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Statistical theory in clustering

Data points X1, . . . ,Xn are independent random draws from an
unknown density f on R

d

• Different random sample ⇒ similar clustering (if n is large)

• As n → ∞: approach “natural clusters” of f
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cluster ≡ connected component of {x : f (x) ≥ λ}, any λ > 0

These clusters form an infinite hierarchy, the cluster tree.
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Consistency: Let A,A′ be connected components of {f ≥ λ}, for
any λ. In the tree constructed from n data points Xn, let An be
the smallest cluster containing A ∩ Xn; likewise A′

n. Then:

lim
n→∞

Prob[An is disjoint from A′

n] = 1
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Consistency: Let A,A′ be connected components of {f ≥ λ}, for
any λ. In the tree constructed from n data points Xn, let An be
the smallest cluster containing A ∩ Xn; likewise A′

n. Then:

lim
n→∞

Prob[An is disjoint from A′

n] = 1

Hartigan 1975: Single linkage is consistent for d = 1.
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Higher dimension

Hartigan 1982: Single linkage is not consistent for d > 1.

Chaudhuri-D ’10: a simple variant of single linkage is consistent in
any dimension, with a good finite sample convergence rate.



Related work

• Single linkage satisfies a partial consistency property
Penrose 1995

• Algorithms to capture a user-specified level set {x : f (x) ≥ λ}
Maier-Hein-von Luxburg 2009, Rinaldo-Wasserman 2009,
Singh-Scott-Nowak 2009

• Other estimators for the cluster tree
Wishart 1969 (very similar to ours), Wong and Lane 1983,
Stuetzle and Nugent 2010



Part II: Near neighbor graphs



Capturing a data set’s local structure
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An undirected graph with

• A node for each data point

• Edges between “neighboring” points

Uses: clustering, semisupervised learning, embeddings,
regularization, ...
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Two types of neighborhood graph

Connect points at distance ≤ r

Problem: clusters at different
scales

Connect each point to its k
nearest neighbors

Problem: spurious connections
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f (x)

low r

high r

• For each xi : set r(xi ) = distance to nearest neighbor
• As r increases from 0 to ∞:

• Construct graph Gr :
Nodes {xi : r(xi ) ≤ r}
Edges between any (xi , xj) for which ‖xi − xj‖ ≤ r

• Output the connected components of Gr



Single linkage, amended

f (x)

low r

high r

• For each xi : set r(xi ) = distance to kth nearest neighbor
• As r increases from 0 to ∞:

• Construct graph Gr :
Nodes {xi : r(xi ) ≤ r}
Edges between any (xi , xj) for which ‖xi − xj‖ ≤ αr

• Output the connected components of Gr



Single linkage, amended

f (x)

low r

high r

• For each xi : set r(xi ) = distance to kth nearest neighbor
• As r increases from 0 to ∞:

• Construct graph Gr :
Nodes {xi : r(xi ) ≤ r}
Edges between any (xi , xj) for which ‖xi − xj‖ ≤ αr

• Output the connected components of Gr

With
√
2 ≤ α ≤ 2 and k ∼ d log n, this is consistent for any d!
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Rate of convergence

A and A′ are (σ, ǫ)-separated if:
- separated by some set S
- max density in Sσ ≤
(1− ǫ)(min density in Aσ,A

′

σ)

A A’

S

With high probability, for all
connected sets A,A′:
if A,A′ are (σ, ǫ)-separated,
and have minimum density λ,
then for

n ≥ d

λǫ2σd

there will be some intermediate
graph Gr such that:

• There is no path between
A and A′ in Gr

• A and A′ are individually
connected in Gr



Part III: Continuum percolation
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Connectivity in random graphs

Erdos-Renyi random graphs

• n nodes

• Edges placed at random:
between each pair of
nodes, independently, an
edge with probability p

Random geometric graphs

• n points randomly chosen
from an unknown density

• One node per point

• Edges between nodes that
are nearby in some sense



Identifying high-density regions

Algorithm:
For each i : r(xi ) = dist to kth
nearest neighbor
As r increases from 0 to ∞:

• Construct graph Gr :
Nodes {xi : r(xi ) ≤ r}
Edges between any (xi , xj)
for which ‖xi − xj‖ ≤ αr

• Output the connected
components of Gr

Single linkage has k = 1,
hoping: low r ⇔ high density
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Identifying high-density regions

Algorithm:
For each i : r(xi ) = dist to kth
nearest neighbor
As r increases from 0 to ∞:

• Construct graph Gr :
Nodes {xi : r(xi ) ≤ r}
Edges between any (xi , xj)
for which ‖xi − xj‖ ≤ αr

• Output the connected
components of Gr

Single linkage has k = 1,
hoping: low r ⇔ high density

Vapnik-Chervonenkis bounds:
for every ball B in R

d ,
# pts in B =
f (B) · n ±

√

f (B) · n · d log n.

Moral: choose k ≥ d log n.



Separation

A,A′ are (σ, ǫ)-separated.

density ≤ λ(1− ǫ)

density ≥ λ

A A′

S

(Buffer zone has width σ.)

