# Cluster trees, neighborhood graphs, and continuum percolation 

Sanjoy Dasgupta<br>University of California, San Diego

Part I: Cluster trees

## Clustering in $\mathbb{R}^{d}$



## Clustering in $\mathbb{R}^{d}$



Two common uses of clustering:

- Vector quantization
- Finding meaningful structure in data


## Clustering in $\mathbb{R}^{d}$



Two common uses of clustering:

- Vector quantization
- Finding meaningful structure in data


## A hierarchical clustering algorithm

Joseph Kruskal, 1928-2010


The single linkage algorithm:

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
- Merge the two clusters with the closest pair of points
- Disregard singleton clusters


## A hierarchical clustering algorithm

Joseph Kruskal, 1928-2010


The single linkage algorithm:

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
- Merge the two clusters with the closest pair of points
- Disregard singleton clusters


## A hierarchical clustering algorithm

Joseph Kruskal, 1928-2010


The single linkage algorithm:

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
- Merge the two clusters with the closest pair of points
- Disregard singleton clusters


## A hierarchical clustering algorithm

Joseph Kruskal, 1928-2010


The single linkage algorithm:

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
- Merge the two clusters with the closest pair of points
- Disregard singleton clusters


## A hierarchical clustering algorithm

Joseph Kruskal, 1928-2010


The single linkage algorithm:

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
- Merge the two clusters with the closest pair of points
- Disregard singleton clusters


## A hierarchical clustering algorithm

Joseph Kruskal, 1928-2010


The single linkage algorithm:

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
- Merge the two clusters with the closest pair of points
- Disregard singleton clusters


## A hierarchical clustering algorithm

Joseph Kruskal, 1928-2010


The single linkage algorithm:

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
- Merge the two clusters with the closest pair of points
- Disregard singleton clusters


## A hierarchical clustering algorithm

Joseph Kruskal, 1928-2010


The single linkage algorithm:

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
- Merge the two clusters with the closest pair of points
- Disregard singleton clusters


## A hierarchical clustering algorithm

Joseph Kruskal, 1928-2010


The single linkage algorithm:

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
- Merge the two clusters with the closest pair of points
- Disregard singleton clusters


## A hierarchical clustering algorithm

Joseph Kruskal, 1928-2010


The single linkage algorithm:

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
- Merge the two clusters with the closest pair of points
- Disregard singleton clusters


## A hierarchical clustering algorithm

Joseph Kruskal, 1928-2010


The single linkage algorithm:

- Start with each point in its own, singleton, cluster
- Repeat until there is just one cluster:
- Merge the two clusters with the closest pair of points
- Disregard singleton clusters


## Statistical theory in clustering

Data points $X_{1}, \ldots, X_{n}$ are independent random draws from an unknown density $f$ on $\mathbb{R}^{d}$

## Statistical theory in clustering

Data points $X_{1}, \ldots, X_{n}$ are independent random draws from an unknown density $f$ on $\mathbb{R}^{d}$

- Different random sample $\Rightarrow$ similar clustering (if $n$ is large)
- As $n \rightarrow \infty$ : approach "natural clusters" of $f$


## Statistical theory in clustering

Data points $X_{1}, \ldots, X_{n}$ are independent random draws from an unknown density $f$ on $\mathbb{R}^{d}$

- Different random sample $\Rightarrow$ similar clustering (if $n$ is large)
- As $n \rightarrow \infty$ : approach "natural clusters" of $f$



## Statistical theory in clustering

Data points $X_{1}, \ldots, X_{n}$ are independent random draws from an unknown density $f$ on $\mathbb{R}^{d}$

- Different random sample $\Rightarrow$ similar clustering (if $n$ is large)
- As $n \rightarrow \infty$ : approach "natural clusters" of $f$

cluster $\equiv$ connected component of $\{x: f(x) \geq \lambda\}$, any $\lambda>0$
These clusters form an infinite hierarchy, the cluster tree.


