish as the value of ’

exceeds ’cr. In what follows, we show that the massless Dirac equation with an attractive Coulomb potential

V (r) = ≠ ›
r , › © Z–

i
dÿ

µ=0

“µ (ˆµ + ieAµ) � (x‹) = 0 (4.15)

also exhibits limit cycle behavior through the same mechanism of merging of the two fixed points. We will

describe this using a similar RG formulation. Recently, a similar result was obtained by introducing an

explicit short range constant regulating potential and renormalizing it’s coupling [31] .

Although the Dirac and Schrodinger Hamiltonians expressed in (4.15) and (4.1) are very di�erent operators

they both share two similar properties. The first one, resulting from the power law form of the potentials

that matches the order of the di�erential operator in each Hamiltonian, is that both eigenvalue equations

are continuously scale invariant. The second property, arising from the singularity of the interaction is that

both Hamiltonians are not self-adjoint over the standard space of square-integrable function on 0 Æ r < Œ.

However, self adjoint extensions of the Hamiltonians can be found by imposing a boundary condition at

r = 0 [5]. For both Hamiltonians, the asymptotic behavior of the wave functions near the origin transforms

from a power-law in the low coupling regime to complex power law (log-periodic) in the high coupling regime.

This indicates that the continuous scale symmetry is spontaneously broken into a discrete scale symmetry.

The problem of a relativistic electron in a ’supercritical’ Coulomb potential give rise to ’atomic collapse’, a

fundamental phenomenon in quantum electrodynamics predicted long ago [32–34]. In the supercritical regime,

previously stable atomic bound states collapse into the positronic continuum (’Dirac sea’). Embedded in this

continuum of states the previously empty bound state will be occupied by an electron thereby producing a

17

The cycle completes a period for every L→e
π
Λ L



43

Continuous vs. discrete scale invariance

f a x( ) = b f x( )

General solution (by direct inspection)

f x( ) = C xα

α = lnb
lnawith

If satisfied                    (CSI),∀b a( )∈!

(CSI vs. DSI)

If satisfied                            (DSI),f a x( ) = b f x( ), with fixed a,b( )
whose general solution is

f x( ) = xα G ln x
lna

⎛
⎝⎜

⎞
⎠⎟

G u +1( ) = G u( )where                           is a 	


periodic function of period unity

Break CSI into DSI ?



44

Breaking of  CSI into DSI  previously understood as a 	


requirement of self-adjointness, is now interpreted as 	



a transition of the RG flow from an IR to UV fixed points 	


into the emergence of limit cycle solutions. 

Figure 4.1: The function —g in the over critical and sub critical regimes.For ’ < ’cr —g has two roots
correspond to two fixed points, ’≠ unstable and ’

+

stable. ’ = ’cr is a transition point where the roots
merge into a single fixed point. For ’ > ’cr there are no real fixed points.

the requirement of self-adjointness of the Hamiltonian can be viewed in this picture by a transition of the

RG flow from an IR and UV fixed points to the elimination of the fixed points and emergence of limit cycle

solutions. The Efimov spectrum given in (3.10), can be equivalently obtained from in the overcritical regime

from (4.14). From the definition of g (L)
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4.2 Relativistic 1/r potential

We have seen in section 4.1 that the renormalization group formulation of the inverse square interaction

yields a RG limit cycle for ’ > ’cr (or alternatively for su�ciently large coupling ›). For ’ < ’cr the RG
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βgunstable stable 

limit cycle solutions

The Efimov spectrum results immediately from L ′ψ L( )
ψ L( ) = g L( )

k1
k2

=e
πn
Λ ≡ λ n⇔ kn = k0 e

πn
Λ



Part 4

Another interesting case :	


!

The Dirac equation + Coulomb 
potential



fine 
structure 
constant 

Dirac equation
The whole issue of Efimov physics is based on the CSI of the 	


Hamiltonian : 

Ĥ = − !
2

2µ
Δ − ξ

r2

A natural question : What about the Dirac eq. with a Coulomb potential ?

