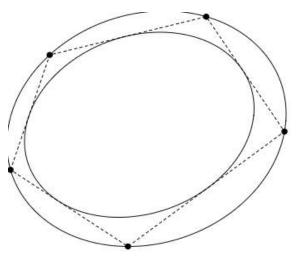
Computational Geometry for Robotics & Big Data



Dan Feldman

Murad Tukan

Robotics & Big Data Lab

Videos from The Robotics and Big Data Lab in the University of Haifa

Big Data

- Volume: huge amount *n* of data points
- Variety: high dimensional *d* space
- Velocity: data arrive in real-time

Need to support:

- Streaming (one pass, logarithmic memory)
- Distributed data (on cloud)
- Simple computations (embarrassingly parallel)
- No assumption on order of points

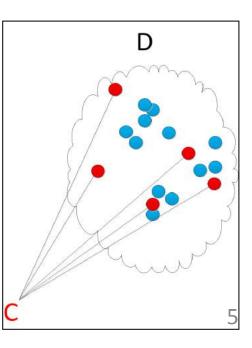
Big Data Computation model

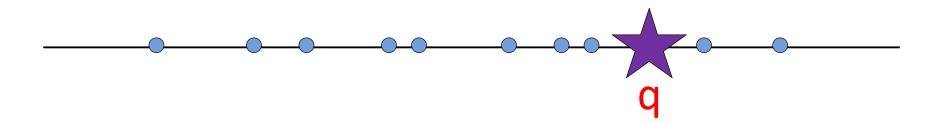
- = Streaming + Parallel computation
- Input: infinite stream of vectors
- *n*= vectors seen so far
- ~log*n* memory
- M processors
- ~log (n)/M insertion time per point (Embarrassingly parallel)

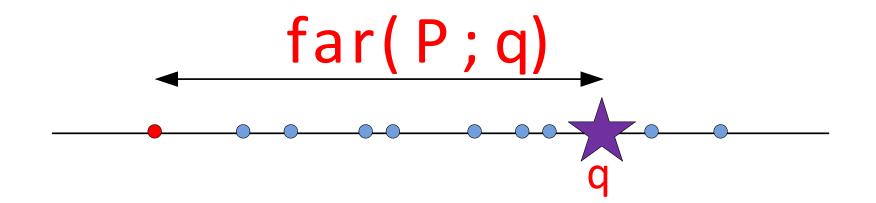
Challenge: Find RIGHT data from Big Data

Given data *D* and Algorithm *A* with *A*(*D*) intractable, can we efficiently reduce *D* to *C* so that *A*(*C*) fast and *A*(*C*)~*A*(*D*)?

Provable guarantees on approximation with respect to the size of C



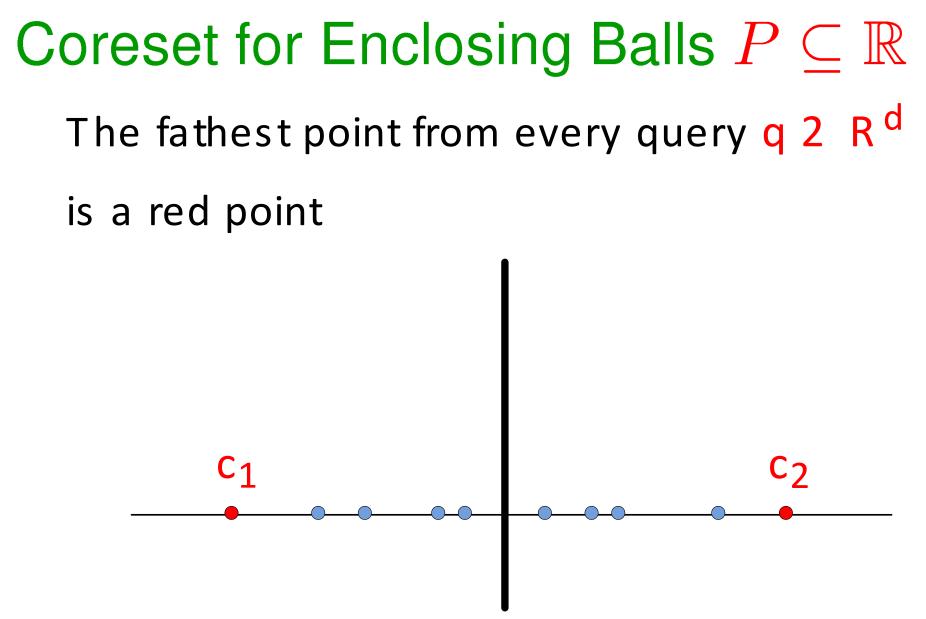




- The fathest point from every query q 2 R
- is a red point

Coreset for Enclosing Balls $P \subseteq \mathbb{R}$ The fathest point from every query q 2 R ^d

is a red point



 $C := f c_1; c_2 g$ is a coreset for P

Simplest coreset definition

Let

- *P* be a set, called *point set*
- *X* be a set, called *query set*
- cost(P,x): maps every query $x \in X$ into a non-negative number

For a given e>0, the set $C \subseteq P$ is a *core-set* if for every $x \in X$ we have

 $cost(P,x) \sim cost(C,x)$

up to $(1\pm\epsilon)$ approximation factor

Coreset Techniques

Graph Theory Sparsifiers Batson, Speilman, Srivastava, ... Computational Geometry Coresets

Har-Peled, Agarwal, Sohler, Chen

Matrix Approximation Volume Sampling Clarkson, Mahoney, Drineas ...

> Combinatorial Geometry ϵ -nets, ϵ -approximations Haussler, Welzl, Alon, Matousek, Sharir,...