## Converging to the cluster tree



Consistency: Let $A, A^{\prime}$ be connected components of $\{f \geq \lambda\}$, for any $\lambda$. In the tree constructed from $n$ data points $X_{n}$, let $A_{n}$ be the smallest cluster containing $A \cap X_{n}$; likewise $A_{n}^{\prime}$. Then:

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left[A_{n} \text { is disjoint from } A_{n}^{\prime}\right]=1
$$

## Converging to the cluster tree



Consistency: Let $A, A^{\prime}$ be connected components of $\{f \geq \lambda\}$, for any $\lambda$. In the tree constructed from $n$ data points $X_{n}$, let $A_{n}$ be the smallest cluster containing $A \cap X_{n}$; likewise $A_{n}^{\prime}$. Then:

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left[A_{n} \text { is disjoint from } A_{n}^{\prime}\right]=1
$$

Hartigan 1975: Single linkage is consistent for $d=1$.

## Higher dimension

Hartigan 1982: Single linkage is not consistent for $d>1$.


## Higher dimension

Hartigan 1982: Single linkage is not consistent for $d>1$.


Chaudhuri-D '10: a simple variant of single linkage is consistent in any dimension, with a good finite sample convergence rate.

## Related work

- Single linkage satisfies a partial consistency property Penrose 1995
- Algorithms to capture a user-specified level set $\{x: f(x) \geq \lambda\}$ Maier-Hein-von Luxburg 2009, Rinaldo-Wasserman 2009, Singh-Scott-Nowak 2009
- Other estimators for the cluster tree Wishart 1969 (very similar to ours), Wong and Lane 1983, Stuetzle and Nugent 2010

Part II: Near neighbor graphs

## Capturing a data set's local structure



An undirected graph with

- A node for each data point
- Edges between "neighboring" points

Uses: clustering, semisupervised learning, embeddings, regularization, ...

## Two types of neighborhood graph

Connect points at distance $\leq r$
Connect each point to its $k$ nearest neighbors

## Two types of neighborhood graph

Connect points at distance $\leq r$
Problem: clusters at different scales


Connect each point to its $k$ nearest neighbors

## Two types of neighborhood graph

Connect points at distance $\leq r$
Problem: clusters at different scales


Connect each point to its $k$ nearest neighbors

Problem: spurious connections


## Single linkage, amended



- For each $x_{i}$ : set $r\left(x_{i}\right)=$ distance to nearest neighbor
- As $r$ increases from 0 to $\infty$ :
- Construct graph $G_{r}$ :

Nodes $\left\{x_{i}: r\left(x_{i}\right) \leq r\right\}$
Edges between any $\left(x_{i}, x_{j}\right)$ for which $\left\|x_{i}-x_{j}\right\| \leq r$

- Output the connected components of $G_{r}$


## Single linkage, amended



- For each $x_{i}$ : set $r\left(x_{i}\right)=$ distance to $k$ th nearest neighbor
- As $r$ increases from 0 to $\infty$ :
- Construct graph $G_{r}$ :

Nodes $\left\{x_{i}: r\left(x_{i}\right) \leq r\right\}$
Edges between any $\left(x_{i}, x_{j}\right)$ for which $\left\|x_{i}-x_{j}\right\| \leq \alpha r$

- Output the connected components of $G_{r}$


## Single linkage, amended



- For each $x_{i}$ : set $r\left(x_{i}\right)=$ distance to $k$ th nearest neighbor
- As $r$ increases from 0 to $\infty$ :
- Construct graph $G_{r}$ :

Nodes $\left\{x_{i}: r\left(x_{i}\right) \leq r\right\}$
Edges between any ( $x_{i}, x_{j}$ ) for which $\left\|x_{i}-x_{j}\right\| \leq \alpha r$

- Output the connected components of $G_{r}$

With $\sqrt{2} \leq \alpha \leq 2$ and $k \sim d \log n$, this is consistent for any $d!$

## Which clusters are most salient?

Effect 1: thin bridges


## Which clusters are most salient?

## Effect 1: thin bridges



For any set $Z$, let $Z_{\sigma}$ be all points within distance $\sigma$ of it.

