Modèles géométriques pour la prédiction des interactions macro-moléculaires

Geometric models for the prediction of macro-molecular interactions

Frederic.Cazals@inria.fr, ABS
http://team.inria.fr/abs

Inside Escherichia coli [D. Goodsell, The machinery of life]

Molecular interactions: function $=$ structure (geometry) + dynamics

Protein complexes - physical chemistry 101

Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Conclusion

Outlook

Proteins and macro-molecular machines

Molecular interactions: function $=$ structure (geometry) + dynamics

Protein complexes - physical chemistry 101

Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Conclusion

Outlook

The machinery of life: protein synthesis by the ribosome
videos-science/video-ribosome-
youtube

B-cell biology and antibody - antigen complexes

\triangleright Influenza

\triangleright Core questions on IG-Ag complexes

- Determinants of binding affinity relationship affinity - avidity - virus entry inhibition
- Role of complementarity determining regions (CDRs)
- Determinants of interaction specificity
\triangleright (Broadly) neutralizing antibodies

Molecular dynamics: first simulation of a protein

videos-science/video-michael-levitt-first-MD-simulation

About the simulation duration, quoting M. Levitt "Cannot remember, but likely less than 100 picoseconds''

Protein interactions: docking, affinity, specificity

- Lock-and-key: Fisher, 1894
- Induced fit: Koshland, 1958
- Conformer selection, Monod-Wyman-Changeux, 1965

Koshland, 1958
\triangleright Flexibility matters

\triangleright Key ingredients:

- Geometry: complementarity, conformations, flexibility
- Physics: enthalpy, entropy
\triangleright Major challenges (cf CAPRI):
geometry: large conformational changes physics: entropy based affinity control

The lock and key metaphor is misleading: function is often about dynamics

Information(spare parts)
$<$ Information(static bicycle)
\ll Information(moving bicycle)

Proteins and macro-molecular machines

Molecular interactions: function $=$ structure (geometry) + dynamics

Protein complexes - physical chemistry 101

Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Conclusion

Outlook

Binding affinity: dissociation free energy

\triangleright Protein complexes rock back and forth

\triangleright Dissociation constant and dissociation free energy:

$$
\begin{aligned}
K_{d} & =[A][B] /[A B] \\
\Delta G_{d} & =-R T \ln K_{d} / c^{\circ}=\Delta H-T \Delta S
\end{aligned}
$$

\triangleright Binding affinities
(thermodynamics):

- random complex: $K_{d} \sim 10^{-6}$
- high: $K_{d} \sim 10^{-9}$
- very high: $K_{d} \sim 10^{-12}$
- extreme: $K_{d} \sim 10^{-15}$
\triangleright Time scales (kinetics):
- short-lived complexes: $10^{-6} s$
(e.g. enzyme-substrate)
- stable complexes: $10^{3} s$ (e.g.
antibody-antigen)
- permanent complexes: $10^{6} \mathrm{~s}$ (aggregates)

Binding affinity: thermodynamics

\triangleright Dissociation constant k_{D} for $C \leftrightharpoons A+B$:

$$
\begin{equation*}
K_{d}=\frac{[A][B]}{[C]} ; \Delta G_{d}=-R T \ln K_{d} / c^{\circ}=\Delta H-T \Delta S . \tag{1}
\end{equation*}
$$

\triangleright The enthalpy - entropy compensation:

- enhanced packing of interface atoms due to attractive forces: $\Delta H<0$
- higher packing, restricted atomic motions: $T \Delta S<0$
\triangleright Marginal stability of proteins and complexes:

- Large ΔH and $T \Delta S$ compensate
- Crossing of curves difficult to predict
- Marginals stability is key to regulation

Pict. courtesy of Alan Cooper (Thermodynamics of unfolding)

The immune response: affinity maturation

Rigidification of CDR loops limits the entropic penalty upon binding

D

\triangleright But UCA and CH 65 have similar binding modes!!!