There is some value r at which:

1 Every point in A,A′ has
≥ k points within distance
r , and is thus a node in Gr

2 Any point in Sσ has < k
points within distance r ,
and thus isn’t a node in Gr

3 r ≤ σ/2



Separation

A,A′ are (σ, ǫ)-separated.

density ≤ λ(1− ǫ)

density ≥ λ

A A′

S

(Buffer zone has width σ.)

There is some value r at which:

1 Every point in A,A′ has
≥ k points within distance
r , and is thus a node in Gr

2 Any point in Sσ has < k
points within distance r ,
and thus isn’t a node in Gr

3 r ≤ σ/2

A is disconnected from A′ in Gr
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Connectedness

At this particular scale r , every
point in A and A′ (or within
distance r of A,A′) is active.

x

x′

But, are these points
connected in Gr?

The worst case:

x′x

This is where α comes in:
Graph Gr :
Nodes {xi : r(xi ) ≤ r}
Edges (xi , xj) for ‖xi −xj‖ ≤ αr

• α = 2: easy to show
connectivity

• α =
√
2: our result



Connectedness (cont’d)

Proof sketch

x , x ′ are in cluster A, so there
is a path P between them.

We’ll exhibit data points
x0 = x , x1, . . . , xℓ = x ′ such
that:

• The xi are within distance
r of P (and thus of A, and
thus are active in Gr )

• ‖xi − xi+1‖ ≤ αr

So x is connected to x ′ in Gr .
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Connectedness (cont’d)

Proof sketch

x , x ′ are in cluster A, so there
is a path P between them.

We’ll exhibit data points
x0 = x , x1, . . . , xℓ = x ′ such
that:

• The xi are within distance
r of P (and thus of A, and
thus are active in Gr )

• ‖xi − xi+1‖ ≤ αr

So x is connected to x ′ in Gr .

xi x ′

x

r

path P

x ′

x

xi

xi+1

Therefore ‖xi − xi+1‖ ≤ r
√
2.

Open problem: will α = 1 work?



Lower bound via Fano’s inequality

A game played with a predefined class of distributions {θ1, . . . , θℓ}.
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• Player then guesses the identity of I



Lower bound via Fano’s inequality

A game played with a predefined class of distributions {θ1, . . . , θℓ}.
• Nature picks I ∈ {1, 2, . . . , ℓ}
• Player is given n iid samples from from θI

• Player then guesses the identity of I

Theorem: If Nature chooses I uniformly at random, then the
Player must draw at least

n ≥ log ℓ

2β

samples in order to guess correctly with probability ≥ 1/2, where

β =
1

ℓ2

ℓ
∑

i ,j=1

K (θi , θj).
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• As r increases from 0 to ∞:
• Construct graph Gr :

Nodes {xi : rk(xi ) ≤ r}
Edges between any (xi , xj) for which ‖xi − xj‖ ≤ αr

• Output the connected components of Gr

[Kpotufe-von Luxburg 2011] Instead of Gr , use graph GNN
r :

• Same nodes, {xi : r(xi ) ≤ r}
• Edges (xi , xj) for which ‖xi − xj‖ ≤ αmin(rk(xi ), rk(xj))

Similar rates of convergence for these potentially sparser graphs.

Open problem: other simple estimators?
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Let A,A′ be connected components of {f ≥ λ}, for any
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be the smallest cluster containing A ∩ Xn; likewise A′

n.
Then:

lim
n→∞

Prob[An is disjoint from A′

n] = 1

In other words, distinct clusters should (for large enough n) be
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Revisiting Hartigan-consistency

Recall Hartigan’s notion of consistency:

Let A,A′ be connected components of {f ≥ λ}, for any
λ. In the tree constructed from n data points Xn, let An

be the smallest cluster containing A ∩ Xn; likewise A′

n.
Then:

lim
n→∞

Prob[An is disjoint from A′

n] = 1

In other words, distinct clusters should (for large enough n) be
disjoint in the estimated tree.

But this doesn’t guard against excessive fragmentation within the
estimated tree.



Excessive fragmentation: example

Density:

1,2,3,4
5,6,7,8

5,7

1,2,3

1,2,3,4,5,6,7,8

3

6,8
2

1,2,3,4

1,2,3

1,2,3,4,5,6,7,8

2,3

2
6,8

5,6,7,8
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Pruning the cluster tree

• Build the cluster tree as before: at each scale r , there is a
neighborhood graph Gr

• For each r : merge components of Gr that are connected in
Gr+δ(r)

Kpotufe and von-Luxburg 2011: roughly the same consistency
guarantees and rate of convergence hold, and in addition, under
extra conditions, there is no spurious fragmentation.

Belkin-Eldridge-Wang 2015: A stronger notion of consistency that
accounts for fragmentation.



More open problems

1 Other natural notions of cluster for a density f ? Are there
situations in which a hierarchy is not enough?

2 This notion of cluster is for densities. What about discrete
distributions?

3 An O(n log n) algorithm?



Thanks

Many thanks to my co-authors Kamalika Chaudhuri, Samory
Kpotufe, and Ulrike von Luxburg.


