Les interactions entre atomes dans les gaz quantiques

De l'universalité de van der Waals aux résonances de Fano-Feshbach

Jean Dalibard Chaire *Atomes et rayonnement*

Année 2020-21

Les interactions entre atomes neutres

Comment deux atomes interagissent-ils quand ils se rapprochent ?

Peut-on contrôler cette interaction et la liaison chimique qu'elle entraîne ?

Questions apparues dès l'émergence de la physique quantique : Heitler & London 1927

Questions abordées dans ce cours sous l'angle des gaz d'atomes froids : longueur d'onde de Broglie $\lambda_{dB} \gg \ell'$ portée du potentiel d'interaction

"Lissage" de l'interaction

Le rôle des interactions dans les gaz quantiques

Transitions de phase au delà de la condensation de Bose-Einstein du gaz parfait Transition de Kosterlitz-Thouless, transition superfluide-isolant, ferrofluides

Réalisation d'objets composites nouveaux Solitons, vortex

Lien avec d'autres systèmes quantiques encore mal compris Régime d'interaction forte ("unitaire") : physique nucléaire, matière condensée

Les buts de cette série de cours

Présenter les outils pour analyser le problème à deux corps *Théorie de la diffusion, approche semi-classique*

Dégager des lois universelles et présenter leur vérification expérimentale

> *Rôle déterminant de l'interaction de van der Waals*

Comprendre comment modifier les interactions entre atomes froids *Résonance de Fano-Feshbach*

Prolongements du cours

Passage du problème à deux corps au problème à N corps Le "contact" de Tan

L'importance des effets à trois (ou quatre) corps

Le problème d'Efimov

Abordés dans une prochaine série de cours...

Cours 1

Le potentiel d'interaction entre atomes

Le cours d'aujourd'hui

Comment deux atomes se comportent-ils quand il s'approchent l'un de l'autre ? Attraction, répulsion, états liés (dimères) ?

1.

L'interaction de van der Waals

J.D. van der Waals 1837-1923

Fritz London 1900-54

Pour deux atomes dans leur état fondamental, $V(r) = -\frac{C_6}{r^6}$

Origine de l'interaction de van der Waals

Atomes suffisamment éloignés pour que l'échange d'électrons soit négligeable

Développement multipolaire de l'interaction entre les deux systèmes de charge :

Le terme dominant est l'interaction dipôle-dipôle électrique

$$U_{\rm dip} = \frac{1}{4\pi\epsilon_0 r^3} \left[\vec{D}_A \cdot \vec{D}_B - 3\left(\vec{u} \cdot \vec{D}_A\right) \left(\vec{u} \cdot \vec{D}_B\right) \right]$$

$$\vec{D}_A = \sum_j q(\vec{r}_j - \vec{r}_A) : \text{dipôle électrique de}$$

l'atome A, obtenu en sommant la contribution de tous ses électrons

Traitement perturbatif (ordre 1) de U_{dip}

Atomes dans leur état fondamental électronique $|\psi_0\rangle$ d'énergie E_0

 ${}_{\mathsf{A}}D_A$

 a_0 : rayon de Bohr

Exemple : atome d'hydrogène dans l'état 1s $\psi_0(\vec{r}_e) = \exp(-r_e/a_0)$ $\vec{D} = q\vec{r}_a$

Le potentiel $U_{
m dip}$ n'a donc pas d'effet à l'ordre 1 :

 $\Delta E_0^{(1)} = \langle A : \psi_0; B : \psi_0 | \hat{U}_{dip} | A : \psi_0; B : \psi_0 \rangle = 0.$

puisque U_{dip} fait intervenir $\overrightarrow{D}_A \cdot \overrightarrow{D}_B$ ou $\left(\overrightarrow{u} \cdot \overrightarrow{D}_A \right) \left(\overrightarrow{u} \cdot \overrightarrow{D}_B \right)$

Etat de parité bien définie : $\langle \psi_0 | \overrightarrow{D} | \psi_0 \rangle = 0$

