Waves and quantum
physics on fractals :

From continuous to discrete

scaling symmetry

ERIC AKKERMANS
PHYSICS-TECHNION

1 G S & | \
TEChnlon ¥l 2z SSFLRLAI%\I((;ZE
Israel Institute of { & ¥ o
Technology




Four lectures

General introduction - Photons and Quantum
Electrodynamics on fractals

Interplay between topology and discrete scaling
symmetry : Quasi-crystals

Critical behaviour on fractals : BEC and superfluidity

Efimov physics from geometric and spectral
perspectives




Benefitted from discussions and collaborations with:

Technion: Elsewhere:

Evgeni Gurevich (KLA-Tencor)  Gerald Dunne (UConn.)
? Alexander Teplyaev (UConn.)
Ariane Soret (ENS Cachan) Raphael Voituriez (LPTMC, Jussieu)

Or Raz Olivier Benichou (LPTMC, Jussieu)
? Jacqueline Bloch (LPN, Marcoussis)
Ohad Shpielberg Dimitr1 Tanese (LPN, Marcoussis)
Alex Leibenzon Florent Baboux (LPN, Marcoussis)

Alberto Amo (LPN, Marcoussis)

Rafael: Julien Gabelli (LPS, Orsay)

Eli Levy
Assaf Barak
Amnon Fisher



Part 1

A briet digest of some salient
previous results



As opposed to Euclidean spaces
characterised by translation symmetry,
fractals possess a dilatation symmetry.

Fractals are self-similar objects



Fractal < Self-similar
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Discrete scaling symmetry




Discrete scale invariance (DSI)

discrete scale invariance 1s expressed by a weaker version of
scale invariance, i.e.,

f(ax) = bf(x), with fixed (a,b)

whereas this relation is satisfied V b (a) e R, for continuous
scale invariance




Relation between the two cases : discrete vs. continuous

(WY

B — —_— — d=1

m(2L)=2 m(L). Vb(a)eR

m(2L)=3m(L) (a.b)=(2.3)

Both satisty f(a x) = bf(x) but with fixed (a,b)
for the fractals.



Continuous vs. discrete scale invariance (CSI vs. DSI)

Flax)=b f(x)

/ N\

If satisfied V b(a)€R (CS). If satisfied with fixed (a,b) (DS]),
General solution (by direct inspection) whose general solution 1s
f(.X):CXa f(x):xaG(ln_x)
Ina
> h O = @
Wit ' Ina where G(u+1)=G(u) is a

periodic function of period unity

Power laws are signature of scale invariance




Continuous vs. discrete scale invariance (CSI vs. DSI)

Flax)=b f(x)

/ N\

If satisfied V b(a)€R (CS). If satisfied with fixed (a,b) (DS]),

General solution (by direct inspection) whose general solution 1s

f(x)= CX“M f(x)=x° GGE—;C)

Inb Break CSI into DSI ?

with o =——
Ina

where G(u+1)=G(u)is a
periodic function of period unity
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Complex fractal exponents and oscillations

For a discrete scale invariance, f(x)=x" GGH_X)
na

and G(u+1)=G(u)is a periodic function of period unity

The scaling quantity f(x) is characterised by an infinite

set of complex valued exponents,

d =0+1i _27m
Ina

Power laws with complex valued exponents are
signature of discrete scale invariance (DSI)
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Today’s program

® To investigate situations where continuous
scale 1invariance 1s spontaneously broken into
discrete scale invariance.

® Physical examples (generically, Efimov
physics).

® Renormalisation group and limit cycles.



Part 2

A simple example of continuous
scale invariance (a.k.a. conformal)
in quantum physics



Illustration of scale invariance in quantum
mechanics

In order to make the idea more explicit, consider the seemingly simple
quantum problem :

Schrodinger equation for a particle of mass ¢ in d-dimensions with an
attractive (enough) V (r) = _r% potential.

Redefining k? = —2uF

( d’ ,d-1d l(l+d_2)]t//(r)+2u§

2 _ 2
dr r dr r

[ is the orbital angular momentum and z =1



y'(r)+w(r)=k"y(r) C=2ué—1(l+d-2)

This equation displays an unexpected behaviour distinct from
hermitian Hamiltonian eigenvalue problems.