Statistics Importance Sampling Srinivasan, Ripley, , ..._

> PAC-Learning *ɛ*-sample

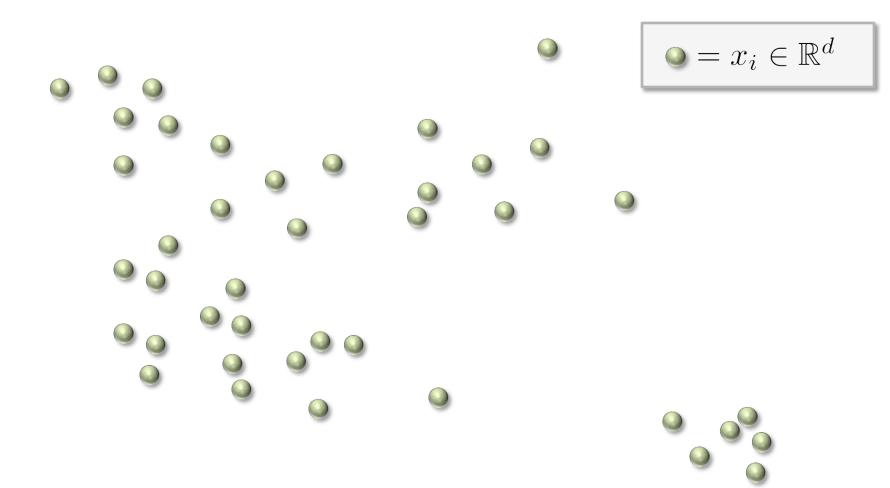
Vapnik, Chervonenkis, Valiant,

Compressed Sensing Sketches Property Testing

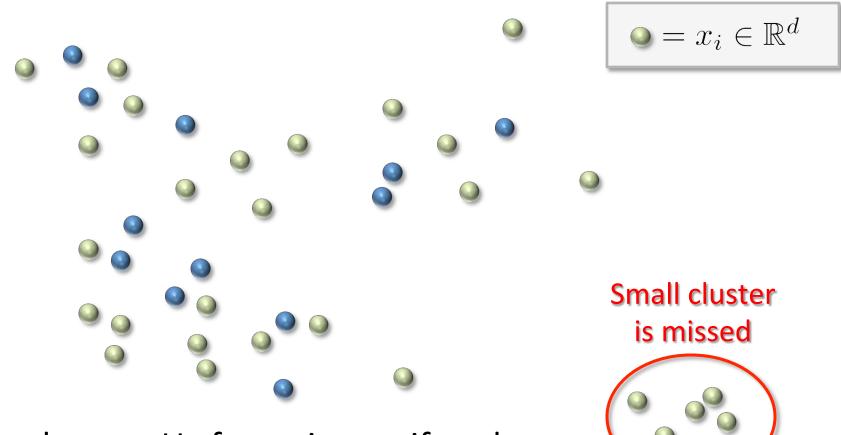
Example Coresets

- Graph Summarization [F, Sedat, Rus, ICML'17]
- Mixture of Gaussians [F, Krause, etc JMLR'17]
- LSA/PCA/SVD [F, Rus, and Volkob, NIPS'16]
- k-Means [F, Barger, SDM'16]
- Non-Negative Matrix Factorization [F, Tassa, KDD15]
- Robots Localization [F, Cindy, Rus, ICRA'15]
- Robots Coverage [F, Gil, Rus, ICRA'13]
- Segmentation [F, Rosman, Rus, Volkob, NIPS'14]
- •
- k-Line Means [F, Fiat, Sharir, FOCS'06]

Naïve Uniform Sampling



Naïve Uniform Sampling



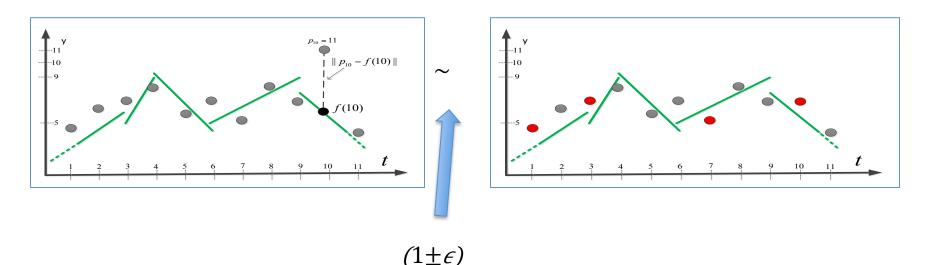
Sample a set U of m points uniformly

← High variance

From Big Data to Small Data

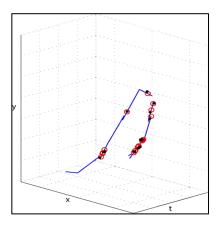
Suppose that we can compute such a corset c of size $1/\epsilon$ for every set P of n points

- in time *n1*3,
- off-line, non-parallel, non-streaming algorithm

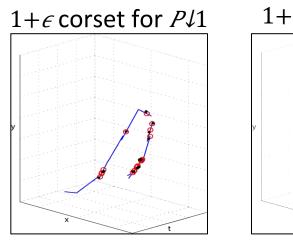


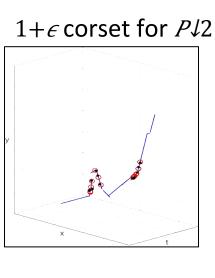
Read the first $2/\epsilon$ streaming points and reduce them into $1/\epsilon$ weighted points in time $(2/\epsilon)^{1/5}$

$1 + \epsilon$ corset for $P \downarrow 1$



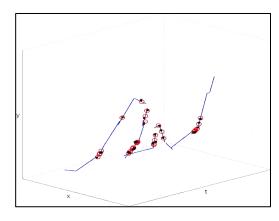
Read the next $2/\epsilon$ streaming point and reduce them into $1/\epsilon$ weighted points in time $(2/\epsilon)^{1/5}$

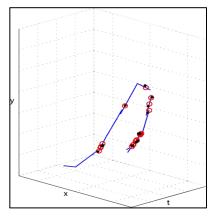


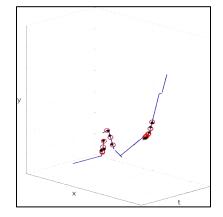


Merge the pair of ϵ -coresets into an ϵ -corset of $2/\epsilon$ weighted points

 $1 + \epsilon$ -corset for $P \downarrow 1 \cup P \downarrow 2$

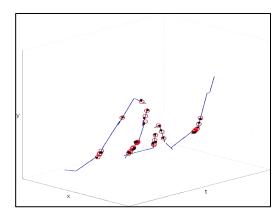


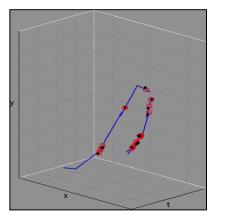


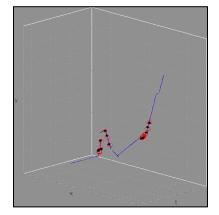


Delete the pair of original coresets from memory

$1 + \epsilon$ -corset for $P \downarrow 1 \cup P \downarrow 2$

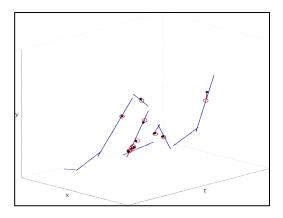


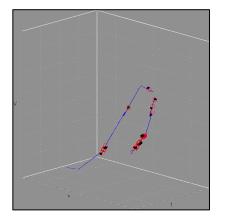


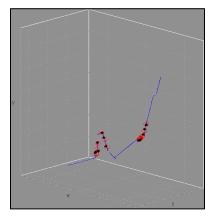


Reduce the $2/\epsilon$ weighted points into $1/\epsilon$ weighted points by constructing their coreset

 $1+\epsilon$ -corset for $1+\epsilon$ -corset for $P\downarrow 1 \cup P\downarrow 2$

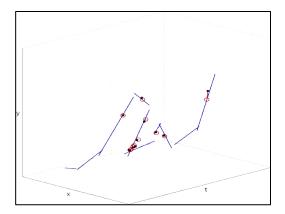




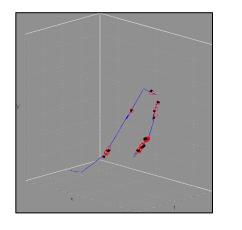


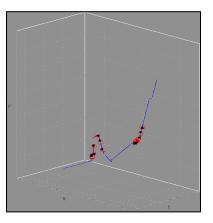
Reduce the $2/\epsilon$ weighted points into $1/\epsilon$ weighted points by constructing their coreset

 $1+\epsilon$ -corset for $1+\epsilon$ -corset for $P\downarrow 1 \cup P\downarrow 2$

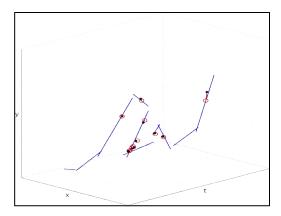


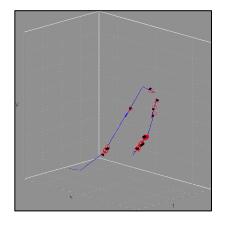
= $(1+\epsilon)$ ¹2 -corset for *P*¹1 \cup *P*¹2

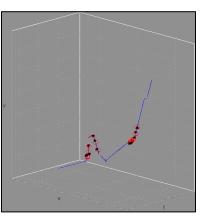




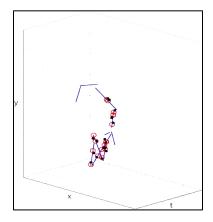
 $(1+\epsilon)$ *1*2 -corset for *Pi*1 \cup *Pi*2



