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e Merge the two clusters with the closest pair of points

e Disregard singleton clusters
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Statistical theory in clustering

Data points Xi, ..., X, are independent random draws from an
unknown density f on RY

e Different random sample = similar clustering (if n is large)

e As n — oo: approach “natural clusters” of f
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cluster = connected component of {x : f(x) > A}, any A >0

These clusters form an infinite hierarchy, the cluster tree.
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Consistency: Let A, A’ be connected components of {f > A}, for
any A. In the tree constructed from n data points X, let A, be

the smallest cluster containing A N Xj,; likewise A),. Then:

lim Prob[A, is disjoint from Al] =1

n—o0
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Consistency: Let A, A’ be connected components of {f > A}, for
any A. In the tree constructed from n data points X, let A, be
the smallest cluster containing A N Xj,; likewise A),. Then:

lim Prob[A, is disjoint from Al] =1

n—o0

Hartigan 1975: Single linkage is consistent for d = 1.
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Higher dimension

Hartigan 1982: Single linkage is not consistent for d > 1.

Chaudhuri-D "10: a simple variant of single linkage is consistent in
any dimension, with a good finite sample convergence rate.



Related work

e Single linkage satisfies a partial consistency property
Penrose 1995

e Algorithms to capture a user-specified level set {x : f(x) > A}
Maier-Hein-von Luxburg 2009, Rinaldo-Wasserman 2009,
Singh-Scott-Nowak 2009

e Other estimators for the cluster tree
Wishart 1969 (very similar to ours), Wong and Lane 1983,
Stuetzle and Nugent 2010
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Capturing a data set’s local structure
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An undirected graph with
e A node for each data point
e Edges between “neighboring” points

Uses: clustering, semisupervised learning, embeddings,
regularization, ...
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Single linkage, amended

f(x)
low r

high r

e For each x;: set r(x;) = distance to nearest neighbor

e As r increases from 0 to oc:
e Construct graph G,:
Nodes {x; : r(x;) < r}
Edges between any (x;, x;) for which ||x; — xj|| < r
e Output the connected components of G,
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Single linkage, amended

f(x)
low r

high r

e For each x;: set r(x;) = distance to kth nearest neighbor

e As r increases from 0 to oc:
e Construct graph G,:
Nodes {x; : r(x;) < r}
Edges between any (x;, xj) for which [|x; — xj|| < ar
e Output the connected components of G,

With v/2 < o < 2 and k ~ dlog n, this is consistent for any d!
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Rate of convergence

A and A’ are (o, €)-separated if:

- separated by some set S
- max density in S, <
(1 — €)(min density in A,, A”)

With high probability, for all
connected sets A, A’

if A, A are (o, €)-separated,
and have minimum density A,
then for

"2 Negd
there will be some intermediate
graph G, such that:
e There is no path between
Aand A in G,
e Aand A’ are individually
connected in G,



Part Ill: Continuum percolation



Connectivity in random graphs

Erdos-Renyi random graphs

e n nodes

e Edges placed at random:
between each pair of
nodes, independently, an
edge with probability p



Connectivity in random graphs

Erdos-Renyi random graphs Random geometric graphs
e n nodes e n points randomly chosen
o Edges placed at random: from an unknown density
between each pair of e One node per point
nodes, independently, an e Edges between nodes that

edge with probability p are nearby in some sense



Identifying high-density regions

Algorithm: Single linkage has k =1,
For each i: r(x;) = dist to kth hoping: low r < high density
nearest neighbor
As r increases from 0 to co:
e Construct graph G,:
Nodes {x; : r(x;) < r}
Edges between any (x;, xj)

for which |x; — x;|| < ar

e Output the connected
components of G,
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Identifying high-density regions

Algorithm:

For each i: r(x;) = dist to kth
nearest neighbor

As r increases from 0 to co:

e Construct graph G,:
Nodes {x; : r(x;) < r}
Edges between any (x;, xj)
for which |x; — x;|| < ar

e Output the connected
components of G,

Single linkage has k =1,
hoping: low r < high density

Vapnik-Chervonenkis bounds:
for every ball B in RY,

# ptsin B =
f(B)-n++/f(B) n-dlogn.

Moral: choose k > dlog n.



Separation

A, A are (o, €)-separated.
There is some value r at which:
@ Every point in A, A’ has
> k points within distance
r, and is thus a node in G,
@ Any point in S, has < k
points within distance r,
and thus isn't a node in G,

©r<o/2

density < A(1 —¢)

density > A

(Buffer zone has width ¢.)