The only parameter ¢ in the problem is dimensionless : no characteristic
length (energy) scale, e.g. Bohr radius a, = %ez for the Coulomb potential.

Consequence: Schrodinger eq. displays continuous scale invariance, i.e.,

1t 1S 1nvariant under the transformation: Ay

<k 1k
%_
A

To every normalisable wave function y(r,k) sol. of the Schr. eq.
corresponds a family of wave functions y(Ar,k) of energy(1k) ,VA eR

solution of

[dz L1 L6 jy/(lr,k):(/lk)zy/(lr,k)

2 2
dr r dr r



¢ = 2uE—1(1+d-2) w”(r)+

This equation displays an unexpected behavie s om

hermitian Hamiltonian eigenvalue prot’ oD a st
The only parameter (- O&i o< ,{Xﬂ\x\)ﬁ\ characteristic
length (energy) - &6006 oS coP xeS \ —oulomb potential.
Conse ri \XeS \ ‘00\) _ys continuous scale invariance, i.e.,
1t 1S 1NV ov Ye\a‘e wormation:
< ke%k

To every normalisable wave function y(r,k) sol. of the Schr. eq.
corresponds a family of wave functions y(Ar,k) of energy(1k) ,VA eR

solution of

(dz L1 L6 jy/(lr,k):(/lk)zy/(lr,k)

2 2
dr r dr r



Related to the fact that the Hamiltonian H is not self-
adjoint over L, , the space of square integrable functions.

This 1s a more general property also characteristic of
potentials v(r)~ /., n>3

Adding further restrictions on the space on which H
operates, 1t 18 always possible to define a family of new
operators H , associated to /{ and self-adjoint.

These restrictions show up as boundary conditions specific
to each new operator H ,

All operators H ohave the same formal expression but act in
a new space (L, restricted by the corresponding boundary
conditions). They are called self-adjoint extensions of H .




Summary of the main results

2
For the case H = LN

T - . . A~ 1 s .
H is scale invariant, r>4r = H —-3H  and not self-adjoint

(d-2)

Leads to the remarkable result : for { > with¢, = {=2puE-1(1+d-2)

Boundary conditions needed to find self-adjoint extensions
break CSI spontaneously into DSI.

As a result, the energy spectrum appears in the form of a geometric
sequence:

k,<e®, neZ  with A=JC-C,

Note : no ground state for this spectrum. Breaking of continuous scale
invariance in the quantum domain is known as a scale anomaly.




An example of quantum anomaly 1s the Efimov effect
which occurs 1n the non relativistic quantum 3-body problem.

Efimov (1970) analysed the 3-nucleon system interacting through

zero-range interactions ( 7, ). He pointed out the existence of universal
. . .

physics at low energies, E« A/l .

When the scattering length @ of the 2-body interaction becomes a > r,
there 1s a sequence of 3-body bound states whose binding energies are
spaced geometrically 1n the interval between %az and % 2




As |a| increases, new bound states appear at critical values @ of @
that differ by a multiplicative factor / s where s, =1.00624
1s a universal number.

Aocsgn(E)\/|E| o K’ f 2;;”

n

2m
/a’, /a,

X078 A@ ; -
| 1/a

Efimov showed that the corresponding 3-body pb.
reduces to a simple Schr. eq. with an effective
attractive potential :

Efimov quantum states have been beautifully evidenced
(Rudi Grimm (06), Randy Hulet (09),...) 1n ultracold gases using Feshbach
resonances.



Back to our spectral problem...



How does it work ?
Solution of the spectral problem

l//'(”)+£21//(r)=k21//(r) {=2ué-1(l+d-2)

_d —
W(r): 2 IzA kl’ Wlth Az\/g—(d 42)

Y,

Modified Bessel functions

(d=2) _

Assume now, ¢>¢ = o ENA>0

2-d 1 =4

It remains z//(r)=%r2 KiA(kr)~ﬁ,, > (kr)

which does not provide a quantisation condition :
Hamiltonian 1s not selt-adjoint.