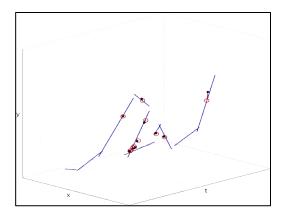




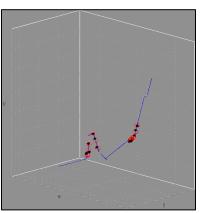
$(1+\epsilon)$ -corset for *P* \downarrow 3



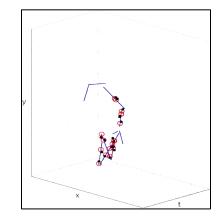
 $(1+\epsilon)$ *î*2 -corset for *Pi*1 \cup *Pi*2

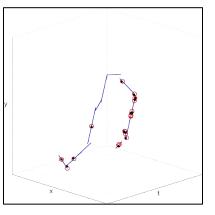




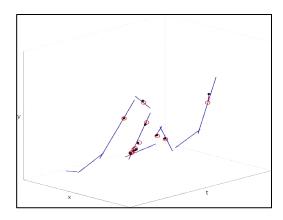


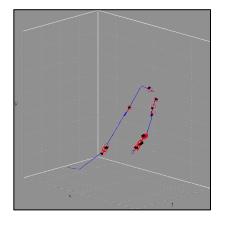
$(1+\epsilon)$ -corset for $P\downarrow 3$ $(1+\epsilon)$ -corset for $P\downarrow 4$

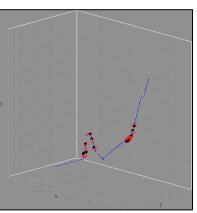




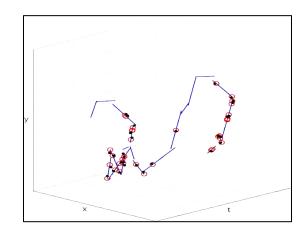
$(1+\epsilon)$ *1*2 -corset for *Pi*1 \cup *Pi*2

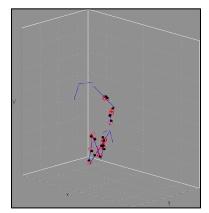


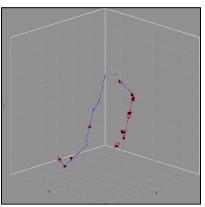




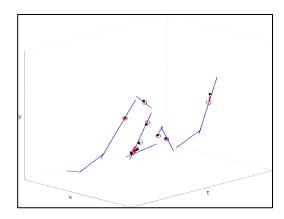
$(1+\epsilon)$ -corset for $P\downarrow3 \cup P\downarrow4$

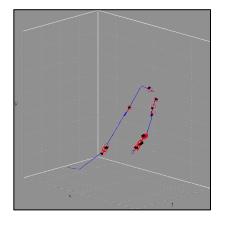


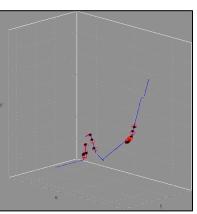




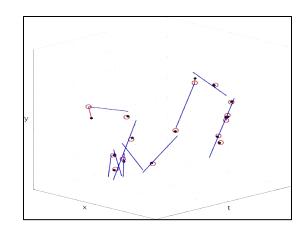
$(1+\epsilon)$ *1*2 -corset for *P4*1 \cup *P4*2

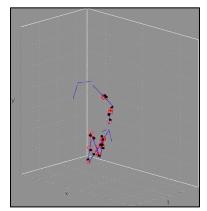


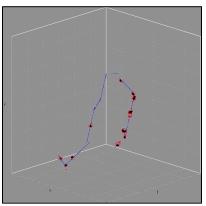


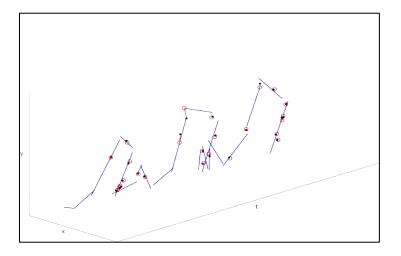


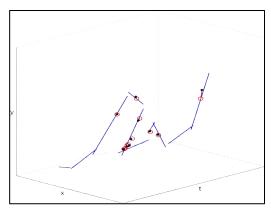
$(1+\epsilon)$ *1*2 -corset for *Pi*3 \cup *Pi*4