Since                                                   is first order in the momentum and    
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equation give rise to two fixed solutions that get closer for an increasing ’, merge and vanish as the value of ’

exceeds ’cr. In what follows, we show that the massless Dirac equation with an attractive Coulomb potential

V (r) = ≠ ›
r , › © Z–

i
dÿ

µ=0

“µ (ˆµ + ieAµ) � (x‹) = 0 (4.15)

also exhibits limit cycle behavior through the same mechanism of merging of the two fixed points. We will

describe this using a similar RG formulation. Recently, a similar result was obtained by introducing an

explicit short range constant regulating potential and renormalizing it’s coupling [31] .

Although the Dirac and Schrodinger Hamiltonians expressed in (4.15) and (4.1) are very di�erent operators

they both share two similar properties. The first one, resulting from the power law form of the potentials

that matches the order of the di�erential operator in each Hamiltonian, is that both eigenvalue equations

are continuously scale invariant. The second property, arising from the singularity of the interaction is that

both Hamiltonians are not self-adjoint over the standard space of square-integrable function on 0 Æ r < Œ.

However, self adjoint extensions of the Hamiltonians can be found by imposing a boundary condition at

r = 0 [5]. For both Hamiltonians, the asymptotic behavior of the wave functions near the origin transforms

from a power-law in the low coupling regime to complex power law (log-periodic) in the high coupling regime.

This indicates that the continuous scale symmetry is spontaneously broken into a discrete scale symmetry.

The problem of a relativistic electron in a ’supercritical’ Coulomb potential give rise to ’atomic collapse’, a

fundamental phenomenon in quantum electrodynamics predicted long ago [32–34]. In the supercritical regime,

previously stable atomic bound states collapse into the positronic continuum (’Dirac sea’). Embedded in this

continuum of states the previously empty bound state will be occupied by an electron thereby producing a
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describe this using a similar RG formulation. Recently, a similar result was obtained by introducing an

explicit short range constant regulating potential and renormalizing it’s coupling [31] .

Although the Dirac and Schrodinger Hamiltonians expressed in (4.15) and (4.1) are very di�erent operators

they both share two similar properties. The first one, resulting from the power law form of the potentials

that matches the order of the di�erential operator in each Hamiltonian, is that both eigenvalue equations

are continuously scale invariant. The second property, arising from the singularity of the interaction is that

both Hamiltonians are not self-adjoint over the standard space of square-integrable function on 0 Æ r < Œ.

However, self adjoint extensions of the Hamiltonians can be found by imposing a boundary condition at

r = 0 [5]. For both Hamiltonians, the asymptotic behavior of the wave functions near the origin transforms

from a power-law in the low coupling regime to complex power law (log-periodic) in the high coupling regime.

This indicates that the continuous scale symmetry is spontaneously broken into a discrete scale symmetry.

The problem of a relativistic electron in a ’supercritical’ Coulomb potential give rise to ’atomic collapse’, a

fundamental phenomenon in quantum electrodynamics predicted long ago [32–34]. In the supercritical regime,

previously stable atomic bound states collapse into the positronic continuum (’Dirac sea’). Embedded in this

continuum of states the previously empty bound state will be occupied by an electron thereby producing a
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These two problems share the same continuous scale invariance 	


property (CSI). 

Don’t we know everything about the Dirac Hydrogen atom ?

the Coulomb potential



Old problem (Pomeranchuk, 1945) of a relativistic electron 	


in a super critical Coulomb potential.  	



Success of QED lies in the domain of small (weak) fields and 	


perturbation theory in the small dimensionless parameter :  

α = e
2

!c ≈
1
137
≪1 (fine structure constant)

Calculations involving bound states of a nucleus of charge	


involve the dimensionless combination  

Ze
Zα

Perturbation theory fails for Zα ≥1

In that case, we expect instability of the vacuum (ground state) against 	


creation of electron-positron pairs.



Problem : to observe this instability, we need Z ≥1α !137

No such stable nuclei have been created. 

Idea: consider analogous condensed matter systems with a 	


“much larger effective fine structure constant”.

