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The machinery of life: protein synthesis by the ribosome

videos-science/video-ribosome-

youtube



B-cell biology and antibody - antigen complexes

. Influenza
HA
trimer

. (Broadly) neutralizing antibodies

Fab of CR8020

Fab of C05

Fab of FI6

Virus
membrane

HA head

HA stem

. Core questions on IG-Ag complexes

– Determinants of binding affinity
relationship affinity - avidity - virus entry inhibition

– Role of complementarity determining regions (CDRs)
– Determinants of interaction specificity



Molecular dynamics: first simulation of a protein

videos-science/video-michael-
levitt-first-MD–simulation

About the simulation duration, quoting M. Levitt “Cannot remember, but likely
less than 100 picoseconds”



Protein interactions: docking, affinity, specificity

. Docking models:

+

+

Complex

Conformer selection
Monod-Wyman-Changeux, 1965

Lock-and-key
Fisher, 1894

Induced fit
Koshland, 1958

I Lock-and-key: Fisher, 1894

I Induced fit: Koshland, 1958

I Conformer selection,
Monod-Wyman-Changeux,
1965

. Flexibility matters . Key ingredients:
– Geometry:

complementarity,conformations, flexibility
– Physics: enthalpy, entropy

. Major challenges (cf CAPRI):
geometry: large conformational changes
physics: entropy based affinity control



The lock and key metaphor is misleading:
function is often about dynamics

Information(spare parts)
< Information(static bicycle)

� Information(moving bicycle)
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Binding affinity: dissociation free energy

. Protein complexes rock back and forth

. Dissociation constant and dissociation free energy:

Kd = [A][B]/[AB]

∆Gd = −RT lnKd/c
◦ = ∆H − T∆S .

. Binding affinities
(thermodynamics):
– random complex: Kd ∼ 10−6

– high: Kd ∼ 10−9

– very high: Kd ∼ 10−12

– extreme: Kd ∼ 10−15

. Time scales (kinetics):
– short-lived complexes: 10−6s
(e.g. enzyme-substrate)
– stable complexes: 103s (e.g.
antibody-antigen)
– permanent complexes: 106s
(aggregates)



Binding affinity: thermodynamics

. Dissociation constant kD for C � A + B:

Kd =
[A][B]

[C ]
; ∆Gd = −RT lnKd/c

◦ = ∆H − T∆S . (1)

. The enthalpy - entropy compensation:
I enhanced packing of interface atoms due to attractive forces: ∆H < 0
I higher packing, restricted atomic motions: T∆S < 0

. Marginal stability of proteins and complexes:

∆G

∆H

T∆S

I Large ∆H and T∆S compensate
I Crossing of curves difficult to predict
I Marginals stability is key to regulation

Pict. courtesy of Alan Cooper (Thermodynamics of unfolding)



The immune response: affinity maturation
Rigidification of CDR loops limits the entropic penalty upon binding

. Antibodies: lineage . Binding affinities: Kd analysis by SPR

Fab Kd (µM)
UCA 118 ± 14
I-2 142 ± 15
CH65 0.49 ± .10
CH67 0.36 ± 0.04

CH65 ∼ CH67; wrt UCA:
⇒ ∼ 200-fold improvement

. But UCA and CH65 have similar
binding modes!!!

. Solution: time spent bound con-
formations – long MD simulations

.Ref: Harisson et al; PNAS 110, 2013



Force fields: the potential energy of a (bio-)molecular system
. The 3n − 6 degrees of freedom of a molecule:

– types for atoms (element, bonds)
– covalent: bond lengths, angles
– non covalent: pairwise distances
– solvent model

. Potential energy:

Utotal = Ebond + Eangle + (Eproper + Eimproper) + (Evdw + Eelectro) (2)

Ebond: bonds
Eangle: covalent angles
Eproper: proper dihedrals

Eimproper: improper dihedrals
Evdw: van der Walls
Eelectro: electrostatics

. Examples:

I AMBER: Su = (73, 133, 112, 3, 14, 758)
1093 unique parameters

I CHARMM: Su = (85, 152, 209, 13, 33, 1)
493 unique parameters

I MARTINI: Su = (16, 4, 0, 2, 21, 3)
46 unique parameters



Potential energy landscapes: illustration
. Potential energy map: vacuum versus solvated

. Corresponding Boltzmann-weighted probability maps:

– Solvent stabilizes many
more conformers–hydrogen
bonding.
– Dramatic incidence of the
PES and FES.