## Which clusters are most salient?

Effect 1: thin bridges


For any set $Z$, let $Z_{\sigma}$ be all points within distance $\sigma$ of it.

Effect 2: density dip


## Which clusters are most salient?

Effect 1: thin bridges


For any set $Z$, let $Z_{\sigma}$ be all points within distance $\sigma$ of it.

Effect 2: density dip

$A$ and $A^{\prime}$ are $(\sigma, \epsilon)$-separated if:

- separated by some set $S$
- max density in $S_{\sigma} \leq$
$(1-\epsilon)\left(\right.$ min density in $\left.A_{\sigma}, A_{\sigma}^{\prime}\right)$



## Which clusters are most salient?

Effect 1: thin bridges


For any set $Z$, let $Z_{\sigma}$ be all points within distance $\sigma$ of it.

Effect 2: density dip

$A$ and $A^{\prime}$ are $(\sigma, \epsilon)$-separated if:

- separated by some set $S$
- max density in $S_{\sigma} \leq$
$(1-\epsilon)\left(\right.$ min density in $\left.A_{\sigma}, A_{\sigma}^{\prime}\right)$



## Rate of convergence

$A$ and $A^{\prime}$ are ( $\sigma, \epsilon$ )-separated if:

- separated by some set $S$
- max density in $S_{\sigma} \leq$
$(1-\epsilon)\left(\right.$ min density in $\left.A_{\sigma}, A_{\sigma}^{\prime}\right)$

With high probability, for all connected sets $A, A^{\prime}$ :
if $A, A^{\prime}$ are $(\sigma, \epsilon)$-separated, and have minimum density $\lambda$, then for

$$
n \geq \frac{d}{\lambda \epsilon^{2} \sigma^{d}}
$$

there will be some intermediate graph $G_{r}$ such that:

- There is no path between $A$ and $A^{\prime}$ in $G_{r}$
- $A$ and $A^{\prime}$ are individually connected in $G_{r}$


## Part III: Continuum percolation

## Connectivity in random graphs

Erdos-Renyi random graphs

- $n$ nodes
- Edges placed at random: between each pair of nodes, independently, an edge with probability $p$


## Connectivity in random graphs

Erdos-Renyi random graphs

- $n$ nodes
- Edges placed at random: between each pair of nodes, independently, an edge with probability $p$

Random geometric graphs

- $n$ points randomly chosen from an unknown density
- One node per point
- Edges between nodes that are nearby in some sense


## Identifying high-density regions

Algorithm:
For each $i: r\left(x_{i}\right)=$ dist to $k$ th nearest neighbor
As $r$ increases from 0 to $\infty$ :

- Construct graph $G_{r}$ : Nodes $\left\{x_{i}: r\left(x_{i}\right) \leq r\right\}$ Edges between any $\left(x_{i}, x_{j}\right)$ for which $\left\|x_{i}-x_{j}\right\| \leq \alpha r$
- Output the connected components of $G_{r}$

Single linkage has $k=1$, hoping: low $r \Leftrightarrow$ high density


## Identifying high-density regions

Algorithm:
For each $i: r\left(x_{i}\right)=$ dist to $k$ th nearest neighbor
As $r$ increases from 0 to $\infty$ :

- Construct graph $G_{r}$ : Nodes $\left\{x_{i}: r\left(x_{i}\right) \leq r\right\}$ Edges between any $\left(x_{i}, x_{j}\right)$ for which $\left\|x_{i}-x_{j}\right\| \leq \alpha r$
- Output the connected components of $G_{r}$

Single linkage has $k=1$, hoping: low $r \Leftrightarrow$ high density


Vapnik-Chervonenkis bounds: for every ball $B$ in $\mathbb{R}^{d}$, \# pts in $B=$
$f(B) \cdot n \pm \sqrt{f(B) \cdot n \cdot d \log n}$.

