
Geometric algorithms for classification and
retrieval in high dimension

Sanjoy Dasgupta

University of California, San Diego

Retrieval and classification

X = space of data items

• images

• documents

• speech recordings

• medical records

• · · ·

Retrieval:

• Given: collection of items x1, . . . , xn ∈ X
• Later: for query x ∈ X , return closest match(es) amongst the xi

• Algorithmic question: how to do this quickly?

Classification:

• Given: collection of labeled items (x1, y1), . . . , (xn, yn) ∈ X × Y
• Learn a classification rule f : X → Y
• Later: for query x ∈ X , predict label f (x)

• Statistical question: how much data is needed to find a good rule?

Retrieval and classification

X = space of data items

• images

• documents

• speech recordings

• medical records

• · · ·

Retrieval:

• Given: collection of items x1, . . . , xn ∈ X
• Later: for query x ∈ X , return closest match(es) amongst the xi
• Algorithmic question: how to do this quickly?

Classification:

• Given: collection of labeled items (x1, y1), . . . , (xn, yn) ∈ X × Y
• Learn a classification rule f : X → Y
• Later: for query x ∈ X , predict label f (x)

• Statistical question: how much data is needed to find a good rule?

Retrieval and classification

X = space of data items

• images

• documents

• speech recordings

• medical records

• · · ·

Retrieval:

• Given: collection of items x1, . . . , xn ∈ X
• Later: for query x ∈ X , return closest match(es) amongst the xi
• Algorithmic question: how to do this quickly?

Classification:

• Given: collection of labeled items (x1, y1), . . . , (xn, yn) ∈ X × Y
• Learn a classification rule f : X → Y
• Later: for query x ∈ X , predict label f (x)

• Statistical question: how much data is needed to find a good rule?

Retrieval and classification

X = space of data items

• images

• documents

• speech recordings

• medical records

• · · ·

Retrieval:

• Given: collection of items x1, . . . , xn ∈ X
• Later: for query x ∈ X , return closest match(es) amongst the xi
• Algorithmic question: how to do this quickly?

Classification:

• Given: collection of labeled items (x1, y1), . . . , (xn, yn) ∈ X × Y
• Learn a classification rule f : X → Y
• Later: for query x ∈ X , predict label f (x)

• Statistical question: how much data is needed to find a good rule?

Dimension

E.g. Data on heart patients leaving a hospital:

(age,weight, temp, bp1, bp2, . . .)

If d features, each data point is a vector in Rd .

Problem:

• the algorithmic complexity of retrieval and

• the statistical complexity of nonparametric classification

grow very rapidly with d .

One way to conceptualize and manage this:

• Actual degrees of freedom are often much smaller than the
apparent dimension d

• Formalize a notion of intrinsic dimension

• Develop methods for retrieval and classification whose complexity
scales with the intrinsic dimension, not with d

Dimension

E.g. Data on heart patients leaving a hospital:

(age,weight, temp, bp1, bp2, . . .)

If d features, each data point is a vector in Rd .

Problem:

• the algorithmic complexity of retrieval and

• the statistical complexity of nonparametric classification

grow very rapidly with d .

One way to conceptualize and manage this:

• Actual degrees of freedom are often much smaller than the
apparent dimension d

• Formalize a notion of intrinsic dimension

• Develop methods for retrieval and classification whose complexity
scales with the intrinsic dimension, not with d

Dimension

E.g. Data on heart patients leaving a hospital:

(age,weight, temp, bp1, bp2, . . .)

If d features, each data point is a vector in Rd .

Problem:

• the algorithmic complexity of retrieval and

• the statistical complexity of nonparametric classification

grow very rapidly with d .

One way to conceptualize and manage this:

• Actual degrees of freedom are often much smaller than the
apparent dimension d

• Formalize a notion of intrinsic dimension

• Develop methods for retrieval and classification whose complexity
scales with the intrinsic dimension, not with d

Dimension

E.g. Data on heart patients leaving a hospital:

(age,weight, temp, bp1, bp2, . . .)

If d features, each data point is a vector in Rd .

Problem:

• the algorithmic complexity of retrieval and

• the statistical complexity of nonparametric classification

grow very rapidly with d .

One way to conceptualize and manage this:

• Actual degrees of freedom are often much smaller than the
apparent dimension d

• Formalize a notion of intrinsic dimension

• Develop methods for retrieval and classification whose complexity
scales with the intrinsic dimension, not with d

Intrinsic dimension do � apparent dimension d

Classification error depends on d Classification error depends on do

The same method yields state-of-the-art nearest neighbor search.

Intrinsic dimension do � apparent dimension d

Classification error depends on d

Classification error depends on do

The same method yields state-of-the-art nearest neighbor search.

Intrinsic dimension do � apparent dimension d

Classification error depends on d Classification error depends on do

The same method yields state-of-the-art nearest neighbor search.

Intrinsic dimension do � apparent dimension d

Classification error depends on d Classification error depends on do

The same method yields state-of-the-art nearest neighbor search.