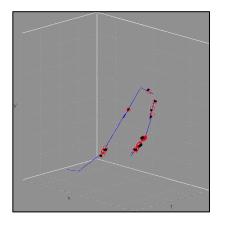


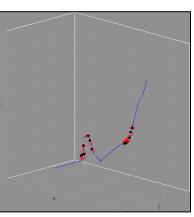


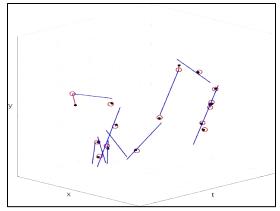


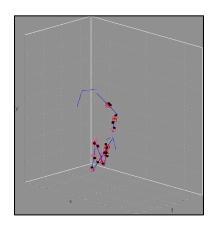


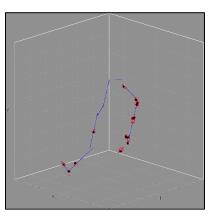






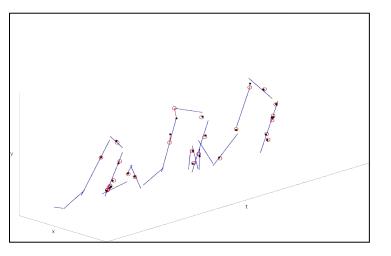


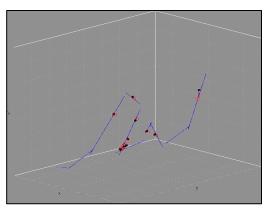


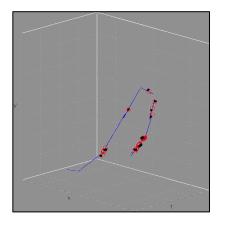


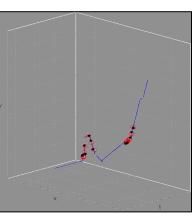
 $(1+\epsilon)$ ¹2 -coreset for

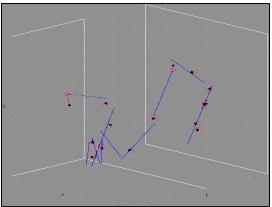
P\$1 U*P*\$2 U*P*\$3 U*P*\$4

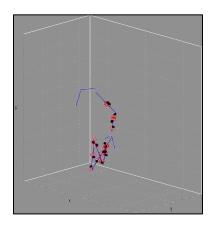


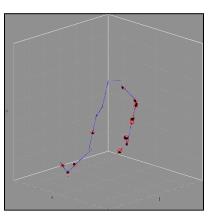






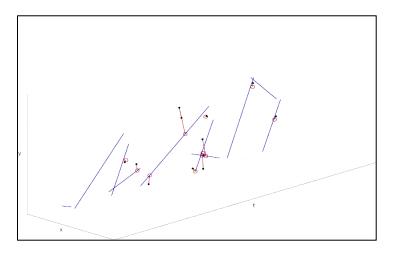


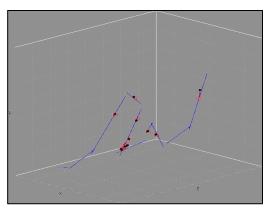


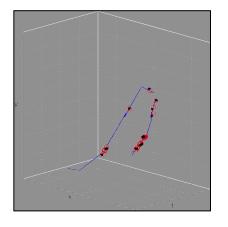


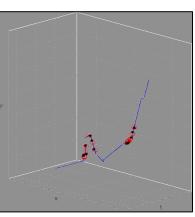
 $(1+\epsilon)$ *1*3 -coreset for

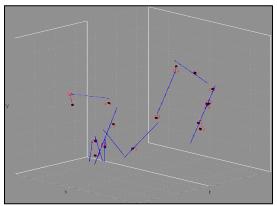
P\$1 U*P*\$2 U*P*\$3 U*P*\$4

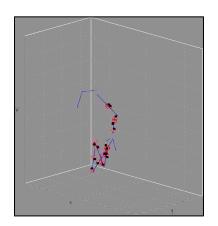


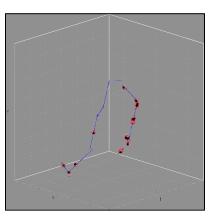


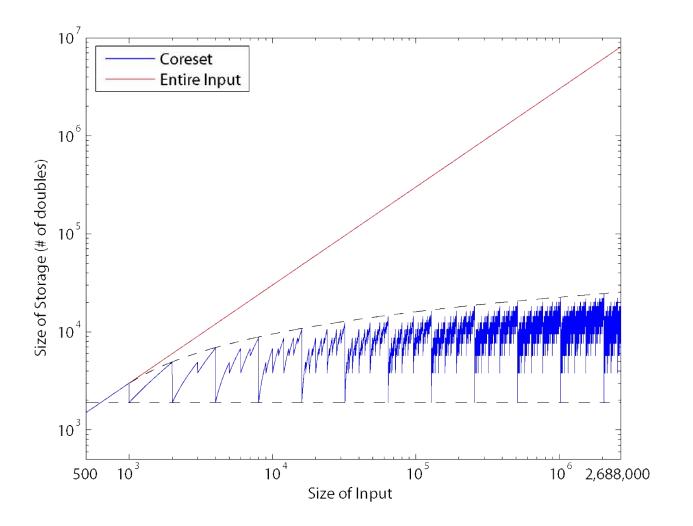




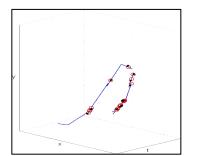


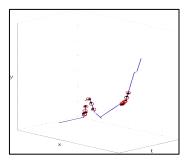


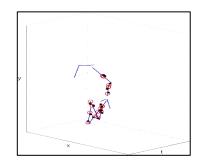


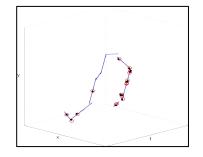


Parallel Computation

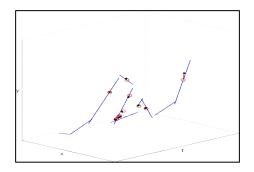


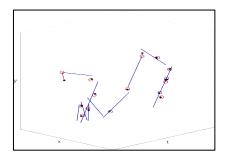


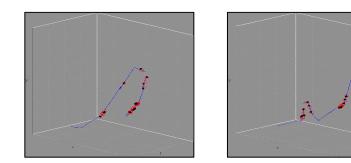


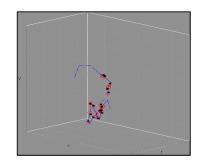


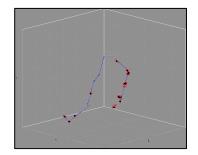
Parallel Computation





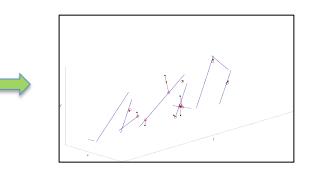


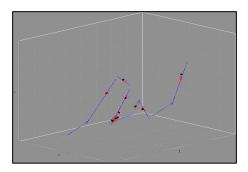


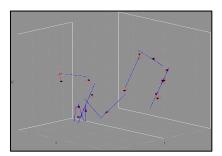


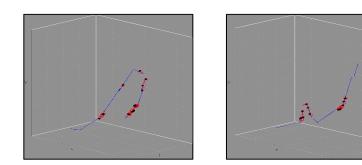
Parallel Computation

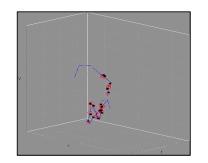
Run off-line algorithm on corset using single computer

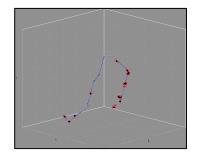




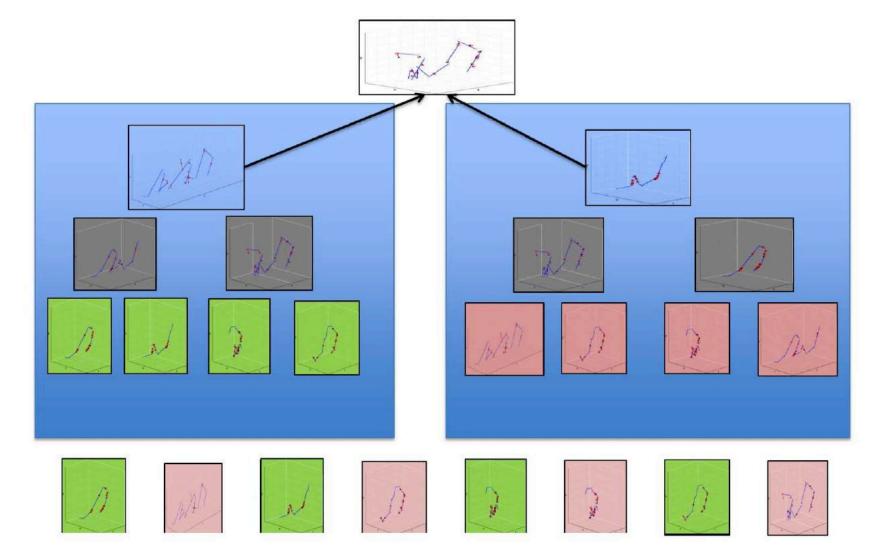








Parallel+ Streaming Computation



ICRA'14 (With Rus, Paul and Newman)

In this talk

- Coresets for convex optimization: a generic framework for learning kernel
- E.g: Logistic regression, dimensional reduction (SVD) with outliers,
 LLp subspace embedding
- Main tool: generic-SVD via coreset for John Ellipsoid
- Relation to obstacle detection and path planning

Related Work

- Clarkson (SODA'2005)
 - Approximation for $L \downarrow 1$ regression using weak coreset (only for off-line optimization)
- A. Dasgupta, P.Drineas, B. Harb, R. Kumar, M. Mahoney (SODA'2008)
 Weak coreset for Llp regression
- LaValle & Kuffmer, RRT trees (1998)
 Heuristics for path planning using sampling