Traitement perturbatif (ordre 2) de U_{dip}

Déplacement du niveau d'énergie $|\psi_0\rangle$ à l'ordre 2:

$$\Delta E_0^{(2)} = \sum_{n \neq 0} \frac{|U_{0n}|^2}{E_0 - E_n} \qquad \text{avec} \qquad U_{0n} = \langle \psi_0 | \hat{U} | \psi_n \rangle \qquad \underline{\psi_0} \qquad \underline{\psi_0}$$

Si $|\psi_0\rangle$ est l'état fondamental, tous les termes de la somme sont négatifs. A cet ordre, l'état fondamental est toujours abaissé par la perturbation

Pour l'interaction dipôle-dipôle, $U_{\rm dip} \propto 1/r^3$

Abaissement d'énergie du niveau fondamental : $V(r) = -\frac{C_6}{r^6}$ $C_6 > 0$

Interaction attractive entre deux atomes neutres dans leur état fondamental

 ψ_3

 ψ_2

 ψ_1

Une vision dynamique de l'interaction de vdW

En A , dipole fluctuant $\overrightarrow{d}_A(t)$ valeur moyenne nulle Ce dipôle crée un champ électrique en \overrightarrow{r}_B

 $\overrightarrow{E}(\overrightarrow{r}_B / \overrightarrow{d}_A)$

Ce champ électrique polarise l'atome *B*:

$$\vec{d}_B = \alpha \ \vec{E}(\vec{r}_B / \vec{d}_A)$$

A

Le dipôle \vec{d}_B crée en retour un champ électrique en \vec{r}_A : $\vec{E'}(\vec{r}_A \mid \vec{d}_B)$

Ce champ électrique interagit avec le dipôle initial $\vec{d}_A(t)$:

Energie
$$\propto - \overrightarrow{d}_{A} \cdot \overrightarrow{E'} \left[\overrightarrow{r}_{A} / \alpha \ \overrightarrow{E} (\overrightarrow{r}_{B} / \overrightarrow{d}_{A}) \right]$$

Valeur moyenne non nulle, proportionnelle à $\langle \vec{d}_A^2 \rangle$, et corrélations entre dipôles

Le coefficient C_6 pour une paire d'atomes "à deux niveaux"

Transition atomique "modèle"

$$\frac{m_{x} = 0}{|e_{x}\rangle} \quad \frac{m_{y} = 0}{|e_{y}\rangle} \quad \frac{m_{z} = 0}{|e_{z}\rangle} \quad J_{e} = 1$$

$$\frac{\hbar\omega}{|g\rangle} \quad J_{g} = 0$$
Interaction dipôle-dipôle: $\hat{U}_{dip} = \frac{q^{2}}{4\pi\epsilon_{0}r^{3}} [\hat{x}_{A}\hat{x}_{B} + \hat{y}_{A}\hat{y}_{B} - 2\hat{z}_{A}\hat{z}_{B}]$
Eléments de matrice du dipôle : $\langle g | q\hat{x} | e_{x} \rangle = \langle g | q\hat{y} | e_{y} \rangle = \langle g | q\hat{z} | e_{z} \rangle = d$

$$\Delta E^{(2)} = \sum_{\alpha=x,y,z} \frac{|\langle e_{\alpha}; e_{\alpha} | \hat{U}_{dip} | g; g \rangle|^2}{-2\hbar\omega} = -\frac{1}{r^6} \left(\frac{d^2}{4\pi\epsilon_0}\right)^2 \frac{3}{\hbar\omega}$$

Loi d'échelle pour le coefficient C_6

$$e \longrightarrow C_{6} = \left(\frac{d^{2}}{4\pi\epsilon_{0}}\right)^{2} \frac{3}{\hbar\omega} \text{ et le dipôle réduit } d \text{ intervient}$$

dans la largeur naturelle de $|e\rangle$: $\Gamma = \frac{\omega^{3}d^{2}}{3\pi\epsilon_{0}\hbarc^{3}}$
d'où la loi d'échelle : $C_{6} \propto \frac{\Gamma^{2}}{\omega^{7}}$
Validation de ce modèle "à 2 niveaux"
alcalins (Li,Na,K,Rb,Cs)
alcalino-terreux (Mg,Ca,Sr)