Self-adjoint ?

o0

<W2|ISIT|W1> = <‘//2|H|‘//1><:> (u;(’”)%(r)_“;(’”)uf(’”))‘ =0

0

defining - C=2uE—1(1+d-2)

with k1 £k = (u;*(r)ul(r)—u;(r)ul’(r))‘:msin[Alog(%jj7&0

2

so that H is not self-adjoint

To cure this, we add the additional boundary condition:

(u;*(r)ul(r)—u;(r)ul’(r))‘:ocsin[Alog(%n:O Vik,k,>0 and k1 # ko

2

Solving for kpkz ﬁ:e%z/l’”‘@k :koe% nelvz
k, ’



Self-adjoint ? ,
k ﬂ n

L _er ="k, =k e neZz
k2

k, is an arbitrary energy parameter introduced for
dimensional considerations : Efimov parameter

The Efimov parameter should be determined by an exact solution of the
3-body problem which properly takes into account the short distance
physics (which cannot be of the form 1r2 all the way to r -0 ).




The Efimov spectrum

ko mn
—=er ="k =k, e’

» The Efimov spectrum 1s invariant under a discrete scaling w.r.t. the
parameter : -

}LzeX where A:\/g—(df)z C=2ué-1(l+d-2)

lk,; neZ}—>{Ak,; neZl=1{k,; neZ}=1{k,; neZ}

n+l °

2—-d

« The eigenfunctions : W (r)= \/2 Sinhfzm) kr? K, (kr)
TU

are also invariant under a discrete scaling transformation :

2—-d

w,(Ar)=1 2y, (r)

W, (r)= (m)r%(Cos(Aln(knr)+¢)+0(r2)) (Single harmonic approx.)



Density of states p(E)=),6(E-E,)

p(AVE)=2u) 6(Ak —k})=--=17p(E)

nez,

so that | p(E) %G(F—i) where G(u+1)=G(u)
n

Conclusion : The original continuous scaling symmetry

r oAr

i VvieR 1s broken into a discrete scaling symmetry
k—>—k
A

.

k n E

Lt ="k =kye?
kz

Underlying etfective fractal structure ?



Part 3

Rephrasing the same problem
from another point of view



Renormalisation group (RG) and limit cycles

It 1s interesting to re-phrase the previous problem using the
language of RG transformations.

Why ?

It provides another (more physical ?) point of view
onthe V (r) = —% problem.

It allows to insert that problem in a broader perspective.

to make a connexion with other physical problems.



The need of self-adjoint extensions results from the 1ll-defined
behaviour of the potential V (r) = —% for r — Q and from
the absence of characteristic length.

* To cure these problems, introduce a short distance radial cutotf L,
so that |y () V forr > L, and some unknown short range
rS

structureV.(r) for r<lL,.

The cutoff L,1s a physical parameter : characteristic scale at which
the potential V,(r)1s altered as a result of additional short
range interactions.

d’  d-1d _[l(Il+d=2) %jw(r)?z“’f‘/’(”)

dr? r o dr r? r

The Schr. eq. becomes : (

L,<r<eo

+ mixed boundary conditions |L (L) & to encode the short
distance contribution.




The need of self-adjoint extensions results from the 1ll-defined
behaviour of the potential V (r) = —% for r — Q and from
the absence of characteristic length.

» To cure these problems, introduce a short distance radial cutoft L,
so that |y () 7 forr > L, and some unknown short ro- \
r ’ gg

- (Lo

structureV.(r) for r<lL,.

5
. . . qoi? - .
The cutoff L, 1s a physica! “QCUO“ _rdcteristic scale at which

the potential V(> SO\\)(XO“’ _osult of additional short

e
range i» Oﬁ\Q\e‘
02 ®
obt? & d-1d 1(i+d-2) &
Ty ocnr. eq. becomes : ( >+ ——— sjl/f(r)=—2uEl/f(")
dr rodr r r
L,<r<eo

+ mixed boundary conditions |L (L) & to encode the short
distance contribution.