.Ref: Petitt, Karplus, Chem. Phys. Lett., 121, 1985



Binding affinity: direct calculation

. A standard antibody-antigen
complex: . Model without solvent:

I FAB of antibody ∼ 3000
atoms

I Antigen (lysozyme) ∼ 1000
atoms

I One conformation: 1 point in
R3×4000

. ∆Gd as a multidimensional integral:

∆G = − 1
β
ln

(
1

8π2
CACB

CAB

∫
e−βU(rAB )drAB∫

(e−βU(rA)drA)
(∫

e−βU(rB )drB
)) (3)

.Ref: Woo ad Roux, PNAS 102 (19), 2005



Free energy, density of states, and volume calculations

. Density of states . Volume of polytopes: hardness

.Ref: Dyer, Freeze, Kannan, J. ACM 38(1), 1991

.Ref: Lovász, Vempala, J. Comput. Syst. Sci., 71(2), 2006



Protein interactions: the structure affinity benchmark
http://bmm.cancerresearchuk.org/~bmmadmin/Affinity/

. Dissociation
constant vs affinity

∆Gd = −RT lnKd/c
◦

. NB: in general,
bound partners only
do not suffice to
get accurate
predictions

. 144 protein complexes
17 IG - Ag complexes

. Binding affinity known: ITC, SPR
caveat: order of magnitude matter (pH, ion strength, . . . )

. Three crystal structures known: bound complex + 2 unbound partners

.Ref: Kastritis et al; Protein Science (20), 2011

http://bmm.cancerresearchuk.org/~bmmadmin/Affinity/


Estimating Kd: two routes

I Learning: regression

I Databases of crystal structures + affinity measurements
I Regression models involving relevant variables

I From first principles

I Atomic models of the partners
I A force field and a thermodynamic sampling algorithm
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Binding affinity estimation as a regression problem

. Regression:
I Regression: predicting the value of a continuous (dependent) variable

from the values of other (independent) variables.
I ∆G is the dependent variable
I Many types of regressors: least squares, regularized least squares, k

nearest neighbours, regression trees, multivariate adaptive splines, . . .

. Adequate variables: two classes of methods
I Large collections of parameters coding distances, biochemical properties

(H-bonds, properties of a.a.), conservation of a.a., etc.
NB: requires a close monitoring to avoid overfitting.

I A small number of them: more precise encoding of enthalpy and entropy
related quantities.

. Overfitting and sparsity
I Variable selection and regularization via the LASSO
I Sparse model enumeration + cross validation



Solvent Accessible Models: the birth

“The successful elucidation of the structure of a protein by single-crystal
diffraction procedures provides a list of atomic co-ordinates whose reliability
will vary in different parts of the molecule.”
“The topology of the surface of a protein is intimately related to its function;
parts of the surface are directly involved in interactions with other molecules;
the solvent- protein interface is almost certainly related to the structure of the
native molecule; and the chemical reactivity of the various functional groups
will depend on their relation to this interface.”

.Ref: Lee and Richards, JMB, 3 (55), 1971

.Ref: M.L. Connolly, J. Appl. Crystallography, 1983

.Ref: Akkiraju and Edelsbrunner, Discrete Appl. Math., 1996



Solvent Accessible Models: the rise

From Chotia, Structural invariants in protein folding:
“An analysis of 15 protein structures indicates: First, the loss of accessible
surface area by monomeric proteins on folding–proportional to hydrophobic
energy–is a simple function of molecular weight; second, the proportion of polar
groups forming intramolecular hydrogen bonds is constant; and third, protein
interiors are closely packed, each residue occupying the same volume as it does
in crystals of amino acids.”

From Janin, Principles of protein–protein recognition:
“The formation of the protein–protein interface by the insulin dimer, the
trypsin-PTI complex and the αβ oxyhaemoghbin dimer removes 1,130–1,720 2

of accessible surface from contact with water. The residues forming the
interface are close packed: each occupies the same volume as it does in crystals
of amino acids. These results indicate that hydrophobicity is the major factor
stabilising protein–protein association, while complementarity plays a selective
role in deciding which proteins may associate.”

.Ref: Chothia, Nature 254, 1975

.Ref: Janin, Nature 256, 1975



Voronoi diagrams in Biology, Geology, Engineering

V or(B7)

V or(B5)

V or(B6)

V or(B2)
V or(B4)

V or(B3)

V or(B1)

c1

c3

c4

c2
c6

c5

c7



Our parameters: overview
. Our variables: proxys for enthalpy and (vibrational) entropy variations upon
binding, the latter based on packing properties

Ic, SASA = 0

Ic, SASA > 0

I

(A) (B)

(C) (D)

. Or particular interest
I IVW-IPL: inverse

volume-weighted internal
path length

I NIScharged : fraction of charged
residues on the
non-interacting surface (NIS)