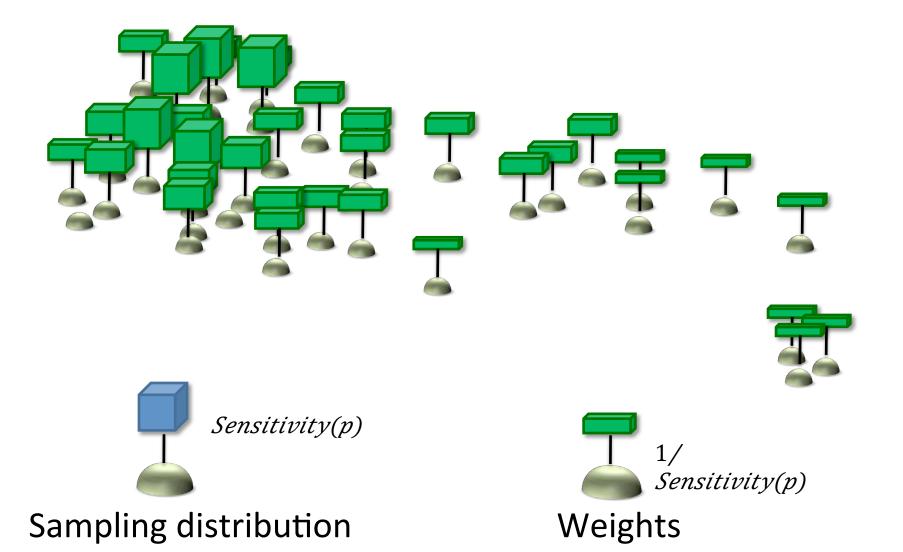
Theorem [Feldman, Langberg, STOC'11][V. Braverman, F., Lang, Submitted]Suppose that $cost(P,x) \coloneqq \sum p \in P1 @ w(p)k(p,x)$ where $k: P \times X \rightarrow [0, \infty).$

A sample $C \subseteq P$ from the distribution

sensitivity(p) = max $-x \in X k(p,x) / \sum p' \uparrow k(p',x)$

is a coreset if |C| ~ dimension of $X/\epsilon^{\uparrow} \cdot \sum p^{\uparrow}$ sensitibity(p)

Importance Weights



Sensitivity for convex optimization

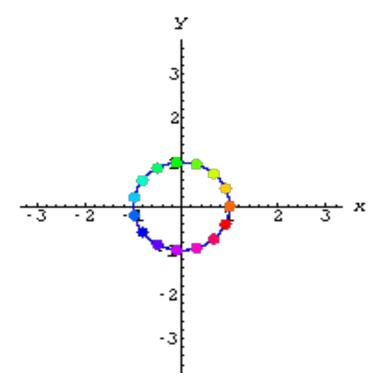
• We want to minimize/estimate $f(x) \sim cost(P,x) = \sum p \in P^{\uparrow} = k(p,x)$

OVEL $x \in X = \mathbb{R} \uparrow d$,

where *f* is convex

Query space as a convex shape

• Example: k(p,x) = |px|/2f(x) = ||Px|/2,

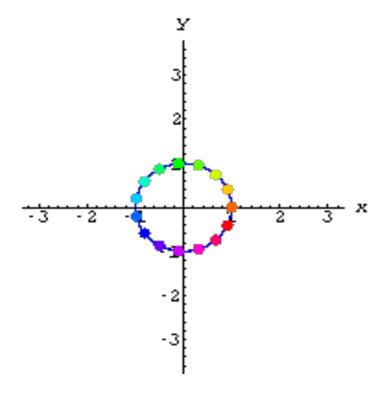


Every unit vector x is mapped to $x \cdot f(x)$

Gif by Todd Will

Query space as a convex shape

• Example: k(p,x) = |px|/2 $f(x) = ||Px||^{2}$,



Every unit vector x is mapped to $x \cdot f(x)$

The result is the Ellipsoid $X \downarrow f = x \in \mathbb{R} \uparrow d f(x) \le 1$ $= \{x \in \mathbb{R} \uparrow d \mid | | DV \uparrow T x | | \leq 1\}$

where P = UDV1T is the SVD of A, and we have an exact "coreset" $||Px|| = ||UDV \uparrow T x|| = ||DV \uparrow T x||$

Gif by Todd Will

From Sensitivity Lens

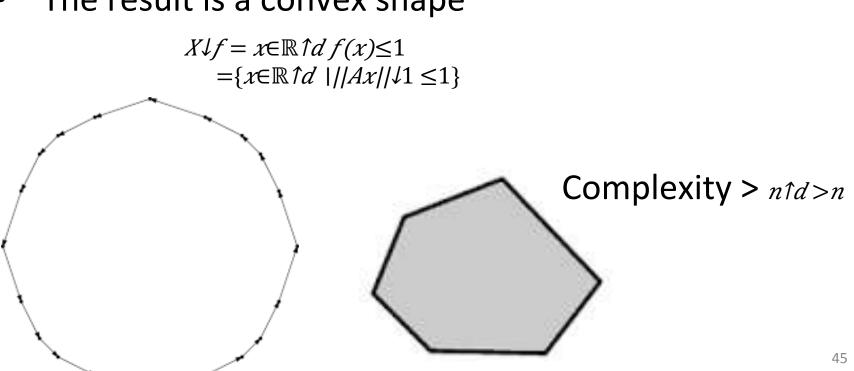
 $k(p,x)/f(x) = |px|^{2} / ||Px||^{2} = |px/||Px||^{2} - |uDV^{T}x/||UDV^{T}x||^{2}$

 $= |uDV \uparrow T x/||DV \uparrow T x|| |\uparrow 2 = |u \cdot DV \uparrow T x/||DV \uparrow T x|| |\uparrow 2 \le ||u|| \uparrow 2$

 $\sum i = 1 \uparrow n / |u \downarrow i| / \uparrow 2 = ||U| / \downarrow F \uparrow 2 = d$

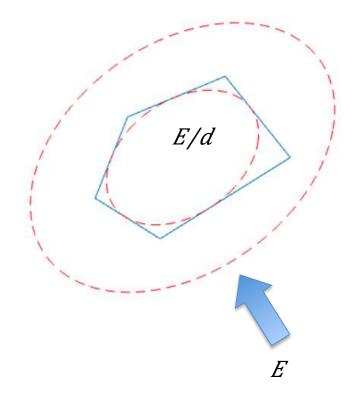
The general case

- Example: $k(p,x) = |px|^{\uparrow}$ f(x) = ||Px||/1
- Every unit vector x is mapped to $x \cdot f(x)$
- The result is a convex shape



Theorem (John's Ellipsoid)

- Every convex body contains an ellipsoid *E/d* such that *E* contains it.
- For a $E \in \mathbb{R}^{d} \times d$ and every $x \in \mathbb{R}^{d}$:



 $f(x) \sim ||Ex|| = ||DV \uparrow T x||$

- We define *P=UDV1T* as the *f*-SVD of *P*
- Bugs: (i) only d-approximation
 (ii) not subset of input point set P

From Sensitivity Lens

 $k(p,x)/f(x) = |px|/||Px||\downarrow 1 = |px|/||UDV\uparrow Tx||\downarrow 1 \approx |uDV\uparrow Tx|/||DV\uparrow Tx||\downarrow 2 \leq ||u||$

*↓*1

 $\sum i=1 n ||u_i|| \downarrow 1 =?$

Sensitivity for convex optimization

• We want to minimize/answer

 $f(x) \sim \sum p \in P \uparrow = k(p,x)$

- $k(p,x) \sim g(|px|)$
- $a \cdot k(p,x) \sim k(p,a \cdot x)$
- Otherwise, we use level sets for *Xlf*

Main Theorem [F, Tukan]

The sensitivity of a point $p \in P$ is at most

 $\max_{\tau x} k(p,x) / f(x) \leq \sum_{i=1}^{d} k(p,E^{\uparrow}-1 e^{\downarrow i})$

and the total sensitivity (~size of coreset):

 $\sum p \in P \uparrow = s(p) \in d \uparrow O(1)$

Proof Sketch - sensitivity

 $k(p,x)/f(x) \sim k(p,x)/||Ex|| \sim k(p,x/||Ex||) = k(uE,E^{1}-1y)$

 $\sim g(|uy|) \leq g(|u|\downarrow 2) \leq g(|u|\downarrow 1)$ = $g(\sum_{i=1}^{d} |ue\downarrow i|) \sim \sum_{i=1}^{d} g(|ue\downarrow i|)$ ~ $\sum_{i=1}^{d} k(uE, E\uparrow -1 e\downarrow i) = \sum_{i=1}^{d} k(p, E\uparrow -1 e\downarrow i)$