Perform a RG transformation : change the cutoft distance L, = L

Integrate out the Sch. eq. in the range |L,L+dL] and obtain an
equivalent effective description with a new cutotf

L—>L+dL=AL| with O<Al-1«1

and a new set of mixed boundary conditions Y (AL)

New Schr. eq. defined 1n the range AL <7 < o

with a new coupling constant & and boundary cond. (L)




r’'="

. A .
The rescaling |y | L—L+dL=AL| with 0<A-1xl
E=E/,

leaves the Schr. eq. unchanged provided ¢ —¢& 12_‘9(:} LZ—i =(2-s)&

We can also relate g(/lL) to 8(L) ; Lj—i:(2—d)g—g2—2,u§L2_S+l(l+d—2)—2L2,uE

The 2 previous egs. are the renormalisation group (RG) egs. and we
define the corresponding IB—functions ;

| ﬁg =(2_S)§
B,=(2-d)g—g" —2uEL" +1(1+d—-2)-2L°UE




Take s=2i.e.,

B,=(2-d)g—g —2uEL” +1(1+d—-2)-2L°uE

Assume low energy compared to potential and centrifugal barriers:

2L U|E|<|2uE-1(1+d-2)

RG egs. simplify to:

and

B: =0 : the coupling is scale invariant

B,=(2-d)g-

2

g’ —

with  ¢=2ué—-1(i+d-2)



Evolution of the coupling g(L)

B.=(2-d)g-g' -{=-(g-¢,)(g-¢) ="+

Accounts for the change of boundary conditions ALZ( L)

(d-2)
4

For ¢<¢,= . two real fixed points

(.-¢)
/ / \
B, =0 g(L) = const. able unstable

Complete and well behaved solution of the Schr. eq.

Where the problem was ?




How does it work ?
Solution of the spectral problem

l//'(”)+£21//(r)=k21//(r) {=2ué-1(l+d-2)

I.ook for bound states. General solution:

2 0
l//(r)=r ? (ClKiA(kr)+C2I \ . A:\/é'—

It was here

)
d Z ) SA* >0 )

Assume now, { ¢>¢ = (

It remains z//(r)=%r2 KiA(kr)~ﬁ,, > (kr)

which does not provide a quantisation condition :
Hamiltonian 1s not selt-adjoint.




Evolution of the coupling g(L)

B.=(2-d)g-g' -{=-(g-¢,)(g-¢) ="+

o real fixed points ( )
/ / \
B, =0 g(L) = const. able unstable

Complete and well behaved solution of the Schr. eq.

Where the problem was ?




namely, when the strength 5 of the potential V(r)= % increases,
then ¢=ous—i(1+d-2) Increases.

and eventually, [{>¢, = (4 _42)
Then, the Hamiltonian : P n. &
1s not self-adjoint anymore 2u  r’

and CSI breaks down spontaneously into DSI leading
to the (discrete) Efimov spectrum :

Meaning 1n terms of RG eqgs. ?




Evolution of the coupling g(L)

d—2)
4

7 —

B,=(2-d)g-g" -{=—(g-{.)(s-{) C*:Ti\/(

-6

Accounts for the change of boundary conditions 4L ‘;88 =g(AL)

 } o real fixed points ( )
/ }
C

stabl

table

Thus we need to consider : (d-2)

Meaning 1n terms of RG egs. ?



Evolution of the coupling g(L)

,BgZ(Z—d)g—gz—C=—(g—§+)(g—g_) §+:2%i\/(d_42)2_§

two real fixed points

B,
£<y

2 g
r=¢,

Complete and well behaved solution of the Schr. eq.
Weakly attractive V(r)= % potential

table

(€.4)
/}

stabl




Evolution of the coupling g(L)

,Bg=(2—d)g—g2—C:—(g—§+)(g—§_) §+:%i\/(d_42)2_§




Evolution of the coupling g(L)

,Bg:(Z—d)g—gz—é;=—(g—§+)(g—g_) §+:%i\/(d_42)2_§

No fixed point and (C e ) become complex.




Evolution of the coupling g(L)

B,=(2-d)g-¢-¢=—(g-¢,)g-¢.)