\triangleright Binding affinities: K_{d} analysis by SPR

Fab	$K_{d}(\mu M)$
UCA	118 ± 14
I-2	142 ± 15
CH65	$0.49 \pm .10$
CH67	0.36 ± 0.04

CH65 ~ CH67; wrt UCA:
$\Rightarrow \sim 200$-fold improvement
\triangleright Solution: time spent bound conformations - long MD simulations

\triangleright Ref: Harisson et al; PNAS 110, 2013

Force fields: the potential energy of a (bio-)molecular system

\triangleright The $3 n-6$ degrees of freedom of a molecule:

- types for atoms (element, bonds)
- covalent: bond lengths, angles
- non covalent: pairwise distances
- solvent model
\triangleright Potential energy:

$$
\begin{equation*}
U_{\text {total }}=E_{\text {bond }}+E_{\text {angle }}+\left(E_{\text {proper }}+E_{\text {improper }}\right)+\left(E_{\mathrm{vdw}}+E_{\text {electro }}\right) \tag{2}
\end{equation*}
$$

$E_{\text {bond }}$: bonds
$E_{\text {angle }}$: covalent angles
$E_{\text {proper }}$: proper dihedrals
$E_{\text {improper }}$: improper dihedrals $E_{\text {vdw }}$: van der Walls $E_{\text {electro }}$ electrostatics
\triangleright Examples:

- AMBER: $S_{u}=(73,133,112,3,14,758)$ 1093 unique parameters
- ChARMM: $S_{u}=(85,152,209,13,33,1)$ 493 unique parameters

- MARTINI: $S_{u}=(16,4,0,2,21,3)$

46 unique parameters

Potential energy landscapes: illustration

\triangleright Potential energy map: vacuum versus solvated

\triangleright Corresponding Boltzmann-weighted probability maps:

- Solvent stabilizes many more conformers-hydrogen bonding.
- Dramatic incidence of the PES and FES.

\triangleright Ref: Petitt, Karplus, Chem. Phys. Lett., 121, 1985

Binding affinity: direct calculation

\triangleright A standard antibody-antigen
complex:

\triangleright Model without solvent:

- FAB of antibody ~ 3000 atoms
- Antigen (lysozyme) ~ 1000 atoms
- One conformation: 1 point in $\mathbb{R}^{3 \times 4000}$
$\triangleright \Delta G_{d}$ as a multidimensional integral:

$$
\begin{equation*}
\Delta G=-\frac{1}{\beta} \ln \left(\frac{1}{8 \pi^{2}} \frac{C_{A} C_{B}}{C_{A B}} \frac{\int e^{-\beta U\left(r_{A B}\right)} d r_{A B}}{\int\left(e^{-\beta U\left(r_{A}\right)} d r_{A}\right)\left(\int e^{-\beta U\left(r_{B}\right)} d r_{B}\right)}\right) \tag{3}
\end{equation*}
$$

\triangleright Ref: Woo ad Roux, PNAS 102 (19), 2005

Free energy, density of states, and volume calculations

```
D Density of states
\triangleright Volume of polytopes: hardness
\Ref: Dyer, Freeze, Kannan, J. ACM 38(1), 1991
\trianglerightRef: Lovász, Vempala, J. Comput. Syst. Sci., 71(2), 2006
```


Protein interactions: the structure affinity benchmark

 http://bmm.cancerresearchuk.org/~bmmadmin/Affinity/
\triangleright Dissociation constant vs affinity
$\Delta G_{d}=-R T \ln K_{d} / c^{\circ}$
\triangleright NB: in general, bound partners only do not suffice to get accurate predictions
$\triangleright 144$ protein complexes
17 IG - Ag complexes
\triangleright Binding affinity known: ITC, SPR
caveat: order of magnitude matter (pH , ion strength, ...)
\triangleright Three crystal structures known: bound complex +2 unbound partners

Estimating Kd: two routes

- Learning: regression
- Databases of crystal structures + affinity measurements
- Regression models involving relevant variables
- From first principles
- Atomic models of the partners
- A force field and a thermodynamic sampling algorithm

Proteins and macro-molecular machines

Molecular interactions: function $=$ structure (geometry) + dvnamics

Protein complexes - physical chemistry 101

Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Conclusion

Outlook

Binding affinity estimation as a regression problem

\triangleright Regression:

- Regression: predicting the value of a continuous (dependent) variable from the values of other (independent) variables.
- ΔG is the dependent variable
- Many types of regressors: least squares, regularized least squares, k nearest neighbours, regression trees, multivariate adaptive splines, ...
\triangleright Adequate variables: two classes of methods
- Large collections of parameters coding distances, biochemical properties (H-bonds, properties of a.a.), conservation of a.a., etc. NB: requires a close monitoring to avoid overfitting.
- A small number of them: more precise encoding of enthalpy and entropy related quantities.
\triangleright Overfitting and sparsity
- Variable selection and regularization via the LASSO
- Sparse model enumeration + cross validation

Solvent Accessible Models: the birth

"The successful elucidation of the structure of a protein by single-crystal diffraction procedures provides a list of atomic co-ordinates whose reliability will vary in different parts of the molecule."
"The topology of the surface of a protein is intimately related to its function; parts of the surface are directly involved in interactions with other molecules; the solvent- protein interface is almost certainly related to the structure of the native molecule; and the chemical reactivity of the various functional groups will depend on their relation to this interface."