Graphene : Effective massless Dirac excitations with a Fermi 	


velocity                  so that  vF ! 10

6m
s

and Zc ≥ 1αG
! 0.4 Zc !1(          with screening effects)

αG = e
2

!vF
≈ 2.5



Graphene : Effective massless Dirac excitations with a Fermi 	


velocity                  so that  vF ! 10

6m
s

and Zc ≥ 1αG
! 0.4 Zc !1(          with screening effects)

αG = e
2

!vF
≈ 2.5

• Charge impurities in graphene  (Coulomb potential)       	


!

scattering of quasi- bound states           	


!

singular behaviour of the total phase shift	


!
       change of spectral and transport properties 	


            (Shytov, Katsnelson, Levitov,2007)	


!
       Measurement of local DOS (STM spectroscopy) 	


             (Wang et al. (2013)

⇒
⇒
⇒



Old problem (Pomeranchuk, 1945) of a relativistic electron 	


in a super critical Coulomb potential.  	



Success of QED lies in the domain of small (weak) fields and 	


perturbation theory in the small dimensionless parameter :  

α = e
2

!c ≈
1
137
≪1 (fine structure constant)

Calculations involving bound states of a nucleus of charge	


involve the dimensionless combination  

Ze
Zα

Perturbation theory fails for Zα ≥1

In that case, we expect instability of the vacuum (ground state) against 	


creation of electron-positron pairs.

How to understand this instability ? 



The Dirac-Kepler problem

ε =c p2 +m2c2 − Ze
2

r

Estimate of the ground state energy :
electron position cannot be determined to better than ! p

ε p( ) ≥c p2 +m2c2 − Zα p( )
Minimising w.r.t     : p ε0 =mc

2 1− Zα( )2

which reproduces well known features of the Hydrogen ground state	


in the non relativistic               and relativistic limits.  Zα ≪1( )

Zα >1For               the ground state energy becomes imaginary. 

Heuristic argument : classical expression for the energy of an electron 	


of mass      , momentum      in the field of a charge  m p Ze



Important remark : this instability is independent of the electron 	


mass       (dimensional analysis) so that the Dirac-Kepler 	


instability remains in the (so-called) Weyl-Kepler problem              .

m
m = 0( )

Good news since in graphene, Dirac excitations are massless. 

Figure 4.2: The boundary condition g (L) as a function of ln(L/L
0

) where � © arctan
1

g
0

≠ 2≠d
2

�

2
.

equation give rise to two fixed solutions that get closer for an increasing ’, merge and vanish as the value of ’

exceeds ’cr. In what follows, we show that the massless Dirac equation with an attractive Coulomb potential

V (r) = ≠ ›
r , › © Z–

i
dÿ

µ=0

“µ (ˆµ + ieAµ) � (x‹) = 0 (4.15)

also exhibits limit cycle behavior through the same mechanism of merging of the two fixed points. We will

describe this using a similar RG formulation. Recently, a similar result was obtained by introducing an

explicit short range constant regulating potential and renormalizing it’s coupling [31] .

Although the Dirac and Schrodinger Hamiltonians expressed in (4.15) and (4.1) are very di�erent operators

they both share two similar properties. The first one, resulting from the power law form of the potentials

that matches the order of the di�erential operator in each Hamiltonian, is that both eigenvalue equations

are continuously scale invariant. The second property, arising from the singularity of the interaction is that

both Hamiltonians are not self-adjoint over the standard space of square-integrable function on 0 Æ r < Œ.

However, self adjoint extensions of the Hamiltonians can be found by imposing a boundary condition at

r = 0 [5]. For both Hamiltonians, the asymptotic behavior of the wave functions near the origin transforms

from a power-law in the low coupling regime to complex power law (log-periodic) in the high coupling regime.

This indicates that the continuous scale symmetry is spontaneously broken into a discrete scale symmetry.

The problem of a relativistic electron in a ’supercritical’ Coulomb potential give rise to ’atomic collapse’, a

fundamental phenomenon in quantum electrodynamics predicted long ago [32–34]. In the supercritical regime,

previously stable atomic bound states collapse into the positronic continuum (’Dirac sea’). Embedded in this

continuum of states the previously empty bound state will be occupied by an electron thereby producing a
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Is there an Efimov like structure for the massless Dirac problem ?

 + scalar electromagnetic potential

Using self-adjoint extension is more cumbersome.	


The RG picture is rather simpler here. 

hole, i.e, a positron which will be scattered from the coulomb potential.

These two physical phenomena are identical and occur for the same critical coupling ›cr © Zcr– (for l = 0).