## Identifying high-density regions

Algorithm:
For each $i: r\left(x_{i}\right)=$ dist to $k$ th nearest neighbor
As $r$ increases from 0 to $\infty$ :

- Construct graph $G_{r}$ : Nodes $\left\{x_{i}: r\left(x_{i}\right) \leq r\right\}$ Edges between any $\left(x_{i}, x_{j}\right)$ for which $\left\|x_{i}-x_{j}\right\| \leq \alpha r$
- Output the connected components of $G_{r}$

Single linkage has $k=1$, hoping: low $r \Leftrightarrow$ high density


Vapnik-Chervonenkis bounds: for every ball $B$ in $\mathbb{R}^{d}$, \# pts in $B=$ $f(B) \cdot n \pm \sqrt{f(B) \cdot n \cdot d \log n}$.

Moral: choose $k \geq d \log n$.

## Separation

$A, A^{\prime}$ are $(\sigma, \epsilon)$-separated.

(Buffer zone has width $\sigma$.)

There is some value $r$ at which:
(1) Every point in $A, A^{\prime}$ has $\geq k$ points within distance $r$, and is thus a node in $G_{r}$
(2) Any point in $S_{\sigma}$ has $<k$ points within distance $r$, and thus isn't a node in $G_{r}$
(3) $r \leq \sigma / 2$

## Separation

$A, A^{\prime}$ are $(\sigma, \epsilon)$-separated.


There is some value $r$ at which:
(1) Every point in $A, A^{\prime}$ has $\geq k$ points within distance $r$, and is thus a node in $G_{r}$
(2) Any point in $S_{\sigma}$ has $<k$ points within distance $r$, and thus isn't a node in $G_{r}$
(3) $r \leq \sigma / 2$
$A$ is disconnected from $A^{\prime}$ in $G_{r}$
(Buffer zone has width $\sigma$.)

## Connectedness

At this particular scale $r$, every point in $A$ and $A^{\prime}$ (or within distance $r$ of $A, A^{\prime}$ ) is active.


But, are these points connected in $G_{r}$ ?

## Connectedness

At this particular scale $r$, every point in $A$ and $A^{\prime}$ (or within distance $r$ of $A, A^{\prime}$ ) is active.

The worst case:


But, are these points connected in $G_{r}$ ?

## Connectedness

At this particular scale $r$, every point in $A$ and $A^{\prime}$ (or within distance $r$ of $A, A^{\prime}$ ) is active.


But, are these points connected in $G_{r}$ ?

The worst case:


This is where $\alpha$ comes in:
Graph $G_{r}$ :
Nodes $\left\{x_{i}: r\left(x_{i}\right) \leq r\right\}$
$\operatorname{Edges}\left(x_{i}, x_{j}\right)$ for $\left\|x_{i}-x_{j}\right\| \leq \alpha r$

## Connectedness

At this particular scale $r$, every point in $A$ and $A^{\prime}$ (or within distance $r$ of $A, A^{\prime}$ ) is active.


But, are these points connected in $G_{r}$ ?

The worst case:

This is where $\alpha$ comes in:
Graph $G_{r}$ :
Nodes $\left\{x_{i}: r\left(x_{i}\right) \leq r\right\}$
$\operatorname{Edges}\left(x_{i}, x_{j}\right)$ for $\left\|x_{i}-x_{j}\right\| \leq \alpha r$

- $\alpha=2$ : easy to show connectivity
- $\alpha=\sqrt{2}$ : our result


## Connectedness (cont'd)

## Proof sketch

$x, x^{\prime}$ are in cluster $A$, so there is a path $P$ between them.

We'll exhibit data points
$x_{0}=x, x_{1}, \ldots, x_{\ell}=x^{\prime}$ such that:

- The $x_{i}$ are within distance $r$ of $P$ (and thus of $A$, and thus are active in $G_{r}$ )
- $\left\|x_{i}-x_{i+1}\right\| \leq \alpha r$

So $x$ is connected to $x^{\prime}$ in $G_{r}$.

## Connectedness (cont'd)

## Proof sketch

$x, x^{\prime}$ are in cluster $A$, so there is a path $P$ between them.

We'll exhibit data points
$x_{0}=x, x_{1}, \ldots, x_{\ell}=x^{\prime}$ such that:

- The $x_{i}$ are within distance $r$ of $P$ (and thus of $A$, and thus are active in $G_{r}$ )

- $\left\|x_{i}-x_{i+1}\right\| \leq \alpha r$

So $x$ is connected to $x^{\prime}$ in $G_{r}$.