\triangleright Ref: Lee and Richards, JMB, 3 (55), 1971
\triangleright Ref: M.L. Connolly, J. Appl. Crystallography, 1983
\triangleright Ref: Akkiraju and Edelsbrunner, Discrete Appl. Math., 1996

Solvent Accessible Models: the rise

From Chotia, Structural invariants in protein folding:
"An analysis of 15 protein structures indicates: First, the loss of accessible surface area by monomeric proteins on folding-proportional to hydrophobic energy-is a simple function of molecular weight; second, the proportion of polar groups forming intramolecular hydrogen bonds is constant; and third, protein interiors are closely packed, each residue occupying the same volume as it does in crystals of amino acids."

From Janin, Principles of protein-protein recognition:
"The formation of the protein-protein interface by the insulin dimer, the trypsin-PTI complex and the $\alpha \beta$ oxyhaemoghbin dimer removes 1,130-1,720 ${ }^{2}$ of accessible surface from contact with water. The residues forming the interface are close packed: each occupies the same volume as it does in crystals of amino acids. These results indicate that hydrophobicity is the major factor stabilising protein-protein association, while complementarity plays a selective role in deciding which proteins may associate."
\triangle Ref: Chothia, Nature 254, 1975
\triangleright Ref: Janin, Nature 256, 1975

Voronoi diagrams in Biology, Geology, Engineering

Our parameters: overview

\triangleright Our variables: proxys for enthalpy and (vibrational) entropy variations upon binding, the latter based on packing properties

\triangleright Or particular interest

- IVW-IPL: inverse volume-weighted internal path length
- NIS ${ }^{\text {charged }}$: fraction of charged residues on the non-interacting surface (NIS)
- (A) Binding patch and labeling of interface atoms The non interface atoms $\left(\mathcal{I}^{c}\right)$ are split into those which retain solvent accessibility (SASA >0, dashed balls), and those which do not (SASA $=0$, dotted balls)
NB: Buried Surface Area or BSA: area of colored spherical caps
- (B) Shelling order of an atom: smallest number of atoms traveled to reach an exposed non interface atom, i.e. an atom belonging to \mathcal{I}^{c} and with SASA > 0 (in grey)
- (C,D) Atomic packing: via Voronoi volumes

Statistical methodology

Model selection
Selection of the best template(s) via the
associated predictive models. See text
for details.

Cross-validation: For each template T_{l}
Cross-validation: $N_{X V}$ repetitions of 5 -fold cross-validation For $\mathrm{j}=1$ to $N_{X V}$

- Randomly split \mathcal{D} in 5 folds $D_{p}, p \in\{1, \ldots, 5\}$
- For $p \in\{1, \ldots, 5\}$
- Build a model M_{p} from template T_{l} and $D \backslash D_{p}$
- Predict D_{p} with M_{p}
- Assemble $\hat{G}_{j}=\left\{\hat{g}_{i j}\right\}_{i=1, \ldots,|\mathcal{D}|}$

Statistics per template T_{l}

- Median of correlations: $C\left[T_{l}, \mathcal{D}\right]$
- Median prediction error per complex: $e_{i}\left[T_{l}, \mathcal{D}\right]$
- Absolute value of the previous: $e_{i}^{a b s}\left[T_{l}, \mathcal{D}\right]$
- Prediction ratio: $p_{\delta}^{\text {error }}$
- p-value for each predictive model

Results on the structure affinity benchmark

\triangleright Predictions vs measurements

\triangleright Hardness vs flexibility

\triangleright State-of-the-art binding affinity estimates on the SAB:

- Whole SAB: K_{d} within one and two OOM in 48% and 79% of cases high resolution (2.5 $)$: K_{d} within one and two OOM in 62% and 89%
- Absence of correlation between prediction hardness and protein flexibility
\triangleright References:
- 1 OOM (order of magnitude) $\Leftrightarrow 1.4 \mathrm{kcal} / \mathrm{mol}$
- $k T$ per molecule, or $R T$ per mole at room temperature: $0.6 \mathrm{kcal} / \mathrm{mol}$
$-\Delta G_{d}$, exp. errors $\sim 0.3 \mathrm{kcal} / \mathrm{mol}$