For d = 3, ›cr = 1 which requires and atom number 4 of Z ≥ 137. Thus, experimental observation of atomic

collapse has been di�cult to achieve due the large Zc required. However, in recent years theoretical [35, 36]

and experimental [37] interest has been triggered due to the discovery of relativistic massless low energy

quasi-particles in graphene [38]. These charge carriers can be e�ectively described by the Dirac equation

(4.15) for d = 2 with the speed of light replaced by the much lower Fermi-velocity in graphene vF ¥ 106 m/s.

The low vF implies a large e�ective fine structure constant e2

~vF
¥ 2.5 and together with charge impurities

simulating a Coulomb potential in the graphene layer, experimental accessibility to the supercritical regime

can be achieved.

Since (4.1), (4.15) share the phenomenon at which a classical continuous scale symmetry is broken spon-

taneously in the quantum picture to a discrete scale symmetry a natural question arises - does (4.15) admit

an Efimov like spectrum? Unfortunately, massless relativistic particles cannot form bound states, however,

quasi-bound states indeed admit an Efimov like spectrum? [35]. Recently, such a resonance has been mea-

sured [37]. It would be interesting if experimental evidence to the Efimov like structure of the spectrum of

these quasi-bound states could be found.

The Dirac equation in the presence of an electromagnetic potential in d + 1 dimensions is given by
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The matrix ÷µ‹ is the d + 1 Malinowski metric with a ’mostly minus’ sign convention. We set a scalar EM

potential of the form
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0
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Ai = 0 i = 1, . . . , d.
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Assuming the nucleus has finite radius yields a larger atomic number Zc ≥ 170 see [33]
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equation give rise to two fixed solutions that get closer for an increasing ’, merge and vanish as the value of ’

exceeds ’cr. In what follows, we show that the massless Dirac equation with an attractive Coulomb potential

V (r) = ≠ ›
r , › © Z–

i
dÿ

µ=0

“µ (ˆµ + ieAµ) � (x‹) = 0 (4.15)

also exhibits limit cycle behavior through the same mechanism of merging of the two fixed points. We will

describe this using a similar RG formulation. Recently, a similar result was obtained by introducing an

explicit short range constant regulating potential and renormalizing it’s coupling [31] .

Although the Dirac and Schrodinger Hamiltonians expressed in (4.15) and (4.1) are very di�erent operators

they both share two similar properties. The first one, resulting from the power law form of the potentials

that matches the order of the di�erential operator in each Hamiltonian, is that both eigenvalue equations

are continuously scale invariant. The second property, arising from the singularity of the interaction is that

both Hamiltonians are not self-adjoint over the standard space of square-integrable function on 0 Æ r < Œ.

However, self adjoint extensions of the Hamiltonians can be found by imposing a boundary condition at

r = 0 [5]. For both Hamiltonians, the asymptotic behavior of the wave functions near the origin transforms

from a power-law in the low coupling regime to complex power law (log-periodic) in the high coupling regime.

This indicates that the continuous scale symmetry is spontaneously broken into a discrete scale symmetry.

The problem of a relativistic electron in a ’supercritical’ Coulomb potential give rise to ’atomic collapse’, a

fundamental phenomenon in quantum electrodynamics predicted long ago [32–34]. In the supercritical regime,

previously stable atomic bound states collapse into the positronic continuum (’Dirac sea’). Embedded in this

continuum of states the previously empty bound state will be occupied by an electron thereby producing a
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The RG picture is rather simpler here. 
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Obtain a spontaneous breaking of the original scale 	


symmetry into a discrete one with a corresponding Efimov spectrum 	



in the same way as for the non relativistic case. 

It would be very interesting to 

observe an Efimov spectrum in 	



that case !



• We have shown on two examples how continuous (conformal) 	


scale invariance is spontaneously broken into a discrete scale 
invariance.	


!

• For these examples, this breaking can be understood as the need of 
new boundary conditions to restore self-adjointness of the 
Hamiltonian (see also notions of deficiency indices and a theorem 
of Von Neumann).                               	



!
• Breaking of the CSI can also be interpreted using the 

Renormalisation group picture : stable fixed points evolve into 
limit cycles described by complex valued exponents 
(characteristics of fractal structures, K.G. Wilson, RG and strong 
interactions, 1971). 	



!
!
!