## Connectedness (cont'd)

## Proof sketch

$x, x^{\prime}$ are in cluster $A$, so there is a path $P$ between them.

We'll exhibit data points
$x_{0}=x, x_{1}, \ldots, x_{\ell}=x^{\prime}$ such that:

- The $x_{i}$ are within distance $r$ of $P$ (and thus of $A$, and thus are active in $G_{r}$ )
- $\left\|x_{i}-x_{i+1}\right\| \leq \alpha r$

So $x$ is connected to $x^{\prime}$ in $G_{r}$.


Therefore $\left\|x_{i}-x_{i+1}\right\| \leq r \sqrt{2}$.

## Connectedness (cont'd)

## Proof sketch

$x, x^{\prime}$ are in cluster $A$, so there is a path $P$ between them.

We'll exhibit data points
$x_{0}=x, x_{1}, \ldots, x_{\ell}=x^{\prime}$ such that:

- The $x_{i}$ are within distance $r$ of $P$ (and thus of $A$, and thus are active in $G_{r}$ )
- $\left\|x_{i}-x_{i+1}\right\| \leq \alpha r$

So $x$ is connected to $x^{\prime}$ in $G_{r}$.


Therefore $\left\|x_{i}-x_{i+1}\right\| \leq r \sqrt{2}$.

## Lower bound via Fano's inequality

A game played with a predefined class of distributions $\left\{\theta_{1}, \ldots, \theta_{\ell}\right\}$.

- Nature picks $I \in\{1,2, \ldots, \ell\}$
- Player is given $n$ iid samples from from $\theta_{l}$
- Player then guesses the identity of I


## Lower bound via Fano's inequality

A game played with a predefined class of distributions $\left\{\theta_{1}, \ldots, \theta_{\ell}\right\}$.

- Nature picks $I \in\{1,2, \ldots, \ell\}$
- Player is given $n$ iid samples from from $\theta_{l}$
- Player then guesses the identity of I

Theorem: If Nature chooses / uniformly at random, then the Player must draw at least

$$
n \geq \frac{\log \ell}{2 \beta}
$$

samples in order to guess correctly with probability $\geq 1 / 2$, where

$$
\beta=\frac{1}{\ell^{2}} \sum_{i, j=1}^{\ell} K\left(\theta_{i}, \theta_{j}\right)
$$

## An alternative cluster tree estimator

Original scheme constructs a hierarchy of neighborhood $r$-graphs:

- For each $x_{i}$ : set $r_{k}\left(x_{i}\right)=$ distance to $k$ th nearest neighbor
- As $r$ increases from 0 to $\infty$ :
- Construct graph $G_{r}$ :

Nodes $\left\{x_{i}: r_{k}\left(x_{i}\right) \leq r\right\}$
Edges between any $\left(x_{i}, x_{j}\right)$ for which $\left\|x_{i}-x_{j}\right\| \leq \alpha r$

- Output the connected components of $G_{r}$


## An alternative cluster tree estimator

Original scheme constructs a hierarchy of neighborhood $r$-graphs:

- For each $x_{i}$ : set $r_{k}\left(x_{i}\right)=$ distance to $k$ th nearest neighbor
- As $r$ increases from 0 to $\infty$ :
- Construct graph $G_{r}$ :

Nodes $\left\{x_{i}: r_{k}\left(x_{i}\right) \leq r\right\}$
Edges between any $\left(x_{i}, x_{j}\right)$ for which $\left\|x_{i}-x_{j}\right\| \leq \alpha r$

- Output the connected components of $G_{r}$
[Kpotufe-von Luxburg 2011] Instead of $G_{r}$, use graph $G_{r}^{N N}$ :
- Same nodes, $\left\{x_{i}: r\left(x_{i}\right) \leq r\right\}$
- Edges $\left(x_{i}, x_{j}\right)$ for which $\left\|x_{i}-x_{j}\right\| \leq \alpha \min \left(r_{k}\left(x_{i}\right), r_{k}\left(x_{j}\right)\right)$

Similar rates of convergence for these potentially sparser graphs.