Outline

1 Intrinsic dimension

2 Classification

3 Retrieval

Degrees of freedom

Common representation of speech:

• Take overlapping windows of the speech signal

• Apply many filters within each window

• More filters ⇒ higher dimensional

But the speech has been produced by a physical system (vocal tract)
with a fixed number of degrees of freedom.

Degrees of freedom

Common representation of speech:

• Take overlapping windows of the speech signal

• Apply many filters within each window

• More filters ⇒ higher dimensional

But the speech has been produced by a physical system (vocal tract)
with a fixed number of degrees of freedom.

Low dimensional manifolds

Manifold learning: handling data in a high-dimensional space Rd that
lie close to a d-dimensional manifold, for do � d

• Speech example

• Motion capture
M markers on a human body
yields data in R3M

Typical approach: approximately
identify the manifold and use this
to reduce dimension

Low dimensional manifolds

Example 1: Motion capture

N markers on a human body yields data in R3N

Example 2: Speech signals

Representation can be made arbitrarily high
dimensional by applying more filters to each
window of the time series

Often data that appears to be high-dimensional in fact lies
close to a low-dimensional manifold.

This area of research: “Manifold learning”

Low dimensional manifolds

Manifold learning: handling data in a high-dimensional space Rd that
lie close to a d-dimensional manifold, for do � d

• Speech example

• Motion capture
M markers on a human body
yields data in R3M

Typical approach: approximately
identify the manifold and use this
to reduce dimension

Low dimensional manifolds

Example 1: Motion capture

N markers on a human body yields data in R3N

Example 2: Speech signals

Representation can be made arbitrarily high
dimensional by applying more filters to each
window of the time series

Often data that appears to be high-dimensional in fact lies
close to a low-dimensional manifold.

This area of research: “Manifold learning”

Low dimensional manifolds

Manifold learning: handling data in a high-dimensional space Rd that
lie close to a d-dimensional manifold, for do � d

• Speech example

• Motion capture
M markers on a human body
yields data in R3M

Typical approach: approximately
identify the manifold and use this
to reduce dimension

Low dimensional manifolds

Example 1: Motion capture

N markers on a human body yields data in R3N

Example 2: Speech signals

Representation can be made arbitrarily high
dimensional by applying more filters to each
window of the time series

Often data that appears to be high-dimensional in fact lies
close to a low-dimensional manifold.

This area of research: “Manifold learning”

Another example of low intrinsic dimension

Bag-of-words document model

 It was the best of times, it was the
worst of times, it was the age of
wisdom, it was the age of foolishness,
it was the epoch of belief, it was the
epoch of incredulity, it was the
season of Light, it was the season of
Darkness, it was the spring of hope,
it was the winter of despair, we had
everything before us, we had nothing
before us, we were all going direct to
Heaven, we were all going direct the
other way – in short, the period was
so far like the present period, that
some of its noisiest authorities
insisted on its being received, for
good or for evil, in the superlative
degree of comparison only.

despair

evil

happiness

foolishness1

1

0

2

• Fix a vocabulary of size d

• A document is represented by a d-dimensional vector indicating, for
each word, whether it appears (or how often)

Average number of nonzero entries in these vectors is do � d .

Unifying notion of intrinsic dimension?

There are several widely-occurring types of low intrinsic dimension.

Can we:

• Find a broad notion of dimensionality that captures at least a few of
these?

• Develop methods for classification and retrieval whose complexity
depends only on this refined notion rather than on the superficial
apparent dimension?

Doubling dimension

Set S ⊂ Rd has doubling dimension do if for any (Euclidean) ball B, the
subset S ∩ B can be covered by 2do balls of half the radius [Assouad,
Gupta-Krauthgamer-Lee].

1 Example: S = line has doubling dimension 1.

2 A k-dimensional flat has doubling dimension cok for some absolute
constant co .

3 If a k-dimensional Riemannian submanifold of Rd has “condition
number” 1/τ , then its neighborhoods of radius τ have doubling
dimension O(k).

4 If points in S ⊂ Rd have ≤ k nonzero coordinates, then S has
doubling dimension ≤ cok + k log(d/k).

5 If S has doubling dimension do , then so does any subset of S .

Doubling dimension

Set S ⊂ Rd has doubling dimension do if for any (Euclidean) ball B, the
subset S ∩ B can be covered by 2do balls of half the radius [Assouad,
Gupta-Krauthgamer-Lee].

1 Example: S = line has doubling dimension 1.

Dimension notion #1: doubling dimension

Set S ½ RD has doubling dimension· d if: for any ball B,
subset S Å B can be covered by 2d balls of half the
radius.

S = line
Doubling dimension = 1

S = k-dimensional affine subspace
Doubling dimension = O(k)

S = set of N points
Doubling dimension · log N

B S = k-dim submanifold of RD

with finite condition number
Doubling dimension = O(k) in small
enough neighborhoods

S = points in RD with at most
k nonzero coordinates
Doubling dimension = O(k log D)

2 A k-dimensional flat has doubling dimension cok for some absolute
constant co .

3 If a k-dimensional Riemannian submanifold of Rd has “condition
number” 1/τ , then its neighborhoods of radius τ have doubling
dimension O(k).

