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Big Data. YNNNYNNNNNNY”

* Volume: huge amount n of data points
* Variety: high dimensional d space
* Velocity: data arrive in real-time

Need to support:

e Streaming (one pass, logarithmic memory)

e Distributed data (on cloud)

e Simple computations (embarrassingly parallel)
* No assumption on order of points



Big Data Computation model
* = Streaming + Parallel computation

* Input: infinite stream of vectors

- n= vectors seen so far

* ~logz memory

* M processors

* ~log (n)/M insertion time per point
(Embarrassingly parallel)



Challenge:
Find RIGHT data from Big Data

Given data D and Algorithm A with A(D)
intractable, can we efficiently reduce
D to Cso that A(C) fast and A(C)~A(D)?

Provable guarantees on approximation % ° o
with respect to the size of C . e
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Coreset for Enclosing Balls P C R

The fathest point from every query g 2 Rd

is a red point

C := fcq;cogis a coreset for P



Simplest coreset definition

Let
- Pbe aset, called point set

- Xbe aset, called query set
. cost(Z.x): maps every query x€Xx into a non-negative number

For a given «o, the set «~is a
core-set if for every .«r we have

cost(P.x)~cost(C,x)

up to (i+) approximation factor



Coreset Technique

Computational Geometry
Coresets
Har-Peled, Agarwal, Sohler, Chen

Graph Theory
Sparsifiers
Batson, Speilman, Srivastava, ...

Matrix Approximation
Volume Sampling
Clarkson, Mahoney, Drineas ...

Combinatorial Geometry
e-nets, s-approximations
Haussler, Welzl, Alon, Matousek, Sharir,...

Statistics
Importance Sampling

Srinivasan, Ripley, . \/\

PAC-Learning
e-sample Compressed Sensing

Vapnik, Chervonenkis, Valiant, ... . Sketches
Property Testing




Example Coresets

 Graph Summarization [F, Sedat, Rus, ICML’17]

e Mixture of Gaussians JMLR’17

« LSA/PCA/SVD NIPS'16

e k-Means , SDM’16

* Non-Negative Matrix Factorization | KDD15
* Robots Localization ICRA’15
 Robots Coverage ICRA’13

e Segmentation NIPS 14

e k-Line Means FOCS'06
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Naive Uniform Sampling
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Naive Uniform Sampling
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From Big Data to Small Data

Suppose that we can compute such a corset ¢ of size
1/¢ for every set » of n points

* |ntime »3,

e off-line, non-parallel, non-streaming algorithm
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Read the first 2/ streaming points and reduce
them into 1/ weighted points in time 2/¢)75

1+ecorset for £/

.




Read the next 2/ streaming point and reduce them
into 1/ weighted points in time @2/¢)r5

14+ corset for 2i1 1+ecorset for £PJ2

/} » % /




Merge the pair of ~coresets into an ~corset
of 2/ weighted points

1+e-corset for 241 urs2

/o

/»7 » % /




Delete the pair of original coresets from memory

1+e-corset for Pi1ups2

7 |




Reduce the 2/ weighted points into 1/ weighted
points by constructing their coreset

1+e-corset for
1+e-corset for Pi1 upd2




Reduce the 2/ weighted points into 1/ weighted
points by constructing their coreset

1+e-corset for
1+e-corset for Pi1 upd2

=(1+¢)12 -corset for i1 uPL2




(1+¢)72 -corset for Pi1 upPL2

(1+¢)-corset for 243




(1+¢)72 -corset for Pi1 upPL2

L J

— (14+¢€)-corset for I3 (1+¢)-corset for Pl4




(1+¢)72 -corset for Pi1 upPL2 (1+¢)-corset for Pi3 uPl4
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(1+¢)72 -corset for Pi1 upPL2
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(1+¢)72 -corset for Pi3 uPl4







(1+¢)72 -coreset for

PI1UPI2UPI3 UPL4




(1+¢)13 -coreset for

PI1UPI2UPI3 UPL4




Size of Storage (# of doubles)
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Parallel Computation
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Parallel Computation

Run off-line
algorithm

singsingle == - %W

computer




Parallel+ Streaming Computation
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In this talk