Summary-Further directions



• A large number of problems can be described similarly as 
“conformality lost” (Kaplan et al., 2009) and emergence of limit 
cycles:	


!

     Kosterlitz-Thouless transition (deconfinement of vortices in 
the XY-model at a critical temp. above which the theory is 
conformal): mapping between the XY-model and the T=0 sine-
Gordon in 1+1 dim.	



!
     	



     Metal-insulator transition in d-dimensions (electron gas  to 
Wigner crystal, Localisation transition).	



!
Breitenlohner-Freedman bound for free massive scalar field  	



   on           space.                               	


!
• Quantum gravity :	


!
!

L = T
2

∂µφ( )2 − 2zcosφ

AdSd+1



Basic tool : sum over histories 

Each path is a 4-dimensional, curved space time 
geometry “g” which can be thought of as a 3-dim., 
spatial geometry developing in time. 
associated with each “g” is given by the 
corresponding Einstein-Hilbert action S g[ ]

A hard problem ! Several approaches on the market. !

Classical General Relativity

Based on Einsteins equations

Rµν − 1
2 gµνR︸ ︷︷ ︸

space-time curvature

= −Λgµν + 8πGN Tµν
︸ ︷︷ ︸

matter content

• Newton’s constant: GN = 6.67× 10−11 m3

kg s2

• cosmological constant: Λ ≈ 10−35 s−2

– p. 4/45

Classical General Relativity
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space-time curvature

= −Λgµν + 8πGN Tµν
︸ ︷︷ ︸
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kg s2

• cosmological constant: Λ ≈ 10−35 s−2

– p. 4/45

S g[ ]= 1
16πGN

d 4x g −R + 2Λ( )∫

Dge−S g[ ]∫



The other option : non perturbative renormalisation group 
flow analysis (M. Reuter, F. Saueressig, 2012)
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Abstract

These lecture notes introduce the basic ideas of the Asymptotic Safety approach
to Quantum Einstein Gravity (QEG). In particular they provide the background for
recent work on the possibly multifractal structure of the QEG space-times. Impli-
cations of Asymptotic Safety for the cosmology of the early Universe are also dis-
cussed.

∗ Lectures given by M.R. at the Sixth Aegean Summer School on Quantum Gravity and Quantum
Cosmology, Chora, Naxos (Greece), September 2011.



A detailed analysis of this system was performed in [51]. The most important RG trajectories in the ⁄k ≠ gk

plane are shown in figure 5.1.

Figure 5.1: This figure is from [51]. RG flow in the ⁄k ≠ gk plane described by equations (5.11). The
direction of arrows is of increasing coarse graining, i.e, decreasing k. The flow is domination by a
non-Gaussian fixed point for gú = 0.32, ⁄ú = 0.36 and a trivial fixed point. The exponents of the
non-Gaussian fixed points are complex valued ◊

1.2 = ◊R ± i◊I . The trajectories entering the non-Gaussian
fixed point for increasing k spiral into it with log-periodic depdence on k corresponding to complex valued
◊

1,2. As a result, the flow close to the fixed point is DSI.

The RG flow is dominated by a trivial fixed point and a non-Gaussian fixed point at gú = 0.32, ⁄ú = 0.36.

There are three type of trajectories leaving the non-Gaussian fixed point. Types Ia,IIIa flow toward negative

and positive ⁄ respectively. There is a single trajectory, type IIa, that hit the trivial fixed point g = ⁄ = 0 for

k æ 0. The exponents of the non-Gaussian fixed points are complex valued ◊
1.2 = ◊R ± i◊I with ◊R = ≠1.72

and ◊I = 4.14. The trajectories entering the non-Gaussian fixed point for increasing k spiral into it with

log-periodic dependence on k corresponding to complex valued ◊
1,2. The solution near the fixed point reads
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What I did not (yet) discuss
• Shot noise and quantum mesoscopic physics: 	



universality of the Fano factor beyond 1D- SSEP on fractal structures-
relation to electrical exponent - Dirichlet form - an entire field of research.

• Off-diagonal propagator : relation to interesting probs. in statistical 	


mechanics.

• Long-range correlations in disordered systems : 	


generalisation of the Harris-Luck criterion for the relevance 	


of discrete scaling symmetry (connexion to substitution matrices	


and quasi-periodic order).



Thank you for your attention.