Proof Sketch – total sensitivity

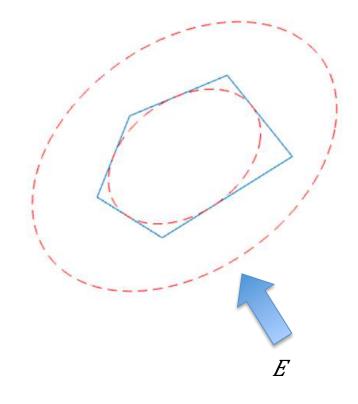
$$\begin{split} & \sum p \in P \uparrow \implies \sum i = 1 \uparrow d \implies k(p, E \uparrow -1 \ e \downarrow i \) = \sum i = 1 \uparrow d \implies \sum p \in P \uparrow \implies k(p, E \uparrow -1 \ e \downarrow i \) \\ & = \sum i = 1 \uparrow d \implies f(E \uparrow -1 \ e \downarrow i \) \sim \sum i = 1 \uparrow d \implies ||E \cdot E \uparrow -1 \ e \downarrow i \ || \sim \end{split}$$

 $\sum i=1 \uparrow d / |e \downarrow i| = d$

How do we compute the ellipsoid E?

 $Y \downarrow f = x \in \mathbb{R} \uparrow d f(x) \le 1$

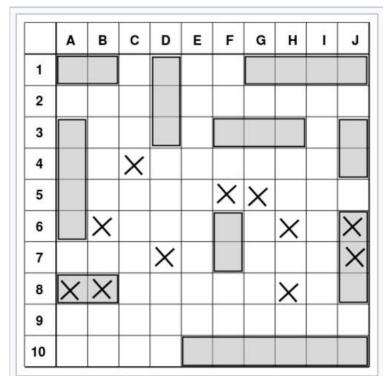
 $||Ex|| = ||DV^{\uparrow}T x||$



Only using oracle membership.

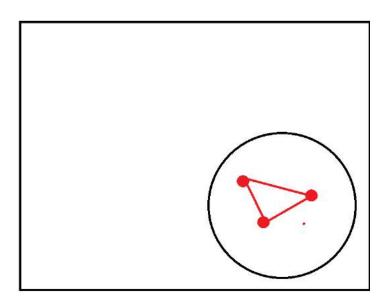
Path Planning in the Dark

- In control space we know start & destination configurations
- Can only ask boolean queries regarding feasible positions
- As in Battleships (game)

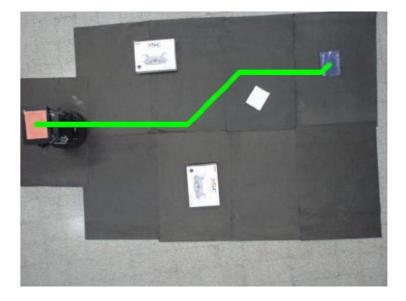


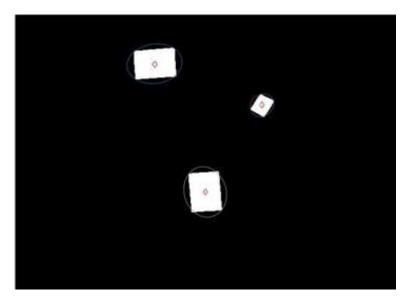
Path Planning in the Dark

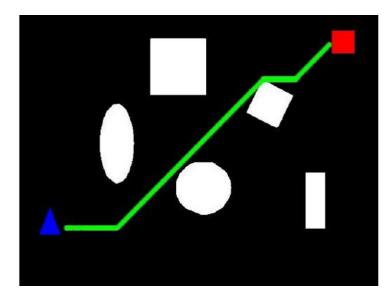
- We want minimum number of queries for maximum approximation error
- Existing algorithms have no guarantee for optimality
- Approximation by convex polygons

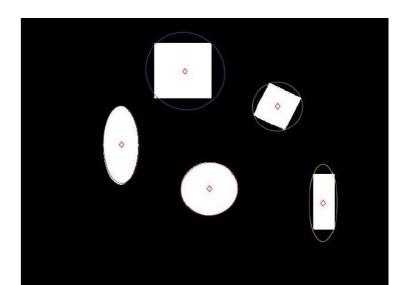


Path Planning

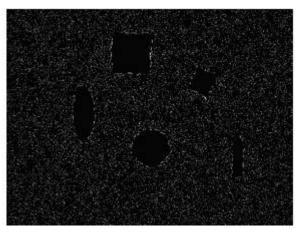




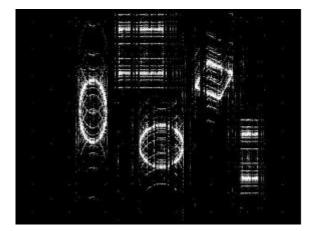


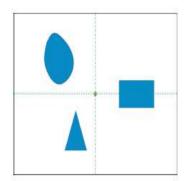


RRT

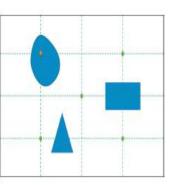


Our Algorithm

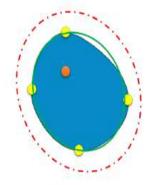




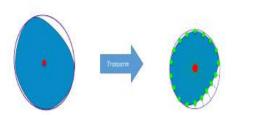
(a) Epsilon grid sampling; First iteration



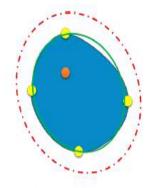
(b) Epsilon grid sampling; Second iteration



(c) d^{2d} approximation to John Ellipsoid



(d) Applying "Epsilon Star" on the transform space



(e) $1 + \epsilon$ approximation to the real convex bodies

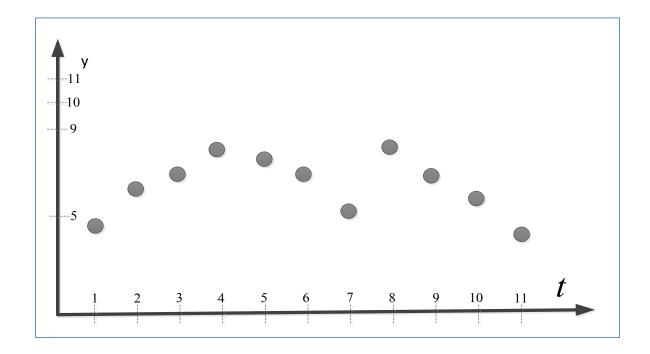
Open Problems

- More Coresets
 - Deep learning, Decision trees, Sparse data3D Navigation and Mapping, Robotics
- Private Coresets, [STOC'11, with Fiat et al.]
- Homomorphic Encryption Coresets
- Generic software library
 - Coresets on Demand on the cloud
- Sensor Fusion (GPS+Video+Audio+Text+..)

Thank you !

k–Segment Queries

Input: *d*-dimensional signal *P* over time



Coreset for *k*-means can be computed by choosing points from the distribution:

sensitivity(*p*) = $dist(p,q\uparrow*)/\sum p'\uparrow i dist(p',q\uparrow*) + 1/n \downarrow p$

 $_{q\uparrow*} = k$ -means of P

nlp = number of points in the cluster of p

 $|\mathsf{C}| = k \cdot d / \epsilon 12$

Coreset for *k*-means can be computed by choosing points from the distribution:

sensitivity(*p*) = $dist(p,q\uparrow*)/\sum p'\uparrow = dist(p',q\uparrow*) + 1/n\downarrow p$

 $q_{1*} = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

nlp = number of points in the cluster of p

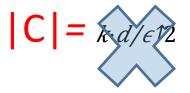
 $|\mathbf{C}| = k \cdot d / \epsilon 12$

Coreset for k-means can be computed by choosing points from the distribution:

sensitivity(p) = $dist(p,q\uparrow*)/\sum p'\uparrow mdist(p',q\uparrow*) + 1/n\downarrow p$

 $q_{\uparrow*} = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

 $_{nlp}$ = number of points in the cluster of p



 $|\mathbf{C}| = k d/\epsilon n^2$ $k \cdot (k/\epsilon)/\epsilon^{12}$ [SODA'13, Feldman, Schmidt, ..]