Proteins and macro-molecular machines

Molecular interactions: function $=$ structure (geometry) + dvnamics

Protein complexes - physical chemistry 101

Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Conclusion

Outlook

Emergence of function from
 Structure - Thermodynamics - Dynamics

Potential Energy Landscape

- large number of local minima
- enthalpic barriers
- entropic barriers

Structure: stable conformations i.e. local minima of the PEL

Dynamics: transitions between meta-stable conformations e.g. Markov state model

Contributions discussed

- (Structure) Sampling potential energy landscapes
- (Thermodynamics) Simplifying potential energy landscapes

Exploring Potential Energy Landscapes:

basin hopping
\triangleright Goal: enumerating low energy local minima
\triangleright Basin-hopping and the basin hopping transform

- Random walk in the space of local minima
- Requires a move set and an acceptance test (cf Metropolis)
and the ability to descend the gradient (quenching)
aka energy minizations
\triangleright Limitation: no built-in mechanism to avoid staying trapped

\triangleright Ref: Li and Scheraga, PNAS, 1987

Exploring Potential Energy Landscapes:

transition based rapidly exploring random trees (T-RRT)
\triangleright Goal: sample basins and transitions
\triangleright Algorithm growing a random tree favoring yet unexplored regions

- node to be extended selection: Voronoi bias
- node extension: interpolation + Metropolis criterion (+temperature tuning)
\triangleright Limitation: oblivious to local minima

\triangleright Ref: LaValle, Kuffner, IEEE ICRA 2000
\triangleright Ref: Jaillet, Corcho, Pérez, Cortés, J. Comp. Chem, 2011

Exploring energy landscapes:

a generic approach yielding BH, T-RRT,...
\triangleright Input: potential energy function with million, billion, trillion of local minima
\triangleright Goal: enumerate low energy + persistent local minima
\triangleright Hybrid algorithm: alternate BH and T-RRT extensions

\triangleright Key ingredients:

- Boost the exploration of yet-unexplored regions - Voronoi bias
- Meaning-full management of distances - due to concentration phenomena
- Favor spatial adaptation - local Metropolis-Hasting tests
\triangleright Ref: Roth, Dreyfus, Robert, Cazals; J. Comp. Chem.; 2015

Protein model BLN69: model and force field

\triangleright Description:

- Three types of Beads: : hydrophobic(B), hydrophylic(L) and neutral(N)
- Configuration space of intermediate dimension: 207
- Challenging: frustrated system
- Exhaustively studied: DB of $\sim 450 k$ critical points (Industry)

$$
\begin{aligned}
V_{B L N}=\frac{1}{2} \cdot K_{r} \sum_{i=1}^{N-1}\left(R_{i, i+1}-R_{e}\right)^{2}+\frac{1}{2} K_{0} \sum_{i=1}^{N-2}\left(\theta_{i}-\theta_{e}\right)^{2} & +\epsilon \cdot \sum_{i=1}^{N-\mathbf{3}}\left[A_{i}\left(1+\cos \phi_{i}\right)+B_{i}\left(1+3 \cos \phi_{i}\right)\right] \\
& +4 \epsilon \sum_{i=1}^{N-2} \sum_{j=i+2}^{N} \cdot C_{i j}\left[\left(\frac{\sigma}{R_{i, j}}\right)^{12}-D_{i j}\left(\frac{\sigma}{R_{i, j}}\right)^{6}\right]
\end{aligned}
$$

\triangleright Disconnectivity graph: describes merge events between basins

\triangleright Ref: Honeycutt, Thirumalai, PNAS, 1990
\triangleright Ref: Oakley, Wales, Johnston, J. Phys. Chem., 2011 ${ }^{\square}$

Exploring energy landscapes: performances of Hybrid

\triangleright Contributions: enhanced exploration of low lying regions of a complex landscape
\triangleright Protocol:

- Contenders: BH, T-RRT, Hybrid for various parameter values b
- Count and assess the local minima reported from two reference databases: BLN69 - min - all: 458,082 minima BLN69-min- E_{-100} : 5932 minima.
- Bounding box \emptyset : all mins

BLN69 - min - all

BLN69 - min $-E_{-100}$

- Median energies

BLN69 - min - all
\triangleright Assessment:

- Combines critical building blocks:
minimization, spatial exploration boosting, nearest neighbor searches
- Bridging the gap to thermodynamics
\triangleright Ref: Oakley et al; J. of Physical Chemistry B; 2011
\triangleright Ref: Roth, Dreyfus, Robert, Cazals; J. Comp. Chem.; 2015

Binary Lennard-Jonnes $L J_{60}$

\triangleright Coarse graining the system:

\triangleright Using the distribution of barriers' heights:

\triangleright Ref: Carr, Mazauric, Cazals, Wales; J. Chem. Phys.; 2016

Proteins and macro-molecular machines

Molecular interactions: function $=$ structure (geometry) + dynamics

Protein complexes - physical chemistry 101

Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Conclusion

Outlook

Learning vs ab-initio approaches: different philosophy?

\triangleright No since the development of force fields involves:

- tuning the parameters so as to match experimental data using (small) organic molecules
NB: identical methods: optimization, cross-validation, Bayesian models
- extrapolating to bio-molecules

The Journal of Physical Chemistry Letters
Table 1. Comparison of Water Model Performance at $298.15 \mathrm{~K}, 1.0 \mathrm{~atm}^{\boldsymbol{a}}$

property	expt.	TIP3P	SPC/E	TIP4P	TIP4P-Ew	TIP4P/2005	TIP3P-FB (this work)	TIP4P-FB (this work)	iAMOEBA
$\rho / \mathrm{g} \mathrm{~cm}^{-3}$	0.997	0.98	0.994	0.992	0.995	0.993	0.995	0.996	0.997
$\Delta H_{r \text { re }} / \mathrm{kcal} \mathrm{mol}^{-1}$	10.52	10.05	10.43	9.90	10.58	10.93	10.71	10.80	10.94
$a / 10^{-4} \mathrm{~K}^{-1}$	2.56	9.2	5.0	4.4	3.2	2.8	4.1 (1)	2.5 (1)	2.5 (1)
$\kappa_{\mathrm{T}} / 10^{-6} \mathrm{bar}^{-1}$	43.3	57.4	46.1	60	48	46	44.5 (3)	45.2 (2)	+1.1 (4)
$C_{\text {r }} / \mathrm{call} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	18.0	18.74	18.3	18.9	19.2	19.0	19.1 (1)	19.0 (1)	18.5 (2)
$e(0)$	78.5	94	68	53	62	58	81.3 (9)	77.3 (4)	80.7 (11)
Do $110^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$	2.29	6.05	2.97	4.05	2.83	2.59	2.28 (2)	2.21 (2)	2.54 (2)
n / mFa s	0.896	0.321	0.729	0.494	072	0.855	0.91 (2)	0.94 (3)	0.85 (2)
$\sigma / \mathrm{mJ} \mathrm{m}^{-2}$	71.8	52	63	59	65	69	64 (1)	70 (1)	69 (1)
TMD (${ }^{\circ} \mathrm{C}$)	+4	-91	-36	-20	+1	+5	-12	+4 (1)	+4 (1)

${ }^{\text {a }}$ Properties listed are density ρ, heat of vaporization $\Delta H_{\text {vap }}$, thermal expansion cocfficient α, isothermal compressibility κ_{T}, isobaric heat capacity C_{T} static dielectric constant $\varepsilon(0)$, self-diffusion coefficient D_{0}, shear viscosity η, surface tension σ, and temperature of maximum density TMD. The polarizable and relatively complex IAMOEBA model (right column) is included for comparison because it was parameterized using ForceBalance and a similar data set.
\triangleright Ref: Pande et al, The J. Phys. Chem. letters, 5 (11), 2014

What are we critically missing

 to enter the era of atomic level engineering?\triangleright Fundamental insights into equilibrium thermodynamics require:

- potential energy: enhanced exploration algorithms
akin to shape / model learning
- free energy: enhanced multicanonical sampling algorithms
akin to high dimensional volume calculations
- dynamics: multi-scale Markov state models
\triangleright Countless breakthroughs in terms of applications:
- biology: understanding processes; understanding evolution coding sequences ~ 80 millions in UniProt/TrEMBL structures: 125,000 in the Protein Data Bank
- medicine: immunology, cancer, neurosciences,...
- material sciences
- synthetic biology
\triangleright Ref: UniProt/Trembl: http://www.ebi.ac.uk/uniprot/TrEMBLstats
DRef: PDB: http://www.rcsb.org/pdb/static.do?p=general_information/pdb_
statistics/index.html