CFMJ;\/(d_z)z

2 4

-6

T

\ The cycle completes a period for every L — e L

g(L)

~31/2

The solution for g(L) 1s a limit cycle.

g(L)= % + Atan

Arctan

,

2—d )

—Aln[
L

|
L In(L/Lg)—%
s (L/Lg)




Continuous vs. discrete scale invariance (CSI vs. DSI)

Flax)=b f(x)

/ N\

If satisfied V b(a)€R (CS). If satisfied with fixed (a,b) (DS]),

General solution (by direct inspection) whose general solution 1s

f(x)= CX“M f(x)=x° GGE—;C)

Inb Break CSI into DSI ?

with o =——
Ina

where G(u+1)=G(u)is a
periodic function of period unity

43



Breaking of CSI into DSI previously understood as a
requirement of self-adjointness, 1s now interpreted as
a transition of the RG flow from an IR to UV fixed points
into the emergence of limit cycle solutions.

unstable I5; ¢ stable

\

The Efimov spectrum results immediately from L =g(L)

k @ mn

L _er =Nk =ket
k, 44



Part 4

Another interesting case :

The Dirac equation + Coulomb



Dirac equation

The whole 1ssue of Efimov physics 1s based on the CSI of the
Hamiltonian :

A natural question : What about the Dirac eq. with a Coulomb potential ?

d
Since i) (0 +ied,) ¥ (z¥)=0| is first order in the momentum and
u=0
fine
. structure
the Coulomb potential |V (r) = —%, ¢ = Za constant

These two problems share the same continuous scale invariance
property (CSI).

Don’t we know everything about the Dirac Hydrogen atom ?



Old problem (Pomeranchuk, 1945) of a relativistic electron
in a super critical Coulomb potential.

Success of QED lies 1in the domain of small (weak) fields and
perturbation theory in the small dimensionless parameter :

i (fine structure constant)
137 |

Calculations involving bound states of a nucleus of charge Ze
involve the dimensionless combination Z ¢¢

Perturbation theory fails for Zo 21

In that case, we expect instability of the vacuum (ground state) against
creation of electron-positron pairs.



Problem : to observe this instability, we nee c\

No such stable nuclei have been created.

Idea: consider analogous condensed matter systems with a
“much larger effective fine structure constant”.

Graphene : Effective massless Dlrac exmtatlons with a Fermi
velocity v, =10 ”% so that g |




Graphene : Effective massless Dlrac exmtatlons with a Fermi
velocity v, = 106”’y so that 3 | |

(Z,=1 with screening effects)

» Charge impurities in graphene (Coulomb potential)
— scattering of quasi- bound states
—> singular behaviour of the total phase shift

—> change of spectral and transport properties
(Shytov, Katsnelson, Levitov,2007)

- Measurement of local DOS (STM spectroscopy)
(Wang et al. (2013)



How to understand this instability ?

(fine structure constant)

Calculations involving bound states of a nucleus of charge Ze
involve the dimensionless combination Z ¢

Perturbation theory fails for Zo 21

In that case, we exped 1nstab111ty of the vacuum (ground state against
creation Of €1eCtrON-POSIITOTT IaHES s



The Dirac-Kepler problem

Heuristic argument : classical expression for the energy of an electron
of mass 771 , momentum P in the field of a charge Ze

Estimate of the ground state energy :

electron position cannot be determined to better than %

e(p)=c (\/p2 +m’c? —

Minimising w.r.t p: =mc’ \/1—(205) _

which reproduces well known features of the Hydrogen ground state
in the non relativistic (Za < 1)and relativistic limits.

For Zo>1 the ground state energy becomes imaginary.



Important remark : this instability 1s independent of the electron
mass /71 (dimensional analysis) so that the Dirac-Kepler
instability remains in the (so-called) Weyl-Kepler problem (m =0) .

Good news since 1n graphene, Dirac excitations are massless.

This 1nstability in the Dirac/Weyl-Kepler

problem 1s an example of the spontaneous
breaking of CSI into DSI.



Important remark : this instability 1s independent of the electron
mass /71 (dimensional analysis) so that the Dirac-Kepler
instability remains in the (so-called) Weyl-Kepler problem (m =0) .

Good news since 1in graphene, Dirac excitations are massless.

Is there an Efimov like structure for the massless Dirac problem ?

