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Computa(onal	Geometry		
for	Robo(cs	&	Big	Data	

Robo2cs	&	Big	Data	Lab	
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Videos	from	
	The	Robo2cs	and	Big	Data	Lab	
	 		in	the	University	of	Haifa



Big	Data		
•  Volume:	huge	amount	n	of	data	points	
•  Variety:	high	dimensional	d	space		
•  Velocity:		data	arrive	in	real-2me	

Need	to	support:	
•  Streaming	(one	pass,	logarithmic	memory)	
•  Distributed	data	(on	cloud)	
•  Simple	computa2ons	(embarrassingly	parallel)	
•  No	assump2on	on	order	of	points	

	



Big	Data	Computa2on	model		
• =	Streaming	+	Parallel	computa2on	
•  Input:	infinite	stream	of	vectors

•  𝑛=		vectors	seen	so	far	
•  ~log​𝑛	memory	
• M	processors	
• ~log	(n)/M	inser2on	2me	per	point	
(Embarrassingly	parallel)		
	

	 4	



Challenge:		
Find	RIGHT	data	from	Big	Data	

5	

Given	data	D	and	Algorithm	A	with	A(D)		
intractable,	can	we	efficiently	reduce		
D	to	C	so	that	A(C)	fast	and	A(C)~A(D)?			

Provable	guarantees	on	approxima2on	
with	respect		to	the	size	of	C	
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far( P ; q)
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The fathest point from every query q 2 R

is a red point



          

The fathest point from every query q 2 R d

is a red point



          

C := f c1 ; c2g is a coreset for P

c1 c2

The fathest point from every query q 2 R d

is a red point
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Let	
•  𝑃	be	a	set,	called	point	set	
•  𝑋	be	a	set,	called	query	set	
•  cost(𝑃,𝑥): maps	every	query	𝑥∈𝑋	into	a	non-nega2ve	number	

For	a	given	𝜖>0,	the	set	𝐶⊆𝑃	is	a			is	a		
core-set	if		for	every	𝑥∈𝑋	we	have		we	have	
cost(𝑃,𝑥)~𝑐𝑜𝑠𝑡(𝐶,𝑥)	
	
	
up	to	(1±𝜖)	approxima2on	factor	)	approxima2on	factor	

Simplest coreset	defini2on	



Compressed	Sensing	
Sketches	
Property	Tes2ng	
	

Coreset	Techniques	



14	

Example	Coresets	

•  Graph	Summariza2on	[F,	Sedat,	Rus,	ICML’17]	
•  Mixture	of	Gaussians	[F,	Krause,	etc	JMLR’17]	
•  LSA/PCA/SVD			[F,	Rus,	and	Volkob,	NIPS’16]	
•  k-Means		[F,	Barger,	SDM’16]	
•  Non-Nega2ve	Matrix	Factoriza2on	[F,	Tassa,	KDD15]	
•  Robots	Localiza2on	[F,	Cindy,	Rus,	ICRA’15]	
•  Robots	Coverage	[F,	Gil,	Rus,	ICRA’13]	
•  Segmenta2on	[F,	Rosman,	Rus,	Volkob,	NIPS’14]	
•  ….	
•  k-Line	Means	[F,	Fiat,	Sharir,	FOCS’06]	



Naïve	Uniform	Sampling	

15	
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Naïve	Uniform	Sampling	

Small	cluster	
is	missed	

Sample	a	set	U	of	m	points	uniformly	

ß	High	variance	



From	Big	Data	to	Small	Data	

Suppose	that	we	can	compute	such	a	corset	𝐶	of	size	 ​
1/𝜖 	for	every	set	𝑃	of	n	points	
•  in	2me	​𝑛↑3 ,	
•  off-line,	non-parallel,	non-streaming	algorithm			

1 2 3 4 5 6 7 8 9 10 11 t

10

9

5

11
y

1 2 3 4 5 6 7 8 9 10 11 t

10 11p =

10 10|| (10) ||p f−

9

5

11
y

(10)f

~	

(1±𝜖)	