I (A) Binding patch and labeling of interface atoms The non interface
atoms (Ic) are split into those which retain solvent accessibility
(SASA > 0, dashed balls), and those which do not (SASA = 0, dotted
balls)
NB: Buried Surface Area or BSA: area of colored spherical caps

I (B) Shelling order of an atom: smallest number of atoms traveled to
reach an exposed non interface atom, i.e. an atom belonging to Ic and
with SASA > 0 (in grey)

I (C,D) Atomic packing: via Voronoi volumes



Statistical methodology

T1

T 1585

Pool of templates

v1

vk

v12

{v1}

{v8, . . . , v12}

Variables

{vk−3, vk+2} Tl

Cross-validation: NXV repetitions of 5-fold cross-validation
For j = 1 to NXV

• Randomly split D in 5 folds Dp, p ∈ {1, . . . , 5}

• For p ∈ {1, . . . , 5}

– Build a model Mp from template Tl and D \Dp

– Predict Dp with Mp

• Assemble Ĝj = {ĝij}i=1,...,|D|

Cross-validation: For each template Tl

Model selection

• Median of correlations: C[Tl,D]

• Median prediction error per complex: ei[Tl,D]

• Absolute value of the previous: eabsi [Tl,D]

• Prediction ratio: perrorδ

• p-value for each predictive model

Selection of the best template(s) via the
associated predictive models. See text
for details.

Statistics per template Tl

Templates



Results on the structure affinity benchmark

. Predictions vs measurements
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. Hardness vs flexibility
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. State-of-the-art binding affinity estimates on the SAB:
– Whole SAB: Kd within one and two OOM in 48% and 79% of cases

high resolution (2.5Å): Kd within one and two OOM in 62% and 89%
– Absence of correlation between prediction hardness and protein flexibility

. References:

– 1 OOM (order of magnitude) ⇔ 1.4 kcal/mol
– kT per molecule, or RT per mole at room temperature: 0.6 kcal/mol
– ∆Gd , exp. errors ∼ 0.3 kcal/mol
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Emergence of function from
Structure – Thermodynamics – Dynamics

Structure: stable conformations i.e.
local minima of the PEL

Thermodynamics: meta-stable
conformations i.e. ensemble of con-
formations easily inter-convertible
into one - another.

Dynamics: transitions between
meta-stable conformations e.g.
Markov state model

Potential Energy Landscape

• large number of local minima

• enthalpic barriers

• entropic barriers



Contributions discussed

I (Structure) Sampling potential energy landscapes
I (Thermodynamics) Simplifying potential energy landscapes



Exploring Potential Energy Landscapes:
basin hopping

. Goal: enumerating low energy local minima

. Basin-hopping and the basin hopping transform
– Random walk in the space of local minima
– Requires a move set and an acceptance test (cf Metropolis)

and the ability to descend the gradient (quenching)
aka energy minizations

. Limitation: no built-in mechanism to avoid staying trapped

V

C
mimi+1

.Ref: Li and Scheraga, PNAS, 1987



Exploring Potential Energy Landscapes:
transition based rapidly exploring random trees (T-RRT)

. Goal: sample basins and transitions

. Algorithm growing a random tree favoring yet unexplored regions
– node to be extended selection: Voronoi bias
– node extension: interpolation + Metropolis criterion (+temperature tuning)

. Limitation: oblivious to local minima

pn
δ

pe

T

pr C
pr

pn

.Ref: LaValle, Kuffner, IEEE ICRA 2000

.Ref: Jaillet, Corcho, Pérez, Cortés, J. Comp. Chem, 2011



Exploring energy landscapes:
a generic approach yielding BH, T-RRT,. . .

. Input: potential energy function with million, billion, trillion of local minima

. Goal: enumerate low energy + persistent local minima

. Hybrid algorithm: alternate BH and T-RRT extensions

. Key ingredients:
I Boost the exploration of yet-unexplored regions – Voronoi bias
I Meaning-full management of distances – due to concentration phenomena
I Favor spatial adaptation – local Metropolis-Hasting tests

.Ref: Roth, Dreyfus, Robert, Cazals; J. Comp. Chem.; 2015



Protein model BLN69: model and force field
. Description:

– Three types of Beads: : hydrophobic(B), hydrophylic(L) and neutral(N)
– Configuration space of intermediate dimension: 207
– Challenging: frustrated system
– Exhaustively studied: DB of ∼ 450k critical points (Industry)

VBLN =
1

2
· Kr

N−1∑
i=1

(Ri,i+1 − Re )
2 +

1

2
K0

N−2∑
i=1

(θi − θe )
2 + ε ·

N−3∑
i=1

[Ai (1 + cosφi ) + Bi (1 + 3 cosφi )]