0

0

2,000

4,000

 C_6 réel (u.a.)

lanthanides (Er,Dy,Yb)

14

6,000

Effets de retard

L'approche utilisée ici néglige tout délai dans la réaction de l'atome B au dipôle instantané de l'atome A (et inversement)

valable si
$$t = \frac{r}{c} \ll \frac{1}{\omega}$$
 \Leftrightarrow $kr \ll 1$
 \Leftrightarrow $r \ll \frac{c}{\omega} = \frac{\lambda_{\text{opt}}}{2\pi} \sim 0.1 \mu \text{m}$
Casimir-Polder, 1948 $kr \ll 1$ \longrightarrow $kr \gg 1$
 $V \propto r^{-6}$ $V \propto r^{-7}$

En pratique, pour $kr \sim 1$, l'interaction de van der Waals est $\sim 1 \text{ pK}$

Effet de retard négligeable dans les expériences actuelles sur les gaz d'atomes froids

2.

Interaction de van der Waals pour des atomes excités

Interaction "fondamental-excité"

Même modélisation que précédemment pour la structure d'un atome Γ : largeur naturelle de l'état e $|e_x\rangle |e_y\rangle |e_z\rangle$ $\hbar\omega$ $|g\rangle$

On suppose que la paire d'atomes contient une excitation électronique

Sous-espace de dimension 6 de base :
$$\mathscr{B} = \{ |A : g; B : e_{\alpha} \rangle, |A : e_{\alpha}; B : g \rangle \}$$

 $\alpha = x, y, z$

Le couplage dipôle-dipôle agit maintenant à l'ordre 1 :

$$\hat{U}_{dip} = \frac{q^2}{4\pi\epsilon_0 r^3} \left[\hat{x}_A \hat{x}_B + \hat{y}_A \hat{y}_B - 2\hat{z}_A \hat{z}_B \right]$$

$$\longrightarrow \langle A:g ; B:e_x | \hat{U}_{dip} | A:e_x ; B:g \rangle \propto \frac{d^2}{r^3} \propto \frac{\Gamma}{(kr)^3}$$

termes non diagonaux dans la base ${\mathscr B}$

 $J_g = 0$

Interaction de van der Waals pour une paire e-g

Théorie des perturbations dégénérées : on doit diagonaliser la matrice 6x6 décrivant l'action de U_{dip} dans le sous-espace $\{ |A : g; B : e_{\alpha} \rangle, |A : e_{\alpha}; B : g \rangle \}$

→ se décompose en 3 sous-matrices 2x2 correspondant aux directions *x*, *y*, *z*

$$[V_{x,y}] = \frac{3}{4} \frac{\hbar\Gamma}{(kr)^3} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \quad \text{et} \quad [V_z] = -2[V_{x,y}]$$

La diagonalisation est immédiate et donne les énergies :

 $E = \pm \frac{3}{4} \frac{\hbar\Gamma}{(kr)^3}$ dégénérées deux fois, pour les directions *x*, *y* $E = \pm \frac{3}{2} \frac{\hbar\Gamma}{(kr)^3}$ non dégénérée, pour la direction *z*

Les énergies d'interaction pour une paire e-g

Comparaison avec l'interaction pour une paire d'atomes g-g :

$$E \sim \frac{\hbar\Gamma}{(kr)^3}$$
 au lieu de $E \sim \frac{\hbar\Gamma}{(kr)^6} \frac{\Gamma}{\omega}$

- Décroissance beaucoup plus lente à l'infini
- Intrinsèquement beaucoup plus grand: $\Gamma/\omega \sim 10^{-6} 10^{-8}$ absent

Interaction de van der Waals entre atomes excités

Cas des atomes de Rydberg : nombre quantique principal $n \gg 1$

(n+1) s $\underline{np \equiv n, \ell = 1}$ $\underline{np \equiv n, \ell = 1}$ $\underline{np_{3/2}}$ $\underline{np_{1/2}}$ $\underline{np_{1/2}}$ (n-1) p $\underline{(n-1)p_{3/2}}$ $(n-1)p_{1/2}$