* Coresets for convex optimization:
a generic framework for learning kernel
 E.g: Logistic regression, dimensional
reduction (SVD) with outliers,
Li» SUbspace embedding
 Main tool:
generic-SVD via coreset for John Ellipsoid
* Relation to obstacle detection
and path planning



Related Work

e Clarkson (SODA’2005)

— Approximation for ZJ1 regression using
weak coreset (only for off-line optimization)

* A. Dasgupta, P.Drineas, B. Harb, R. Kumar,
M. Mahoney (SODA’2008)

Weak coreset for ZJp regression

* LaValle & Kuffmer, RRT trees (1998)
Heuristics for path planning using sampling



Theorem
Suppose that

[V. Braverman, F., Lang, Submitted]

where k. PXX— [0,00).

A sample «cr from the distribution



Importance Weights

. Sensitivity(p) *
| 11

~ “ Sensitivity(p)
Sampling distribution Weights
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Sensitivity for convex optimization

We want to minimize/estimate

over iex=rrz,

where fis convex

41



Query space as a convex shape
* Example: Z4A(px)=[px[T2
S ()=[[Px][TZ,

Every unit vector »
*t is mapped to »A»

Gif by Todd Will -



Query space as a convex shape

Example: Z4(p,x)=/px[T2
S ()=[[Px][T2Z,

Y .
| Every unit vector x
7 is mapped to »Ax»
2
BN The result is the Ellipsoid
e B o x XU =2€RTA f(1)<1
\1’} ={x€RTd |/|DVTT x[|<1}
f
3}
' where P=ypr17 is the SVD of 4, and

we have an exact “coreset”
[|Px]|=]|UDVIT x]||=]|DVTT x|
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From Sensitivity Lens

k() /f(X) =[px|T2 /][Px][T2 =[px/|[Px|] [T2 = [uDVTT x/[|UDVTT x| | T2
=[uDVIT x/|[DVIT x]|| |[T2 = [u-DVIT x/[|DVIT x|| |T2 <[[u]]|T2
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The general case

 Example: 4A(px)=[px|T

J(x)=][Px[[{1

Every unit vector ris mapped to /@)
The result is a convex shape
Xif= xeR1d f(x)<1
={x€R T |//Ax]}i1 <1}
/ s Complexity > nraz>n



Theorem (John’s Ellipsoid)

* Every convex body
contains an ellipsoid z«
such that #zcontains it.

* For a zrraxd and every
YeRTdA :

O~ [Ex|[=|[DVTT x[]

 We define r=vorrr as the f-SVD of P
e Bugs: (i) only d-approximation
(ii) not subset of input point set »
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From Sensitivity Lens

k(2,2 /f(%) =\pA/I|Px][41 =|px/I|JUDVIT x||i1 =|uDVTT 2|/||DVIT x[[42 <|[u]]

VAl



Sensitivity for convex optimization

We want to minimize/answer

k(.x)~g(lpx()

ak(px)~k(pax)
Otherwise, we use level sets for x

48



Main Theorem [F, Tukan]

The sensitivity of a point <~ is at most

49



Proof Sketch - sensitivity

k@x)/f(x) ~k@x)/||Ex]| ~k(px/l|Ex]] )=k (uELT-1 )

~g(luyD=g(lufi2 )=g(lufi1)
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Proof Sketch — total sensitivity

51



How do we compute the ellipsoid E?

vif = xeR1d f(x)<1 A
: f/,,/ \\
\ / ’ /
/ g D
- [[Ex[[=|[DVTT x| / 7
,] ke / //,/
s

Only using oracle membership.
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Path Planning in the Dark

* |n control space we know start & destination
configurations

 Can only ask boolean queries regarding
feasible positions

* As in Battleships (game) ale]clofe[r[a]n

O 0 N OO s W -

XX

oy
o




Path Planning in the Dark

 We want minimum number of queries for
maximum approximation error

* Existing algorithms have no guarantee for
optimality

* Approximation by convex polygons
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Path Planning




£

RRT Our Algorithm




-
A

(a) Epsilon grid
sampling; First
1teration

Om

(d) Applying "Epsilon
Star" on the transform
space

o _
A

(b) Epsilon grid
sampling;  Sec-
ond iteration

44444

(c) d** approxi-
mation to John
Ellipsoid

.....