4 If points in S ⊂ Rd have ≤ k nonzero coordinates, then S has
doubling dimension ≤ cok + k log(d/k).

5 If S has doubling dimension do , then so does any subset of S .

Doubling dimension

Set S ⊂ Rd has doubling dimension do if for any (Euclidean) ball B, the
subset S ∩ B can be covered by 2do balls of half the radius [Assouad,
Gupta-Krauthgamer-Lee].

1 Example: S = line has doubling dimension 1.

Dimension notion #1: doubling dimension

Set S ½ RD has doubling dimension· d if: for any ball B,
subset S Å B can be covered by 2d balls of half the
radius.

S = line
Doubling dimension = 1

S = k-dimensional affine subspace
Doubling dimension = O(k)

S = set of N points
Doubling dimension · log N

B S = k-dim submanifold of RD

with finite condition number
Doubling dimension = O(k) in small
enough neighborhoods

S = points in RD with at most
k nonzero coordinates
Doubling dimension = O(k log D)

2 A k-dimensional flat has doubling dimension cok for some absolute
constant co .

3 If a k-dimensional Riemannian submanifold of Rd has “condition
number” 1/τ , then its neighborhoods of radius τ have doubling
dimension O(k).

4 If points in S ⊂ Rd have ≤ k nonzero coordinates, then S has
doubling dimension ≤ cok + k log(d/k).

5 If S has doubling dimension do , then so does any subset of S .

Doubling dimension

Set S ⊂ Rd has doubling dimension do if for any (Euclidean) ball B, the
subset S ∩ B can be covered by 2do balls of half the radius [Assouad,
Gupta-Krauthgamer-Lee].

1 Example: S = line has doubling dimension 1.

Dimension notion #1: doubling dimension

Set S ½ RD has doubling dimension· d if: for any ball B,
subset S Å B can be covered by 2d balls of half the
radius.

S = line
Doubling dimension = 1

S = k-dimensional affine subspace
Doubling dimension = O(k)

S = set of N points
Doubling dimension · log N

B S = k-dim submanifold of RD

with finite condition number
Doubling dimension = O(k) in small
enough neighborhoods

S = points in RD with at most
k nonzero coordinates
Doubling dimension = O(k log D)

2 A k-dimensional flat has doubling dimension cok for some absolute
constant co .

3 If a k-dimensional Riemannian submanifold of Rd has “condition
number” 1/τ , then its neighborhoods of radius τ have doubling
dimension O(k).

4 If points in S ⊂ Rd have ≤ k nonzero coordinates, then S has
doubling dimension ≤ cok + k log(d/k).

5 If S has doubling dimension do , then so does any subset of S .

Doubling dimension

Set S ⊂ Rd has doubling dimension do if for any (Euclidean) ball B, the
subset S ∩ B can be covered by 2do balls of half the radius [Assouad,
Gupta-Krauthgamer-Lee].

1 Example: S = line has doubling dimension 1.

Dimension notion #1: doubling dimension

Set S ½ RD has doubling dimension· d if: for any ball B,
subset S Å B can be covered by 2d balls of half the
radius.

S = line
Doubling dimension = 1

S = k-dimensional affine subspace
Doubling dimension = O(k)

S = set of N points
Doubling dimension · log N

B S = k-dim submanifold of RD

with finite condition number
Doubling dimension = O(k) in small
enough neighborhoods

S = points in RD with at most
k nonzero coordinates
Doubling dimension = O(k log D)

2 A k-dimensional flat has doubling dimension cok for some absolute
constant co .

3 If a k-dimensional Riemannian submanifold of Rd has “condition
number” 1/τ , then its neighborhoods of radius τ have doubling
dimension O(k).

4 If points in S ⊂ Rd have ≤ k nonzero coordinates, then S has
doubling dimension ≤ cok + k log(d/k).

5 If S has doubling dimension do , then so does any subset of S .

Doubling dimension

Set S ⊂ Rd has doubling dimension do if for any (Euclidean) ball B, the
subset S ∩ B can be covered by 2do balls of half the radius [Assouad,
Gupta-Krauthgamer-Lee].

1 Example: S = line has doubling dimension 1.

Dimension notion #1: doubling dimension

Set S ½ RD has doubling dimension· d if: for any ball B,
subset S Å B can be covered by 2d balls of half the
radius.

S = line
Doubling dimension = 1

S = k-dimensional affine subspace
Doubling dimension = O(k)

S = set of N points
Doubling dimension · log N

B S = k-dim submanifold of RD

with finite condition number
Doubling dimension = O(k) in small
enough neighborhoods

S = points in RD with at most
k nonzero coordinates
Doubling dimension = O(k log D)

2 A k-dimensional flat has doubling dimension cok for some absolute
constant co .

3 If a k-dimensional Riemannian submanifold of Rd has “condition
number” 1/τ , then its neighborhoods of radius τ have doubling
dimension O(k).

4 If points in S ⊂ Rd have ≤ k nonzero coordinates, then S has
doubling dimension ≤ cok + k log(d/k).

5 If S has doubling dimension do , then so does any subset of S .

Outline

1 Intrinsic dimension

2 Classification

3 Retrieval

Nonparametric classification

Nonparametric methods can fit any function.