## An alternative cluster tree estimator

Original scheme constructs a hierarchy of neighborhood $r$-graphs:

- For each $x_{i}$ : set $r_{k}\left(x_{i}\right)=$ distance to $k$ th nearest neighbor
- As $r$ increases from 0 to $\infty$ :
- Construct graph $G_{r}$ :

Nodes $\left\{x_{i}: r_{k}\left(x_{i}\right) \leq r\right\}$
Edges between any $\left(x_{i}, x_{j}\right)$ for which $\left\|x_{i}-x_{j}\right\| \leq \alpha r$

- Output the connected components of $G_{r}$
[Kpotufe-von Luxburg 2011] Instead of $G_{r}$, use graph $G_{r}^{N N}$ :
- Same nodes, $\left\{x_{i}: r\left(x_{i}\right) \leq r\right\}$
- Edges $\left(x_{i}, x_{j}\right)$ for which $\left\|x_{i}-x_{j}\right\| \leq \alpha \min \left(r_{k}\left(x_{i}\right), r_{k}\left(x_{j}\right)\right)$

Similar rates of convergence for these potentially sparser graphs.

Open problem: other simple estimators?

## Revisiting Hartigan-consistency

Recall Hartigan's notion of consistency:
Let $A, A^{\prime}$ be connected components of $\{f \geq \lambda\}$, for any $\lambda$. In the tree constructed from $n$ data points $X_{n}$, let $A_{n}$ be the smallest cluster containing $A \cap X_{n}$; likewise $A_{n}^{\prime}$.
Then:

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left[A_{n} \text { is disjoint from } A_{n}^{\prime}\right]=1
$$

In other words, distinct clusters should (for large enough $n$ ) be disjoint in the estimated tree.

## Revisiting Hartigan-consistency

Recall Hartigan's notion of consistency:
Let $A, A^{\prime}$ be connected components of $\{f \geq \lambda\}$, for any
$\lambda$. In the tree constructed from $n$ data points $X_{n}$, let $A_{n}$ be the smallest cluster containing $A \cap X_{n}$; likewise $A_{n}^{\prime}$.
Then:

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left[A_{n} \text { is disjoint from } A_{n}^{\prime}\right]=1
$$

In other words, distinct clusters should (for large enough $n$ ) be disjoint in the estimated tree.

But this doesn't guard against excessive fragmentation within the estimated tree.

## Excessive fragmentation: example

Density:


## Pruning the cluster tree

- Build the cluster tree as before: at each scale $r$, there is a neighborhood graph $G_{r}$
- For each $r$ : merge components of $G_{r}$ that are connected in $G_{r+\delta(r)}$


## Pruning the cluster tree

- Build the cluster tree as before: at each scale $r$, there is a neighborhood graph $G_{r}$
- For each $r$ : merge components of $G_{r}$ that are connected in $G_{r+\delta(r)}$

Kpotufe and von-Luxburg 2011: roughly the same consistency guarantees and rate of convergence hold, and in addition, under extra conditions, there is no spurious fragmentation.

## Pruning the cluster tree

- Build the cluster tree as before: at each scale $r$, there is a neighborhood graph $G_{r}$
- For each $r$ : merge components of $G_{r}$ that are connected in $G_{r+\delta(r)}$

Kpotufe and von-Luxburg 2011: roughly the same consistency guarantees and rate of convergence hold, and in addition, under extra conditions, there is no spurious fragmentation.

Belkin-Eldridge-Wang 2015: A stronger notion of consistency that accounts for fragmentation.

## More open problems

(1) Other natural notions of cluster for a density $f$ ? Are there situations in which a hierarchy is not enough?
(2) This notion of cluster is for densities. What about discrete distributions?
(3) An $O(n \log n)$ algorithm?

## Thanks

Many thanks to my co-authors Kamalika Chaudhuri, Samory Kpotufe, and Ulrike von Luxburg.