Coreset for *k*-means can be computed by choosing points from the distribution:

sensitivity(*p*) = $dist(p,q\uparrow*)/\sum p'\uparrow i dist(p',q\uparrow*) + 1/n \downarrow p$

 $_{q\uparrow*} = k$ -means of P

nlp = number of points in the cluster of p

 $|\mathsf{C}| = k \cdot d / \epsilon 12$

Coreset for *k*-means can be computed by choosing points from the distribution:

sensitivity(*p*) = $dist(p,q\uparrow*)/\sum p'\uparrow = dist(p',q\uparrow*) + 1/n\downarrow p$

 $q_{1*} = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

nlp = number of points in the cluster of p

 $|\mathbf{C}| = k \cdot d / \epsilon 12$

Coreset for *k*-means can be computed by choosing points from the distribution:

sensitivity(*p*) = $dist(p,q\uparrow*)/\sum p'\uparrow = dist(p',q\uparrow*) + 1/n\downarrow p$

 $q_{1*} = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

nlp = number of points in the cluster of p

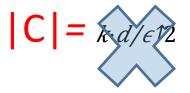
 $|\mathbf{C}| = k \cdot d / \epsilon 12$

Coreset for k-means can be computed by choosing points from the distribution:

sensitivity(p) = $dist(p,q\uparrow*)/\sum p'\uparrow mdist(p',q\uparrow*) + 1/n\downarrow p$

 $q_{\uparrow*} = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

 $_{nlp}$ = number of points in the cluster of p



 $|\mathbf{C}| = k d/\epsilon n^2$ $k \cdot (k/\epsilon)/\epsilon^{12}$ [SODA'13, Feldman, Schmidt, ..]

The chicken-and-egg problem

- 1. We need approximation to compute the coreset
- 2. We compute coreset to get a fast approximation to a problem

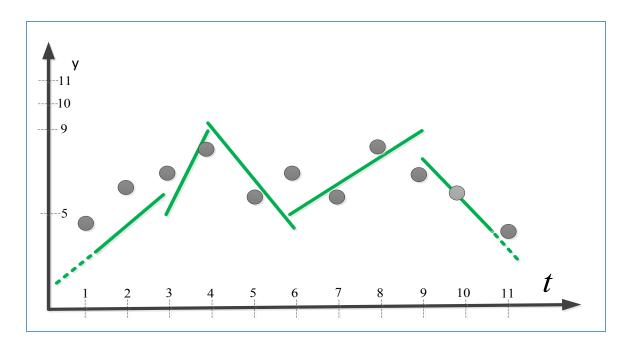
Lee-ways:

- I. Bi-criteria approximation
- II. Heuristics

III. polynomial time reduced to linear time by the merge-reduce tree

k–Segment Queries

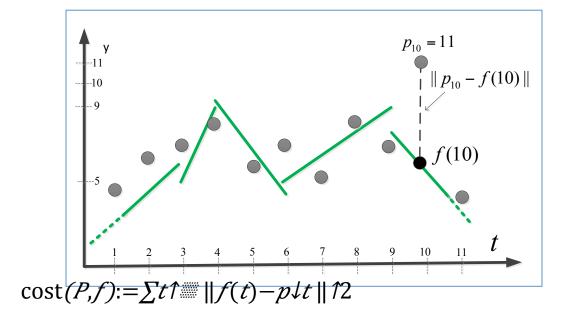
Input: *d*-dimensional signal *P* over time Query: *k* segments over time



k-Piecewise linear function *f* over *t*

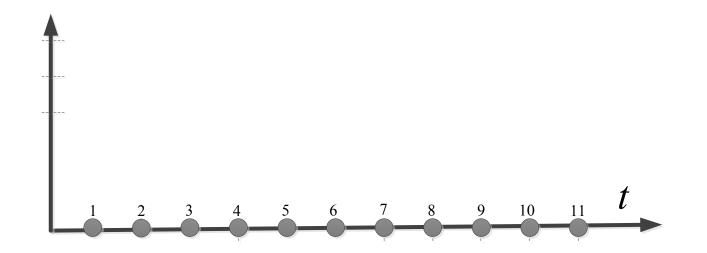
k–Segment Queries

Input: *d*-dimensional signal *P* over time Query: *k* segments over time Output: Sum of squared distances from *P*