- Pour un atome dans l'état ns, le couplage dipolaire se fait vers des états n'pavec essentiellement n' = n ou n' = n - 1
- L'élément de matrice du dipôle vérifie la loi d'échelle $\langle ns | q\hat{r}_e | np \rangle \propto n^2$

Interaction de van der Waals entre atomes excités (2)

On considère une paire excitée $|ns, ns\rangle$ Interaction dipôle-dipôle : $\Delta E = \sum_{n',n''} \frac{\left| \langle n'p, n''p | \hat{U}_{dip} | ns, ns \rangle \right|^2}{2E_{ns} - E_{n'p} - E_{n''p}}$

avec une contribution dominante de $n' \approx n'' \approx n$ [plus précisément (n', n'') = (n, n - 1)]

• Grand élément de matrice au numérateur : $(n^2)^4 = n^8$

• Petit dénominateur d'énergie :
$$\frac{1}{n^2} - \frac{1}{(n+\delta)^2} \propto \frac{1}{n^3}$$

Loi d'échelle pour le coefficient de van der Waals : $|C_6| \propto n^{11}$!!!

Ouvre la voie à l'interaction à longue distance, au blocage de Rydberg, à la réalisation de portes quantiques et à la simulation de systèmes en interaction forte

3.

Les dimères de van der Waals

Quand la liaison covalente est absente...

En général, l'interaction de van der Waals n'est qu'une petite contribution à l'énergie de liaison d'une molécule

$$C_6 = 100$$
 unités atomiques : $\frac{C_6}{r^6} \sim 4$ meV pour $r = 5$ Å

alors qu'une liaison chimique "ordinaire" a une énergie ~ eV

Mais cette liaison covalente (échange d'électrons) est absente pour les gaz rares ou les alcalino-terreux : couche électronique externe complète

 \Rightarrow He₂, Be₂ n'existent pas?

Si, elles existent !!!

Le cas des gaz rares

Tang & Toennies, 2003

Coefficient C_6 appréciable :

$$C_6[radon] \approx \frac{1}{3}C_6[lithium]$$

 \rightarrow conduit à des longueurs de diffusion similaires

Tous ces puits de potentiel admettent au moins un état lié, y compris pour ⁴He₂

3 états liés pour Ne₂, 6 états liés pour Ar₂

NB: Il n'y a pas d'état lié pour ³He, car la réduction d'un facteur 3/4 sur la masse augmente le rôle des fluctuations quantiques

Ce sont de "grosses" molécules !

La molécule He₂

Schöllkopf & Toennies, Science (1994)

Jet supersonique d'hélium 4 : 15 bar, 30 Kelvins

 $\Delta v/v \sim 0.15 \quad : \text{ longueur de de Broglie bien définie } \lambda_{\rm dB} = 0.18 \text{ nm}$ Collimation par deux fentes de 10 μ m séparées de 47 cm

La molécule He₂ (suite)

Schöllkopf & Toennies Science (1994)

Réseau de période d=200 nm

Angle de diffraction :
$$\theta = n \frac{\lambda_{dB}}{d}$$

n entier

Les alcalino-terreux

Be₂, Mg₂, Ca₂, Sr₂ : toutes ces molécules existent et possèdent une dizaine d'états de vibration

Leur coefficient C_6 est comparable à celui des alcalins

Cela suffit à leur assurer des propriétés collisionnelles pour des gaz froids comparables à celles des autres espèces

La "vraie" liaison chimique

Walter Heitler (1904-81)

Fritz London (1900-54)

L'approximation de Born-Oppenheimer

La molécule H₂ : un problème à quatre corps...

insoluble analytiquement !