+

-

+
+

+

+

+

+

-

-
- -

-
-

-

+

+
+

+

-

+
+

+

+

+

+

-

-
- -

-
-

-

+

+
+

But they suffer a severe curse of dimension.

Consider random pair (X ,Y), where X ∈ Rd and Y ∈ {0, 1} is a label.

• Want to infer f (x) = E[Y |X = x].

• Let fn be an estimator based on n data points. It is common to
judge it by its squared loss E(fn(X)− f (X))2.

• Stone 1982: Loss ≥ n−2p/(2p+d), where p captures smoothness of f .

Nonparametric classification

Nonparametric methods can fit any function.

+

-

+
+

+

+

+

+

-

-
- -

-
-

-

+

+
+

+

-

+
+

+

+

+

+

-

-
- -

-
-

-

+

+
+

But they suffer a severe curse of dimension.

Consider random pair (X ,Y), where X ∈ Rd and Y ∈ {0, 1} is a label.

• Want to infer f (x) = E[Y |X = x].

• Let fn be an estimator based on n data points. It is common to
judge it by its squared loss E(fn(X)− f (X))2.

• Stone 1982: Loss ≥ n−2p/(2p+d), where p captures smoothness of f .

Nonparametric classification

Nonparametric methods can fit any function.

+

-

+
+

+

+

+

+

-

-
- -

-
-

-

+

+
+

+

-

+
+

+

+

+

+

-

-
- -

-
-

-

+

+
+

But they suffer a severe curse of dimension.

Consider random pair (X ,Y), where X ∈ Rd and Y ∈ {0, 1} is a label.

• Want to infer f (x) = E[Y |X = x].

• Let fn be an estimator based on n data points. It is common to
judge it by its squared loss E(fn(X)− f (X))2.

• Stone 1982: Loss ≥ n−2p/(2p+d), where p captures smoothness of f .

Spatial partitioning for nonparametric estimation

e.g. the k-d tree: To split a cell with points S :

• Choose a coordinate direction

• Split at the median along that
direction

Once the tree is built:

• Fit a simple model (e.g. constant) in
each leaf.

• Answer a query by routing it to a leaf
and applying the leaf’s model.

These estimators are consistent if, as n→∞,

1 the diameter of the leaf cells goes to zero, and

2 the number of samples in each leaf goes to infinity.

Rate of convergence depends on relative speed of these two effects.

Spatial partitioning for nonparametric estimation

e.g. the k-d tree: To split a cell with points S :

• Choose a coordinate direction

• Split at the median along that
direction

Once the tree is built:

• Fit a simple model (e.g. constant) in
each leaf.

• Answer a query by routing it to a leaf
and applying the leaf’s model.

These estimators are consistent if, as n→∞,

1 the diameter of the leaf cells goes to zero, and

2 the number of samples in each leaf goes to infinity.

Rate of convergence depends on relative speed of these two effects.

k-d trees are not adaptive to intrinsic dimension

As one moves down a k-d tree, how rapidly does the cell diameter shrink?

Consider the data set S = ∪di=1{tei : −1 ≤ t ≤ 1}.

Rate of diameter decrease

Consider: X = [Di=1ftei : ¡1 · t · 1g ½RD

Need at least D levels to halve
the diameter

Intrinsic dimension of this set is
d = log D (or perhaps even 1,
depending on your definition)

At least d levels are needed to halve the diameter.

Yet S has doubling dimension just do = 1 + log d .

k-d trees are not adaptive to intrinsic dimension

As one moves down a k-d tree, how rapidly does the cell diameter shrink?

Consider the data set S = ∪di=1{tei : −1 ≤ t ≤ 1}.

Rate of diameter decrease

Consider: X = [Di=1ftei : ¡1 · t · 1g ½RD

Need at least D levels to halve
the diameter

Intrinsic dimension of this set is
d = log D (or perhaps even 1,
depending on your definition)

At least d levels are needed to halve the diameter.

Yet S has doubling dimension just do = 1 + log d .

Random projection trees

A randomized variant of the k-d tree

To split a cell with points S ⊂ Rd :

• Choose a direction v at random from
the unit sphere

• Split at the median along that
direction, perturbed slightly

Theorem: Pick any cell C in the tree. With probability at least 1/2,
every descendant cell C ′ which is more than do log do levels below C has
diam(C ′) ≤ diam(C)/2.

Here, diam(C) is the maximum interpoint distance of data in cell C .

Random projection trees

A randomized variant of the k-d tree

To split a cell with points S ⊂ Rd :

• Choose a direction v at random from
the unit sphere

• Split at the median along that
direction, perturbed slightly

Theorem: Pick any cell C in the tree. With probability at least 1/2,
every descendant cell C ′ which is more than do log do levels below C has
diam(C ′) ≤ diam(C)/2.

Here, diam(C) is the maximum interpoint distance of data in cell C .

Properties of random projection

Pick a random vector U from the unit sphere in Rd . Mapping:

Π(x) = U · x

Almost the same: pick U ∼ N(0, (1/d)Id).