Separation

A, A are (o, €)-separated.
There is some value r at which:
@ Every point in A, A’ has
> k points within distance
r, and is thus a node in G,
@ Any point in S, has < k
points within distance r,
and thus isn't a node in G,
©r<o/2

A is disconnected from A’ in G,

density < A(1 —¢)

density > A

(Buffer zone has width ¢.)
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Connectedness

At this particular scale r, every
point in A and A’ (or within
distance r of A, A') is active.

But, are these points
connected in G,?

The worst case:

This is where v comes in:

Graph G,:
Nodes {x; : r(x;) < r}
Edges (x;, x;) for ||xi — x| < ar

e o = 2: easy to show
connectivity

e o =/2: our result




Connectedness (cont’d)

Proof sketch

x, x" are in cluster A, so there xi X!
is a path P between them. e

We'll exhibit data points path P

X0 = X, X1,...,x = x' such )

that:

e The x; are within distance
r of P (and thus of A, and
thus are active in G,)

o |lxi = xisa| < ar

So x is connected to x’ in G,.
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Connectedness (cont’d)

Proof sketch

x, x" are in cluster A, so there
is a path P between them.

We'll exhibit data points
X0 = X, X1,...,x = x' such
that:

e The x; are within distance
r of P (and thus of A, and
thus are active in G,)

o |lxi = xisa| < ar

So x is connected to x’ in G,.

Open problem: will & =1 work?

path P

Xi+1
/ i+ ,

X

X

Therefore ||x; — xi1 1] < rv/2.
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Lower bound via Fano’s inequality

A game played with a predefined class of distributions {61, ...,60,}.
e Nature picks | € {1,2,...,¢}

o Player is given n iid samples from from 6,

e Player then guesses the identity of /

Theorem: If Nature chooses / uniformly at random, then the
Player must draw at least

. log ¢
=23

samples in order to guess correctly with probability > 1/2, where

1 V4
B=12 > K(6:,9)).

ij=1



An alternative cluster tree estimator

Original scheme constructs a hierarchy of neighborhood r-graphs:
e For each x;: set ri(x;) = distance to kth nearest neighbor

e As r increases from 0 to oo:

e Construct graph G,:

Nodes {X,' . rk(x,-) < r}

Edges between any (x;, x;) for which ||x; — x| < ar
e Qutput the connected components of G,
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[Kpotufe-von Luxburg 2011] Instead of G,, use graph GVN:
e Same nodes, {x; : r(x;) < r}
e Edges (x;, ;) for which | x; — xj|| < amin(rc(x;), re(x;))

Similar rates of convergence for these potentially sparser graphs.

Open problem: other simple estimators?



Revisiting Hartigan-consistency

Recall Hartigan's notion of consistency:

Let A, A’ be connected components of {f > A}, for any
A. In the tree constructed from n data points X, let A,
be the smallest cluster containing AN X, likewise A’..
Then:

lim Prob[A, is disjoint from A] =1
n—o00

In other words, distinct clusters should (for large enough n) be
disjoint in the estimated tree.



Revisiting Hartigan-consistency

Recall Hartigan's notion of consistency:

Let A, A’ be connected components of {f > A}, for any
A. In the tree constructed from n data points X, let A,
be the smallest cluster containing AN X, likewise A’..
Then:

lim Prob[A, is disjoint from A] =1
n—o00

In other words, distinct clusters should (for large enough n) be
disjoint in the estimated tree.

But this doesn’t guard against excessive fragmentation within the
estimated tree.



Excessive fragmentation: example

Density:

1,2,3,45,6,7,8 1,2,3,456,7,8
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neighborhood graph G,

e For each r: merge components of G, that are connected in
Gr+6(r)
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Pruning the cluster tree

e Build the cluster tree as before: at each scale r, there is a
neighborhood graph G,

e For each r: merge components of G, that are connected in
Gr+6(r)

Kpotufe and von-Luxburg 2011: roughly the same consistency
guarantees and rate of convergence hold, and in addition, under
extra conditions, there is no spurious fragmentation.

Belkin-Eldridge-Wang 2015: A stronger notion of consistency that
accounts for fragmentation.



More open problems

@ Other natural notions of cluster for a density f7 Are there
situations in which a hierarchy is not enough?

@ This notion of cluster is for densities. What about discrete
distributions?

©® An O(nlog n) algorithm?



Thanks

Many thanks to my co-authors Kamalika Chaudhuri, Samory
Kpotufe, and Ulrike von Luxburg.