Pour progresser, on procède en deux étapes :

• Dans un premier temps, on fixe la position des noyaux en (\vec{r}_A, \vec{r}_B) et on cherche les états propres et les énergies associées de l'hamiltonien (cinétique+potentiel) pour les électrons

On note $V_n(r_{AB})$ l'énergie du n^{ième} état électronique

• On cherche ensuite les états propres du mouvement des noyaux en utilisant $V_n(r_{AB})$ comme énergie potentielle

Justification de l'approximation de Born-Oppenheimer

Les électrons sont légers :

- Energies élevées (eV)
- Echelles de temps courtes (10-15 s)

Les noyaux sont lourds :

- L'échelle de temps pour l'évolution de r_{AB} est plus longue (10⁻¹² s)
- L'état des électrons s'adapte adiabatiquement à la position des noyaux

Approximation de Born-Oppenheimer $\,pprox\,$ Approximation adiabatique

Un mot sur l'approximation adiabatique habituelle

Un hamiltonien modèle

$$\hat{H} = \frac{\hat{P}_X^2}{2M} + \frac{\hat{p}_x^2}{2m} + V(\hat{X}, \hat{x}) \qquad m \ll M$$

On fixe d'abord la variable X et on résout le problème aux valeurs propres pour x:

$$\hat{h}(X) = \frac{\hat{p}_x^2}{2m} + V(X, \hat{x}) \longrightarrow \psi_n(x \mid X) \qquad E_n(X)$$

On écrit ensuite l'état du système global sous la forme :

$$\Psi(X, x, t) = \sum_{n} \phi_{n}(X, t) \psi_{n}(x \mid X)$$

Equation de Schrödinger : $i\hbar \frac{\partial \Psi}{\partial t} = \frac{\hat{P}_{X}^{2}}{2M}\Psi + \sum_{n} E_{n}(X) \phi_{n}(X, t) \psi_{n}(x \mid X)$

On projette finalement cette équation sur un ψ_n particulier en négligeant les autres

$$i\hbar \frac{\partial \phi_n}{\partial t} = \frac{\hat{P}_X^2}{2M} \phi_n(X, t) + E_n(X) \phi_n(X, t) + \text{ termes en } \langle \psi_n | \partial_X \psi_n \rangle, \ \langle \psi_n | \partial_X^2 \psi_n \rangle, \dots$$

négligés dans l'approx B-O

Hamiltonien pour les électrons

4 termes attractifs, 2 répulsifs (on oublie le spin pour l'instant)

Pour résoudre le problème électronique, on adopte une approche variationnelle

Pour $r_{AB} = +\infty$ (noyaux éloignés l'un de l'autres), 2 états fondamentaux possibles :

$$\Psi_{\mathrm{I}}(\vec{r}_1, \vec{r}_2) = \psi_A(\vec{r}_1) \psi_B(\vec{r}_2) \quad \longleftrightarrow \quad A(1) B(2)$$

$$\Psi_{\text{II}}(\vec{r}_1, \vec{r}_2) = \psi_B(\vec{r}_1) \psi_A(\vec{r}_2) \quad \longleftrightarrow \quad B(1) A(2)$$

 $\psi(r) = \exp(-r/a_0)$ état fondamental de l'atome d'H

Approche variationnelle : Heitler-London

Classe de fonctions d'essai : $\Psi = \alpha \Psi_{I} + \beta \Psi_{II}$

On cherche les coefficients (α, β) qui rendent l'énergie moyenne extrémale

 $\frac{\langle \Psi | \hat{H}_{el}(\vec{r}_A, \vec{r}_B) | \Psi \rangle}{\langle \Psi | \Psi \rangle}$

Résultat : il faut prendre $\alpha = \beta$ ou $\alpha = -\beta$, c'est-à-dire :

 $A(1)B(2) \pm B(1)A(2)$

orbitale liante (+) et orbitale antiliante (-)

Orbitales liantes et antiliantes

Les orbitales $A(1)B(2) \pm B(1)A(2)$ sont associées aux énergies

$$V_{\pm}(r_{AB}) = \frac{\varepsilon_{dir} \pm \varepsilon_{ech}}{1 \pm \Delta^2} \qquad \Delta = \langle \psi_A | \psi_B \rangle$$

qui seront ensuite injectées dans l'équation du mouvement des noyaux (méthode B.-O.)