1 Effect of projection on a single point.

Pick any x . As U varies, projection Π(x) has a Gaussian distribution
with mean zero and variance ‖x‖2/d .

Therefore, concentrated in [−‖x‖/
√
d , ‖x‖/

√
d].

2 To extend to sets of points, generally need to take a union bound.

3 Median of projected points.

If S ⊂ B(xo ,∆), then

|median(Π(S))− Π(xo)| ≤ O

(
∆√
d

)
.

Properties of random projection

Pick a random vector U from the unit sphere in Rd . Mapping:

Π(x) = U · x

Almost the same: pick U ∼ N(0, (1/d)Id).

1 Effect of projection on a single point.

Pick any x . As U varies, projection Π(x) has a Gaussian distribution
with mean zero and variance ‖x‖2/d .

Therefore, concentrated in [−‖x‖/
√
d , ‖x‖/

√
d].

2 To extend to sets of points, generally need to take a union bound.

3 Median of projected points.

If S ⊂ B(xo ,∆), then

|median(Π(S))− Π(xo)| ≤ O

(
∆√
d

)
.

Properties of random projection

Pick a random vector U from the unit sphere in Rd . Mapping:

Π(x) = U · x

Almost the same: pick U ∼ N(0, (1/d)Id).

1 Effect of projection on a single point.

Pick any x . As U varies, projection Π(x) has a Gaussian distribution
with mean zero and variance ‖x‖2/d .

Therefore, concentrated in [−‖x‖/
√
d , ‖x‖/

√
d].

2 To extend to sets of points, generally need to take a union bound.

3 Median of projected points.

If S ⊂ B(xo ,∆), then

|median(Π(S))− Π(xo)| ≤ O

(
∆√
d

)
.

Properties of random projection

Pick a random vector U from the unit sphere in Rd . Mapping:

Π(x) = U · x

Almost the same: pick U ∼ N(0, (1/d)Id).

1 Effect of projection on a single point.

Pick any x . As U varies, projection Π(x) has a Gaussian distribution
with mean zero and variance ‖x‖2/d .

Therefore, concentrated in [−‖x‖/
√
d , ‖x‖/

√
d].

2 To extend to sets of points, generally need to take a union bound.

3 Median of projected points.

If S ⊂ B(xo ,∆), then

|median(Π(S))− Π(xo)| ≤ O

(
∆√
d

)
.

Random projection and diameter

For S ⊂ Rd , how does the diameter of Π(S) compare to that of S?

If S is full-dimensional, the
diameter could be unchanged.

Example: effect of RP on diameter

Set S ½ RD; random projection U. How does the diameter of S ¢ U
compare to that of S?

If S is full-dimensional:
diam(S ¢ U) · diam(S).

S

U

bounding
ball of S

U

If S has doubling dimension d:
diam(S ¢ U) · diam(S) . But if S has doubling dimension

do � d , the diameter ought to
shrink.

Example: effect of RP on diameter

Set S ½ RD; random projection U. How does the diameter of S ¢ U
compare to that of S?

If S is full-dimensional:
diam(S ¢ U) · diam(S).

S

U

bounding
ball of S

U

If S has doubling dimension d:
diam(S ¢ U) · diam(S) .

In the latter case, diam(Π(S)) is at most about diam(S) ·
√
do/d .

Random projection and diameter

For S ⊂ Rd , how does the diameter of Π(S) compare to that of S?

If S is full-dimensional, the
diameter could be unchanged.

Example: effect of RP on diameter

Set S ½ RD; random projection U. How does the diameter of S ¢ U
compare to that of S?

If S is full-dimensional:
diam(S ¢ U) · diam(S).

S

U

bounding
ball of S

U

If S has doubling dimension d:
diam(S ¢ U) · diam(S) .

But if S has doubling dimension
do � d , the diameter ought to
shrink.

Example: effect of RP on diameter

Set S ½ RD; random projection U. How does the diameter of S ¢ U
compare to that of S?

If S is full-dimensional:
diam(S ¢ U) · diam(S).

S

U

bounding
ball of S

U

If S has doubling dimension d:
diam(S ¢ U) · diam(S) .

In the latter case, diam(Π(S)) is at most about diam(S) ·
√
do/d .

Random projection and diameter

For S ⊂ Rd , how does the diameter of Π(S) compare to that of S?

If S is full-dimensional, the
diameter could be unchanged.

Example: effect of RP on diameter

Set S ½ RD; random projection U. How does the diameter of S ¢ U
compare to that of S?

If S is full-dimensional:
diam(S ¢ U) · diam(S).

S

U

bounding
ball of S

U

If S has doubling dimension d:
diam(S ¢ U) · diam(S) . But if S has doubling dimension

do � d , the diameter ought to
shrink.

Example: effect of RP on diameter

Set S ½ RD; random projection U. How does the diameter of S ¢ U
compare to that of S?

If S is full-dimensional:
diam(S ¢ U) · diam(S).

S

U

bounding
ball of S

U

If S has doubling dimension d:
diam(S ¢ U) · diam(S) .