(e) 14 € approx-
imation to the
real convex bod-

1€5
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Open Problems

More Coresets
- Deep learning, Decision trees, Sparse data
3D Navigation and Mapping, Robotics

Private Coresets,
Homomorphic Encryption Coresets

Generic software library
- Coresets on Demand on the cloud

Sensor Fusion (GPS+Video+Audio+Text+..)



Thankyou !




#—Segment Queries

Input: d-dimensional signal P over time




Coreset for k-means

Coreset for /-means can be computed by
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. = k-means of P

»» = number of points in the cluster of p

|C| = #aser
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The chicken-and-egg problem

1. We need approximation to compute the
coreset

2. We compute coreset to get a fast
approximation to a problem

Lee-ways:
|. Bi-criteria approximation
ll. Heuristics
lll. polynomial time reduced to linear time
by the merge-reduce tree
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#—Segment Queries

Input: d-dimensional signal P over time
Query: k segments over time

/\/ N

9 10 11

A

>

k-Piecewise linear function f over t



#—Segment Queries

Input: d-dimensional signal P over time
Query: k segments over time
Output: Sum of squared distances from P

A =11
: | ||p - 0

/ \/ \«»

||/w zm ii

cost(Pf):




Observation:
No small coreset - exists
for k-segment queries



Input P:

n points on the x-axis




Input P:

Coreset C:

n points on the x-axis

all points except one




Input P: n points on the x-axis

Coreset C:  all points except one

Query f: covers all except this one




Input P: n points on the x-axis

Coreset C:  all points except one

Query f: covers all except this one

Cost(Pf) > 0

Cost(C /) = 0




Input P: n points on the x-axis
Coreset C:  all points except one
Query f: covers all except this one

Cost(2/) > 0 Unbounded factor

— approximation

Cost(C /) = 0




For every point p:

Total sensitivities: n



Observation:
Points on a segment can be stored by
the two indexes of their end-points




Observation:

Points on a segment can be stored by
the two indexes of their end-points
and the slope of the segment




Observation:

Points on a segment can be stored by
the two indexes of their end-points
and the slope of the segment
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Definition: Coreset

A weighted set 5cp>;§ch that

for every k-segment f :
cost(P.f) ~ costw(C,f)

Hp -/A0)]

/\ \

I
1 2 3 4 5 6 7 8 9 10 11

>

LT [/ (O)—ptl




Surprising Applications

1.(1-epsilon) approximations:
Heuristics work better on coresets

2.Running constant factor on epsilon-
coresets helps

3.Coreset for one problem is good for
a lot of unrelated problems

4.Coreset for O(1) points



Implementation

The worst case and sloppy (constant) analysis is not
so relevant

In Thoery:
a random sample of size 1/¢yields (1+¢

approximation with probability at least 1-s.
In Practice:

Sample s points, output the
approximation < and its distribution

Never implement the algorithm as explained in the
paper.

83



Coreset for k-means

Coreset for /-means can be computed by
choosing points from the distribution:

. = k-means of P

»» = number of points in the cluster of p

|C| = #aser



Coreset for k-means

Coreset for /-means can be computed by
choosing points from the distribution:

glx = k‘mea NS Of P or approximation [SoCg07, Feldma, Sharir, Fiat]

»» = number of points in the cluster of p

|C| = #aser



Coreset for k-means

Coreset for /-means can be computed by
choosing points from the distribution:

glx = k‘mea NS Of P or approximation [SoCg07, Feldma, Sharir, Fiat]

»» = number of points in the cluster of p

|C| = #aser



Coreset for k-means

Coreset for /-means can be computed by
choosing points from the distribution:

glx = k‘means Of P or approximation [SoCg07, Feldma, Sharir, Fiat]

»» = number of points in the cluster of p

|C|= % #(%/¢)/€12 [SODA’13, Feldman, Schmidt, ..]