J + scalar electromagnetic potential

Using self-adjoint extension is more cumbersome.
The RG picture 1s rather simpler here.

Obtain a spontaneous breaking of the original scale
symmetry into a discrete one with a corresponding Efimov spectrum
in the same way as for the non relativistic case.




Important remark : this instability 1s independent of the electron
mass 771 (dimensional analysis) so that the Dirac-Kepler

instability remains in the (so-called) Weyl-¥ roblem (m=0) .

. g \XO

. . »QO% :
Good news since in grar*. xe¥€ o W nassless.

) w 60“0
Is there an Efin; a\og W67 oV sP problem ?
Gy N
WO e
X& (\T c aﬂ \ixaf(« C’as
00S® >

Using self-adjoint extension is more cumbersome.
The RG picture 1s rather simpler here.

Obtain a spontaneous breaking of the original scale
symmetry into a discrete one with a corresponding Efimov spectrum
in the same way as for the non relativistic case.




Summary-Further directions

 We have shown on two examples how continuous (conformal)
scale invariance 1s spontaneously broken into a discrete scale
Invariance.

e For these examples, this breaking can be understood as the need of
new boundary conditions to restore self-adjointness of the
Hamiltonian (see also notions of deficiency indices and a theorem
of Von Neumann).

e Breaking of the CSI can also be interpreted using the
Renormalisation group picture : stable fixed points evolve into
limit cycles described by complex valued exponents
(characteristics of fractal structures, K.G. Wilson, RG and strong
interactions, 1971).



e A large number of problems can be described similarly as
“conformality lost” (Kaplan et al., 2009) and emergence of limit
cycles:

Kosterlitz-Thouless transition (deconfinement of vortices in
the XY-model at a critical temp. above which the theory 1s
conformal): mapping between the XY-model and the T=0 sine-
Gordon in 1+1 dim.

Metal-insulator transition in d-dimensions (electron gas to
Wigner crystal, Localisation transition).

> Breitenlohner-Freedman bound for free massive scalar field
on AdS,,, space.

e (Quantum gravity :



Basic tool : sum over histories

Each path 1s a 4-dimensional, curved space time
7 €_S [8 ] geometry “g” which can be thought of as a 3-dim.,
8 spatial geometry developing in time.

associated with each “g” 1s given by the
corresponding Einstein-Hilbert action S [ g ]

’ . — m3
J‘d4x\/’ _R+ 2A * Newton’s constant: Gy =6.67 x 10711 2

® cosmological constant: A~ 1073% 572

167rG

A hard problem ! Several approaches on the market.



The other option : non perturbative renormalisation group
flow analysis (M. Reuter, F. Saueressig, 2012)

Asymptotic Safety, Fractals,
and Cosmology*

Martin Reuter and Frank Saueressig
Institute of Physics, University of Mainz
Staudingerweg 7, D-55099 Mainz, Germany

reuter@thep.physik.uni-mainz.de
saueressig@thep.physik.uni-mainz.de

Abstract

These lecture notes introduce the basic ideas of the Asymptotic Safety approach
to Quantum Einstein Gravity (QEG). In particular they provide the background for
recent work on the possibly multifractal structure of the QEG space-times. Impli-
cations of Asymptotic Safety for the cosmology of the early Universe are also dis-
cussed.




Ruhnin3 Cou.DUnj COV\S-L&I«:ES 4

-
New':on Constant Gk » dimensionless 3(\<)=k Gk

cosmological constant Ak , dimensionless: ;{.(k) = k-zAk

i >—|9R| (bCOS (91 In % + op + Qb))

ko cos (01 In % + gb)



What I did not (yet) discuss

* Shot noise and quantum mesoscopic physics:
universality of the Fano factor beyond 1D- SSEP on fractal structures-
relation to electrical exponent - Dirichlet form - an entire field of researct

» Off-diagonal propagator : relation to interesting probs. in statistical
mechanics.

* Long-range correlations in disordered systems :
generalisation of the Harris-Luck criterion for the relevance
of discrete scaling symmetry (connexion to substitution matrices
and quasi-periodic order).




Thank you tor your attention.