In the latter case, diam(Π(S)) is at most about diam(S) ·
√
do/d .

Random projection and diameter

For S ⊂ Rd , how does the diameter of Π(S) compare to that of S?

If S is full-dimensional, the
diameter could be unchanged.

Example: effect of RP on diameter

Set S ½ RD; random projection U. How does the diameter of S ¢ U
compare to that of S?

If S is full-dimensional:
diam(S ¢ U) · diam(S).

S

U

bounding
ball of S

U

If S has doubling dimension d:
diam(S ¢ U) · diam(S) . But if S has doubling dimension

do � d , the diameter ought to
shrink.

Example: effect of RP on diameter

Set S ½ RD; random projection U. How does the diameter of S ¢ U
compare to that of S?

If S is full-dimensional:
diam(S ¢ U) · diam(S).

S

U

bounding
ball of S

U

If S has doubling dimension d:
diam(S ¢ U) · diam(S) .

In the latter case, diam(Π(S)) is at most about diam(S) ·
√
do/d .

Random projection and diameter

Theorem: If S ⊂ Rd has doubling dimension do , then with probability at
least 1− δ, the diameter of Π(S) is at most

4 · diam(S)√
d
·
√

2

(
do + ln

2

δ

)
.

Proof: We’ll prove a weaker version with factor
√

(do log d)/d .

1 WLOG S has diameter 1 and S ⊂ B(0, 1).

2 Cover S by balls of radius
√
do/d . At most (d/do)do/2 balls are

needed.

3 Pick any of these balls. With probability 1− (1/d)do , its center is
projected to a point within distance

√
(do log d)/d of the origin; and

thus the entire projected ball lies in an interval within distance√
(do log d)/d +

√
do/d of the origin.

4 Take a union bound over all the balls.

Proof outline for RP trees

Suppose S ⊂ Rd has doubling dimension do and lies in a ball of radius 1.
We need to show that if an RP tree is built on S , then with constant
probability, every cell O(do log do) levels below is contained in ball of
radius 1/2.

Proof outline

Suppose X ½ RD has doubling dim d and lies in a ball of radius 1.

To show: in the RP tree, d log d levels below, with high probability
every descendant cell is contained in a ball of radius 1/2.

1. Cover X by dd/2 balls Bi of radius 1/d1/2

2. Consider any pair of balls Bi, Bj at
distance ¸ 1/2 - 1/d1/2 apart. We’ll see
that a single random split has constant
probability of cleanly separating them

3. There are at most dd such pairs, so after
d log d splits, every faraway pair of balls
will be separated (whp)… which means
all cells at that level have radius · 1/2

Bi

Bj

Current cell (radius · 1):

1 Cover S by d
do/2
o balls Bi of radius 1/

√
do .

2 Consider any pair of balls Bi ,Bj that are
distance > 1/2− 1/

√
do apart. We’ll see

that a single random split has constant
probability of cleanly separating them.

3 There are at most ddo
o such pairs, so after

O(do log do) splits, with constant
probability every faraway pair of balls will
be separated. Thus all cells at that level
will have radius ≤ 1/2.

The big picture
Big$picture$

Bi$

Bj$

radius1

radius$1/do1/2$

1/d1/2$

(do/d)1/2$

Recall:$random$projec:on$scales$distanceby1/D1/2,$diameter$by$·$(d/D)1/2$

1/d1/2$dist$>$1/2$

U$

Recall that random projection shrinks diameter by
√

do/d and individual

vectors by 1/
√
d .

The big picture
Big$picture,$amended$

Bi$

Bj$

radius1

radius$1/do1/2$
1/d1/2$

(do/d)1/2$

Most$projected$points$(and$thusthemedian)$fall$inacentral$interval$of$size$O(1/D1/2)$$

ce
nt
ra
l$i
nt
er
va
l$

Most projected points (and the median) fall in a central interval of size
1/
√
d .

Outline

1 Intrinsic dimension

2 Classification

3 Retrieval

Nearest neighbor search

Given a data set of n points in Rd , build a data structure for efficiently
answering subsequent nearest neighbor queries q.

• Data structure should take space O(n)

• Query time should be o(n)

Unproven but common conjecture: for data structures of linear size,
query time will be exponential in d .
Bad case: for any 0 < ε < 1,

• Pick 2O(ε2d) points uniformly from the unit sphere in Rd

• With high probability, all interpoint distances are (1± ε)
√

2

Nearest neighbor search

Given a data set of n points in Rd , build a data structure for efficiently
answering subsequent nearest neighbor queries q.

• Data structure should take space O(n)

• Query time should be o(n)

Unproven but common conjecture: for data structures of linear size,
query time will be exponential in d .
Bad case: for any 0 < ε < 1,

• Pick 2O(ε2d) points uniformly from the unit sphere in Rd

• With high probability, all interpoint distances are (1± ε)
√

2

The k-d tree, again

Defeatist search: return NN in query’s leaf node (may not be true NN).

Curse of dimension: chance of returning the true NN tends to drop
dramatically with dimension.