• Terme direct : chaque électron reste attaché à son noyau

$$\varepsilon_{\text{dir}}(r) = \langle 1 : \psi_A; 2 : \psi_B | \hat{H}_{\text{el}} | 1 : \psi_A; 2 : \psi_B \rangle$$

• Terme d'échange : permutation des électrons entre les noyaux

$$\varepsilon_{\rm ech}(r) = \langle 1 : \psi_B; \ 2 : \psi_A \mid \hat{H}_{\rm el} \mid 1 : \psi_A; \ 2 : \psi_B \rangle$$

Ce terme est non nul seulement s'il existe des points de l'espace où $\psi_A(\vec{r})$ et $\psi_B(\vec{r})$ prennent simultanément une valeur significative : recouvrement des nuages électroniques

 $\langle \Psi | \hat{H}_{el}(\vec{r}_A, \vec{r}_B) | \Psi \rangle$

Orbitales liantes et antiliantes (2)

- L'énergie $V_+(r)$ est toujours la plus basse : $V_+(r) < V_-(r) \quad \forall r$
- L'énergie $V_(r)$ est une fonction positive et décroissante Pas d'état lié à ce stade de l'approximation pour l'orbitale antiliante
- L'énergie $V_+(r)$ présente un minimum en r = 0.87 Å de $V_{\min} = -3.15$ eV Résultat numérique "exact" : 0.74 Å, -4.75 eV

Origine de la liaison chimique

L'orbitale liante, associée à $V_+(r)$, offre "plus de place" pour les électrons que l'orbitale antiliante qui doit s'annuler en tout point $\vec{r}_1 = \vec{r}_2$.

Abaissement de l'énergie cinétique de confinement

En revanche, l'énergie de répulsion coulombienne est plus grande pour l'orbitale liante mais cela ne compense pas l'effet précédent

Le rôle du spin électronique et du principe de Pauli

La prise en compte du spin des électrons augmente la dégénérescence

Le principe de Pauli vient restreindre l'espace des états accessibles : dim. 8 \rightarrow dim. 4

• Orbitale liante A(1)B(2) + B(1)A(2) symétrique d'espace

 \rightarrow antisymétrique de spin : état singulet $(|+-\rangle - |-+\rangle)/\sqrt{2}$

Orbitale antiliante A(1)B(2) − B(1)A(2) antisymétrique d'espace
 → symétrique de spin : états triplets

 $|++\rangle, |--\rangle, (|+-\rangle+|-+\rangle)/\sqrt{2}$

Mais où sont passées les interactions de van der Waals ?

L'espace de fonctions utilisé dans la méthode de Heitler-London est très restreint

$$\psi_A^{(1s)}(\vec{r}_1) \ \psi_B^{(1s)}(\vec{r}_2) \qquad \qquad \psi_B^{(1s)}(\vec{r}_1) \ \psi_A^{(1s)}(\vec{r}_2)$$

Pour retrouver les interactions de vdW dans ce formalisme, il faut l'agrandir en incluant des états du type

$$\psi_A^{(2p)}(\vec{r}_1) \ \psi_B^{(2p)}(\vec{r}_2) \qquad \qquad \psi_B^{(2p)}(\vec{r}_1) \ \psi_A^{(2p)}(\vec{r}_2)$$

Ces états sont couplés aux états 1s-1s par l'hamiltonien $U_{dip} = \frac{1}{4\pi\epsilon_0 r^3} \vec{D}_A \cdot \vec{D}_B + \dots$

On retrouve alors un potentiel attractif en $-C_6/r^6$ à longue distance, identique pour les orbitales liantes et antiliantes

Exemple : interaction entre atomes de rubidium ⁸⁷Rb

Problème compliqué par l'existence du spin nucléaire i = 3/2Spin de chaque atome : f = 1 ou f = 2, avec $\vec{f} = \vec{s} + \vec{i}$

- Augmentation de la dégénérescence
- Interaction hyperfine
- Effet Zeeman éventuel

36 courbes de potentiel ...

En conclusion...

Malgré la complexité du problème à quatre (ou plus) corps, estimation semiquantitative des principaux paramètres

- Interaction à longue distance C_6
- Potentiels singulet/triplet à courte distance pour des atomes à un électron externe

L'intuition acquise par l'étude chimique à température ambiante peut être mise en défaut pour les gaz à très basse température

L'interaction entre alcalino-terreux (voire entre gaz rares) est comparable à celle entre alcalins