+4ε
N−2∑
i=1

N∑
j=i+2

·Cij [(
σ

Ri,j

)12 − Dij (
σ

Ri,j

)6]

. Disconnectivity graph: describes merge events between basins

.Ref: Honeycutt, Thirumalai, PNAS, 1990

.Ref: Oakley, Wales, Johnston, J. Phys. Chem., 2011



Exploring energy landscapes: performances of Hybrid
. Contributions: enhanced exploration of low lying regions of a complex landscape
. Protocol:

– Contenders: BH, T-RRT, Hybrid for various parameter values b
– Count and assess the local minima reported from two reference databases:

BLN69−min − all : 458,082 minima
BLN69-min-E−100: 5932 minima.

• Bounding box ∅: all mins vs low lying • Median energies
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. Assessment:
– Combines critical building blocks:

minimization, spatial exploration boosting, nearest neighbor searches
– Bridging the gap to thermodynamics

.Ref: Oakley et al; J. of Physical Chemistry B; 2011

.Ref: Roth, Dreyfus, Robert, Cazals; J. Comp. Chem.; 2015



Binary Lennard-Jonnes LJ60
. Coarse graining the system:
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. Using the distribution of barriers’ heights:
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.Ref: Carr, Mazauric, Cazals, Wales; J. Chem. Phys.; 2016
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Learning vs ab-initio approaches: different philosophy?

. No since the development of force fields involves:

– tuning the parameters so as to match experimental data
using (small) organic molecules

NB: identical methods: optimization, cross-validation, Bayesian models
– extrapolating to bio-molecules

.Ref: Pande et al, The J. Phys. Chem. letters, 5 (11), 2014



What are we critically missing
to enter the era of atomic level engineering?

. Fundamental insights into equilibrium thermodynamics require:
– potential energy: enhanced exploration algorithms

akin to shape / model learning
– free energy: enhanced multicanonical sampling algorithms

akin to high dimensional volume calculations
– dynamics: multi-scale Markov state models

. Countless breakthroughs in terms of applications:
– biology: understanding processes; understanding evolution

coding sequences ∼ 80 millions in UniProt/TrEMBL
structures: 125, 000 in the Protein Data Bank

– medicine: immunology, cancer, neurosciences,. . .
– material sciences
– synthetic biology

.Ref: UniProt/Trembl: http://www.ebi.ac.uk/uniprot/TrEMBLstats

.Ref: PDB: http://www.rcsb.org/pdb/static.do?p=general_information/pdb_
statistics/index.html

http://www.ebi.ac.uk/uniprot/TrEMBLstats
http://www.rcsb.org/pdb/static.do?p=general_information/pdb_statistics/index.html
http://www.rcsb.org/pdb/static.do?p=general_information/pdb_statistics/index.html
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Hall of fame
. More than 20 structural biology-related Nobel Prizes in 50 years:

I J. Kendrew and M. Perutz, chemistry 1962: for their studies of the
structures of globular proteins

I F. Crick, J. Watson and M. Wilkins, medecine 1962: for their discoveries
concerning the molecular structure of nucleic acids and its significance for
information transfer in living material

I C. Anfinsen, chemistry 1972: for his work on ribonuclease, especially
concerning the connection between the amino acid sequence and the
biologically active conformation

I K. Wutricht and J. Fenn, chemistry 2002: for the development of
methods for identification and structure analyses of biological
macromolecules

I R. Kornberg, chemistry 2006: for his studies of the molecular basis of
eukaryotic transcription

I V. Ramakrishnan, T. Steitz, A. Yonath, chemistry 2009: for studies of
the structure and function of the ribosome

I M. Karplus, M. Levitt, A. Warshell, chemistry 2013: for the development
of multiscale models for complex chemical systems



Methods: molecular simulation



Connexions between my talk and Prof. Boissonnat’s course
C1: Modéles géométriques discrets

→ Voronoi models in various guises

C2: La puissance de l’aléa
→ Randomized constructions, Monte Carlo algorithms

C3: Le calcul géométrique
→ Robust geometric predicates and constructions
The Computational Geometry Algorithms Library – code and spirit!

C4. Génération de maillages
→ The Poisson-Boltzmann equation

C5: Courbes et surfaces
→ Surface / shape reconstruction
→ Convergence of regressors

C6: Espaces de configurations
→ Conformational spaces: exploration, planning

C7. Structures de données gééométriques
→ Geometric approximation theory, geometric optimization

C8: Analyse gééométrique et topologique des données
→ Topological persistence, geometric/topological data analysis
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