Some variants:

• Better split direction: PCA tree

• Overlapping cells (Maneewongvatana and Mount; Liu et al)

• Random split directions (Liu, Moore, Gray; Muja, Lowe)

The k-d tree, again

Defeatist search: return NN in query’s leaf node (may not be true NN).

Curse of dimension: chance of returning the true NN tends to drop
dramatically with dimension.

Some variants:

• Better split direction: PCA tree

• Overlapping cells (Maneewongvatana and Mount; Liu et al)

• Random split directions (Liu, Moore, Gray; Muja, Lowe)

The k-d tree, again

Defeatist search: return NN in query’s leaf node (may not be true NN).

Curse of dimension: chance of returning the true NN tends to drop
dramatically with dimension.

Some variants:

• Better split direction: PCA tree

• Overlapping cells (Maneewongvatana and Mount; Liu et al)

• Random split directions (Liu, Moore, Gray; Muja, Lowe)

Random projection trees

In each cell of the tree, pick split direction uniformly at random from the
unit sphere in Rd

Perturbed split: after projection, pick β ∈R [1/4, 3/4] and split at the
β-fractile point.

Failure probability

Pick any data set x1, . . . , xn and any query q.

• Let x(1), . . . , x(n) be the ordering of data by distance from q.

• Probability of not returning the NN depends directly on

Φ(q, {x1, . . . , xn}) =
1

n

n∑
i=2

‖q − x(1)‖
‖q − x(i)‖

(This probability is over the randomization in tree construction.)

Random projection of three points

Let q ∈ Rd be the query, x its nearest neighbor and y some other point:

‖q − x‖ < ‖q − y‖.

Bad event: when the data is projected onto a random direction U, point
y falls between q and x .

x

y

q U

What is the probability of this?

This is a 2-d problem, in the plane defined by q, x , y .

• Only care about projection of U on this plane

• Projection of U is a random direction in this plane

Random projection of three points

x

y

q ✓

Probability that U falls in this bad
region is θ/2π.

Lemma
Pick any three points q, x , y ∈ Rd such that ‖q − x‖ < ‖q − y‖. Pick U
uniformly at random from the unit sphere Sd−1 in Rd . Then

Pr(y · U falls between q · U and x · U) ≤ 1

2

‖q − x‖
‖q − y‖ .

(Tight within a constant unless the points are almost-collinear)

Random projection of a set of points

q

x(2)

x(1)

x(3)

Lemma
Pick any x1, . . . , xn and any query q. Pick U ∈R Sd−1 and project all points
onto direction U. Then the expected fraction of the projected xi that fall
between q and x(1) is at most

1

2n

n∑
i=2

‖q − x(1)‖
‖q − x(i)‖

=
1

2
Φ

Proof: Probability that x(i) falls between q and x(1) is at most 1
2

‖q−x(1)‖
‖q−x(i)‖

. Now

use linearity of expectation.

Bad event: this fraction is Ω(1). Happens with probability O(Φ).

Failure probability of NN search

Fix any data points x1, . . . , xn and query q. For m ≤ n, define

Φm(q, {x1, . . . , xn}) =
1

m

m∑
i=2

‖q − x(1)‖
‖q − x(i)‖

Theorem
Suppose an RP tree is built for data set x1, . . . , xn with leaf nodes of size
no . For any query q, the probability that the NN query does not return
x(1) is at most ∑̀

i=0

Φ(3/4)in(q, {x1, . . . , xn})

where ` = log4/3(n/no) is the tree’s depth.

NN search in spaces of bounded doubling dimension

Need to bound

Φm(q, {x1, . . . , xn}) =
1

m

m∑
i=2

‖q − x(1)‖
‖q − x(i)‖

Suppose:

• Pick any n + 1 points in Rd with doubling dimension do

• Randomly pick one of them as q; the rest are x1, . . . , xn

Then EΦm ≤ 1/m1/do .

For constant failure probability, use tree with leaf size no = O(ddo
o), and

query time O(no + log n).

How does doubling dimension help?

Pick any n points in Rd . Pick one of these points, x . At most how many
of the remaining points can have x as its nearest neighbor?

At most cd , for some constant c [Stone].

Can (almost) replace d by the doubling dimension [Clarkson].

How does doubling dimension help?

Pick any n points in Rd . Pick one of these points, x . At most how many
of the remaining points can have x as its nearest neighbor?
At most cd , for some constant c [Stone].

Can (almost) replace d by the doubling dimension [Clarkson].

How does doubling dimension help?

Pick any n points in Rd . Pick one of these points, x . At most how many
of the remaining points can have x as its nearest neighbor?
At most cd , for some constant c [Stone].

Can (almost) replace d by the doubling dimension [Clarkson].

How does doubling dimension help?

Pick any n points in Rd . Pick one of these points, x . At most how many
of the remaining points can have x as its nearest neighbor?
At most cd , for some constant c [Stone].

Can (almost) replace d by the doubling dimension [Clarkson].

Randomized forests

To exploit randomization in the data structure:

• Build multiple RP trees

• Upon query: return the closest among the NN results from each

Experiments by Roos et al:

Fig. 2: Results for k 2 {1, 10, 25, 100} on the MNIST data set.