Proteins and macro-molecular machines

Molecular interactions: function $=$ structure (geometry) + dynamics

Protein complexes - physical chemistry 101

Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Conclusion

Outlook

Hall of fame

\triangleright More than 20 structural biology-related Nobel Prizes in 50 years:

- J. Kendrew and M. Perutz, chemistry 1962: for their studies of the structures of globular proteins
- F. Crick, J. Watson and M. Wilkins, medecine 1962: for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material
- C. Anfinsen, chemistry 1972: for his work on ribonuclease, especially concerning the connection between the amino acid sequence and the biologically active conformation
- K. Wutricht and J. Fenn, chemistry 2002: for the development of methods for identification and structure analyses of biological macromolecules
- R. Kornberg, chemistry 2006: for his studies of the molecular basis of eukaryotic transcription
- V. Ramakrishnan, T. Steitz, A. Yonath, chemistry 2009: for studies of the structure and function of the ribosome
- M. Karplus, M. Levitt, A. Warshell, chemistry 2013: for the development of multiscale models for complex chemical systems

Methods: molecular simulation

The Nobel Prize in Chemistry 2013
Martin Karplus, Michael Levitt, Arieh Warshel

The Nobel Prize in Chemistry 2013

- Harvard University Martin Karplus

Photo: © S. Fisch
Michael Levitt

Photo: Wikimedia Commons
Arieh Warshel

The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus, Michael Levitt and Arieh Warshel "for the development of multiscale models for complex chemical systems".

Connexions between my talk and Prof. Boissonnat's course

C1: Modéles géométriques discrets
\rightarrow Voronoi models in various guises
C2: La puissance de l'aléa
\rightarrow Randomized constructions, Monte Carlo algorithms
C3: Le calcul géométrique
\rightarrow Robust geometric predicates and constructions
The Computational Geometry Algorithms Library - code and spirit!
C4. Génération de maillages
\rightarrow The Poisson-Boltzmann equation
C5: Courbes et surfaces
\rightarrow Surface / shape reconstruction
\rightarrow Convergence of regressors
C6: Espaces de configurations
\rightarrow Conformational spaces: exploration, planning
C7. Structures de données gééométriques
\rightarrow Geometric approximation theory, geometric optimization
C8: Analyse géeométrique et topologique des données
\rightarrow Topological persistence, geometric/topological data analysis

References

F. Cazals, H. Kanhere, and S. Loriot. Computing the volume of union of balls: a certified algorithm. ACM Transactions on Mathematical Software, 2011.
F. Cazals, F. Proust, R. Bahadur, and J. Janin. Revisiting the Voronoi description of protein-protein interfaces. Protein Science, 15(9), 2006.
S. Marillet, M-P. Lefranc, P. Boudinot, and F. Cazals. Dissecting interfaces of antibody - antigen complexes. . Frontiers in immunology, 34(8), 2017.
S. Marillet, P. Boudinot, and F. Cazals. High resolution crystal structures leverage protein binding affinity predictions. Proteins: structure, function, and bioinformatics, 1(84), 2015.
F. Cazals, T. Dreyfus, D. Mazauric, A. Roth, and C.H. Robert. Conformational ensembles and sampled energy landscapes: Analysis and comparison. J. of Computational Chemistry, 36(16), 2015.

A. Roth, T. Dreyfus, C.H. Robert, and F. Cazals. Hybridizing rapidly growing random trees . . . improved exploration of energy landscapes. J. of Computational Chemistry, 37(8), 2016.

J. Carr, D. Mazauric, F. Cazals, and D. J. Wales. Energy landscapes and persistent minima. The Journal of Chemical Physics, 144(5), 2016.
F. Cazals and D. Mazauric. Optimal transportation problems with connectivity constraints. Inria Research Report 8991, 2016.

F. Cazals and T. Dreyfus. The Structural Bioinformatics Library: modeling in biomolecular science and beyond. Bioinformatics, 1-8, 2016.

Acknowledgments

- Former Inria director and mentor
- Gilles Kahn (\dagger)
- Colleagues and students
- Jean-Daniel Boissonnat
- Joël Janin
- Sylvain Pion (software engineering), Dorian Mazauric (algorithms)
- Charles Robert (biophysics), Pierre Boudinot (immunology), Félix Rey (virology)
- PhD students: Sébastien Loriot, Tom Dreyfus, Andrea Roth, Simon Marillet, Augustin Chevallier, Romain Tetley
- Inria ... Algorithms-Biology-Structure is already 10 years old