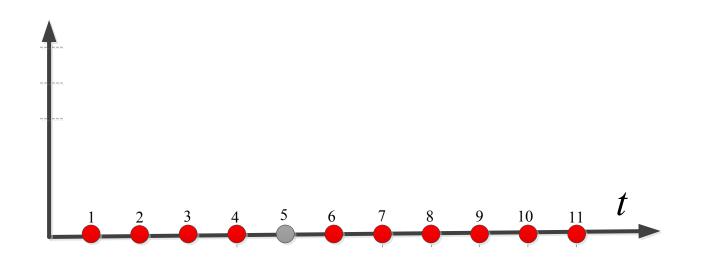


Observation: No small coreset c∈P exists for k-segment queries

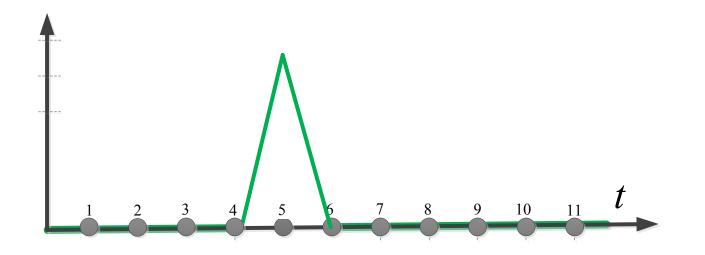
Input P: *n* points on the *x*-axis



Input P:*n* points on the *x*-axisCoreset C:all points except one

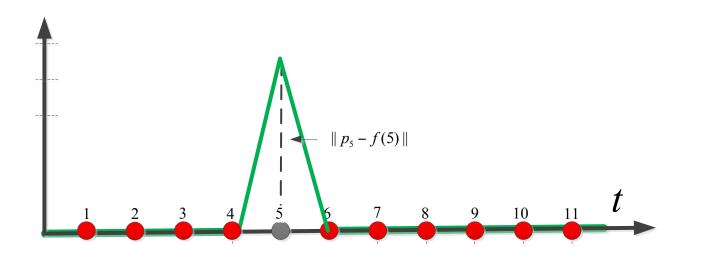


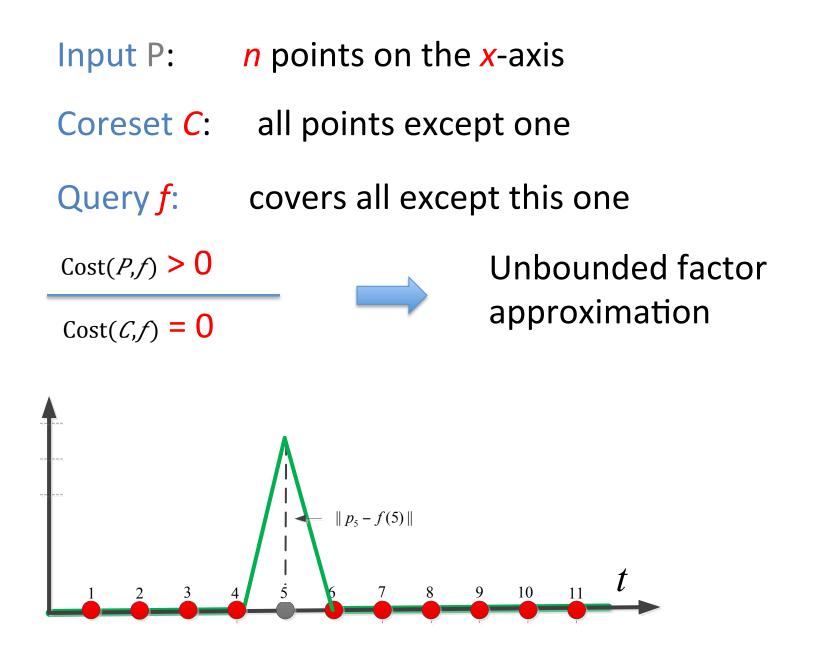
- **Coreset C**: all points except one
- Query *f*: covers all except this one



- Input P: *n* points on the *x*-axis
- **Coreset C**: all points except one
- Query *f*: covers all except this one
- Cost(P, f) > 0

 $Cost(\mathcal{L},f) = \mathbf{0}$



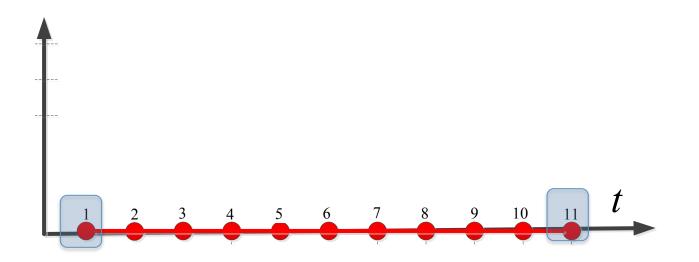


For every point *p*: Sensitivity(*p*) = $\max_{\tau q \in Q} dist(p,q) / \sum p' \uparrow dist(p',q) = 1$

Total sensitivities: n

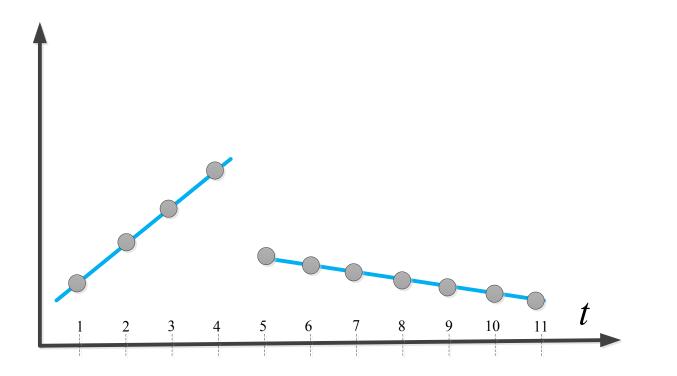
Observation:

Points on a segment can be stored by the two indexes of their end-points



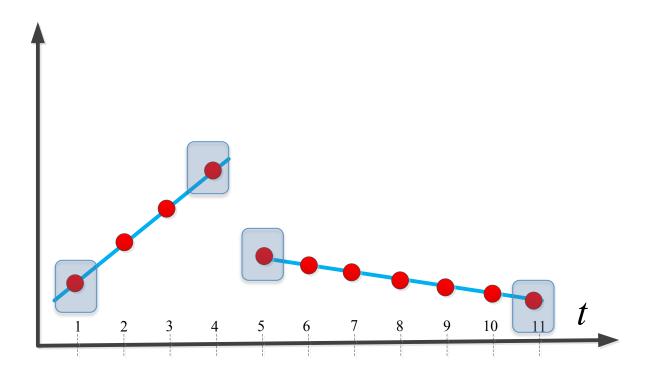
Observation:

Points on a segment can be stored by the two indexes of their end-points and the slope of the segment



Observation:

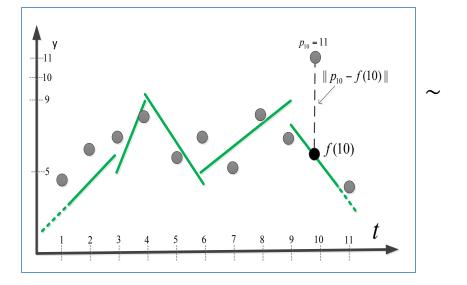
Points on a segment can be stored by the two indexes of their end-points and the slope of the segment

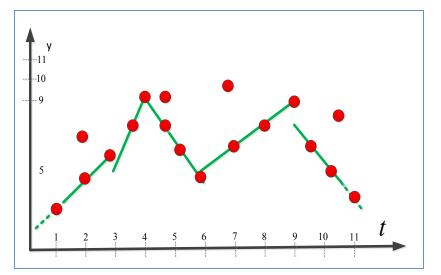


Definition: Coreset

A weighted set $c \in P$ such that for every k-segment f:

 $cost(P,f) \sim costw(C,f)$





 $\sum p \downarrow t \in C \uparrow = w(p \downarrow t) \cdot ||f(t) - pt||$

 $\sum t \uparrow \parallel \parallel f(t) - pt \parallel$

Surprising Applications

1. (1-epsilon) approximations: Heuristics work better on coresets

2. Running constant factor on epsiloncoresets helps

3. Coreset for one problem is good for a lot of unrelated problems

4. Coreset for O(1) points

Implementation

- The worst case and sloppy (constant) analysis is not so relevant
- In Thoery:

a random sample of size $1/\epsilon$ yields $(1+\epsilon)$ approximation with probability at least $1-\delta$. In Practice:

Sample s points, output the approximation ϵ and its distribution

• Never implement the algorithm as explained in the paper.

Coreset for *k*-means can be computed by choosing points from the distribution:

sensitivity(*p*) = $dist(p,q\uparrow*)/\sum p'\uparrow i dist(p',q\uparrow*) + 1/n \downarrow p$

 $_{q\uparrow*} = k$ -means of P

nlp = number of points in the cluster of p

 $|\mathsf{C}| = k \cdot d / \epsilon 12$

Coreset for *k*-means can be computed by choosing points from the distribution:

sensitivity(*p*) = $dist(p,q\uparrow*)/\sum p'\uparrow = dist(p',q\uparrow*) + 1/n\downarrow p$

 $q_{1*} = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

nlp = number of points in the cluster of p

 $|\mathbf{C}| = k \cdot d / \epsilon 12$

Coreset for *k*-means can be computed by choosing points from the distribution:

sensitivity(*p*) = $dist(p,q\uparrow*)/\sum p'\uparrow = dist(p',q\uparrow*) + 1/n\downarrow p$

 $q_{1*} = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

nlp = number of points in the cluster of p

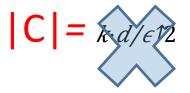
 $|\mathbf{C}| = k \cdot d / \epsilon 12$

Coreset for k-means can be computed by choosing points from the distribution:

sensitivity(p) = $dist(p,q\uparrow*)/\sum p'\uparrow mdist(p',q\uparrow*) + 1/n\downarrow p$

 $q_{\uparrow*} = k$ -means of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

 $_{nlp}$ = number of points in the cluster of p



 $|\mathbf{C}| = k d/\epsilon n^2$ $k \cdot (k/\epsilon)/\epsilon^{12}$ [SODA'13, Feldman, Schmidt, ..]