[10] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
probe lsh: efficient indexing for high-dimensional similarity search,” in
Proceedings of the 33rd international conference on Very large data
bases. VLDB Endowment, 2007, pp. 950–961.

[11] W. Dong, Z. Wang, W. Josephson, M. Charikar, and K. Li, “Modeling
lsh for performance tuning,” in Proceedings of the 17th ACM conference
on Information and knowledge management. ACM, 2008, pp. 669–678.

[12] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt,
“Practical and optimal lsh for angular distance,” in Advances in Neural
Information Processing Systems 28. Curran Associates, Inc., 2015, pp.
1225–1233.

[13] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, “Fast approx-
imate nearest-neighbor search with k-nearest neighbor graph,” in IJCAI
Proceedings-International Joint Conference on Artificial Intelligence,
vol. 22, no. 1, 2011, p. 1312.

[14] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph
construction for generic similarity measures,” in Proceedings of the 20th
international conference on World wide web. ACM, 2011, pp. 577–586.

[15] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable k-
nn graph construction for visual descriptors,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 1106–1113.

[16] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[17] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed

dimensions,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923,
1998.

[18] K. Fukunaga and P. M. Narendra, “A branch and bound algorithm for
computing k-nearest neighbors,” IEEE transactions on computers, vol.
100, no. 7, pp. 750–753, 1975.

[19] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest
neighbor,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 97–104.

[20] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” in SODA, vol. 93, no. 194, 1993, pp.
311–21.

[21] B. Leibe, K. Mikolajczyk, and B. Schiele, “Efficient clustering and
matching for object class recognition.” in BMVC, 2006, pp. 789–798.

[22] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image
descriptor matching,” in Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[23] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, pp. 331–340,
2009.

[24] S. Dasgupta and Y. Freund, “Random projection trees for vector quan-
tization,” IEEE Transactions on Information Theory, vol. 55, no. 7, pp.
3229–3242, 2009.

[25] S. Dasgupta and K. Sinha, “Randomized partition trees for nearest
neighbor search,” Algorithmica, vol. 72, no. 1, pp. 237–263, 2015.

[26] D. Achlioptas, “Database-friendly random projections,” in Proceedings
of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems. ACM, 2001, pp. 274–281.

Randomized forests

To exploit randomization in the data structure:

• Build multiple RP trees

• Upon query: return the closest among the NN results from each

Experiments by Roos et al:

Fig. 2: Results for k 2 {1, 10, 25, 100} on the MNIST data set.

[10] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
probe lsh: efficient indexing for high-dimensional similarity search,” in
Proceedings of the 33rd international conference on Very large data
bases. VLDB Endowment, 2007, pp. 950–961.

[11] W. Dong, Z. Wang, W. Josephson, M. Charikar, and K. Li, “Modeling
lsh for performance tuning,” in Proceedings of the 17th ACM conference
on Information and knowledge management. ACM, 2008, pp. 669–678.

[12] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt,
“Practical and optimal lsh for angular distance,” in Advances in Neural
Information Processing Systems 28. Curran Associates, Inc., 2015, pp.
1225–1233.

[13] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, “Fast approx-
imate nearest-neighbor search with k-nearest neighbor graph,” in IJCAI
Proceedings-International Joint Conference on Artificial Intelligence,
vol. 22, no. 1, 2011, p. 1312.

[14] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph
construction for generic similarity measures,” in Proceedings of the 20th
international conference on World wide web. ACM, 2011, pp. 577–586.

[15] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable k-
nn graph construction for visual descriptors,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 1106–1113.

[16] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[17] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed

dimensions,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923,
1998.

[18] K. Fukunaga and P. M. Narendra, “A branch and bound algorithm for
computing k-nearest neighbors,” IEEE transactions on computers, vol.
100, no. 7, pp. 750–753, 1975.

[19] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest
neighbor,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 97–104.

[20] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” in SODA, vol. 93, no. 194, 1993, pp.
311–21.

[21] B. Leibe, K. Mikolajczyk, and B. Schiele, “Efficient clustering and
matching for object class recognition.” in BMVC, 2006, pp. 789–798.

[22] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image
descriptor matching,” in Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[23] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, pp. 331–340,
2009.

[24] S. Dasgupta and Y. Freund, “Random projection trees for vector quan-
tization,” IEEE Transactions on Information Theory, vol. 55, no. 7, pp.
3229–3242, 2009.

[25] S. Dasgupta and K. Sinha, “Randomized partition trees for nearest
neighbor search,” Algorithmica, vol. 72, no. 1, pp. 237–263, 2015.

[26] D. Achlioptas, “Database-friendly random projections,” in Proceedings
of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems. ACM, 2001, pp. 274–281.

Open problems

1 Working in general metric spaces.
Simple randomized partition trees for metric spaces?

2 More general notions of intrinsic dimension.
Get closer to underlying “degrees of freedom” of input space?

Open problems

1 Working in general metric spaces.
Simple randomized partition trees for metric spaces?

2 More general notions of intrinsic dimension.
Get closer to underlying “degrees of freedom” of input space?