Read	the	first	​2/𝜖 	streaming	points	and	reduce	
them	into	​1/𝜖 	weighted	points	in	2me	​(​2/𝜖 )↑5 	

1+𝜖 corset	for	 ​𝑃↓1 	



Read	the	next	​2/𝜖 	streaming	point	and	reduce	them	
into	 ​1/𝜖 	weighted	points	in	2me	​(​2/𝜖 )↑5 	

1+𝜖	corset	for	 ​𝑃↓2 	1+𝜖	corset	for	 ​𝑃↓1 	



Merge	the	pair	of	𝜖-coresets	into	an	𝜖-corset	
of	​2/𝜖 	weighted	points	

1+𝜖-corset	for	 ​𝑃↓1 ∪ ​𝑃↓2 	



Delete	the	pair	of	original	coresets	from	memory	

1+𝜖-corset	for	 ​𝑃↓1 ∪ ​𝑃↓2 	



Reduce	the		 ​2/𝜖 	weighted	points	into	​1/𝜖 	weighted	
points	by	construc2ng	their	coreset	

1+𝜖-corset	for	 ​𝑃↓1 ∪ ​𝑃↓2 	
1+𝜖-corset	for	



Reduce	the		 ​2/𝜖 	weighted	points	into	​1/𝜖 	weighted	
points	by	construc2ng	their	coreset	

1+𝜖-corset	for	 ​𝑃↓1 ∪ ​𝑃↓2 	
1+𝜖-corset	for	

= ​(1+𝜖)↑2 -corset	for	 ​𝑃↓1 ∪ ​𝑃↓2 	



​(1+𝜖)↑2 -corset	for	 ​𝑃↓1 ∪ ​𝑃↓2 	

(1+𝜖)-corset	for	​𝑃↓3 	



​(1+𝜖)↑2 -corset	for	 ​𝑃↓1 ∪ ​𝑃↓2 	

(1+𝜖)-corset	for	 ​𝑃↓3 	 (1+𝜖)-corset	for	 ​𝑃↓4 	



​(1+𝜖)↑2 -corset	for	 ​𝑃↓1 ∪ ​𝑃↓2 	 (1+𝜖)-corset	for	​𝑃↓3 ∪ ​𝑃↓4 	



​(1+𝜖)↑2 -corset	for	 ​𝑃↓1 ∪ ​𝑃↓2 	 ​(1+𝜖)↑2 -corset	for	 ​𝑃↓3 ∪ ​𝑃↓4 	





​(1+𝜖)↑2 -coreset	for	

	 ​𝑃↓1 ∪ ​𝑃↓2 ∪ ​𝑃↓3 ∪ ​𝑃↓4 	



​(1+𝜖)↑3 -coreset	for	

	 ​𝑃↓1 ∪ ​𝑃↓2 ∪ ​𝑃↓3 ∪ ​𝑃↓4 	





Parallel	Computa2on	



Parallel	Computa2on	



Parallel	Computa2on	
Run	off-line	
algorithm			
on	corset	
using	single	
computer	
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Parallel+	Streaming	Computa2on	



36	ICRA’14	(With	Rus,	Paul	and	Newman)	
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•  Coresets	for	convex	op2miza2on:	
		a	generic	framework	for	learning	kernel	

•  E.g:	Logis2c	regression,	dimensional	
reduc2on	(SVD)	with	outliers,		
​𝐿↓𝑝 	subspace	embedding	

•  Main	tool:		
generic-SVD	via	coreset	for	John	Ellipsoid	

•  Rela2on	to	obstacle	detec2on		
	and	path	planning	

	

In	this	talk	



•  Clarkson	(SODA’2005)	
– Approxima2on	for	 ​𝐿↓1 	regression	using		
weak	coreset	(only	for	off-line	op2miza2on)	

•  A.	Dasgupta,	P.Drineas,	B.	Harb,	R.	Kumar,		
M.	Mahoney	(SODA’2008)	
	Weak	coreset	for	 ​𝐿↓𝑝 	regression	

•  LaValle	&	Kuffmer,	RRT	trees	(1998)	
	Heuris2cs	for	path	planning	using	sampling

38	

Related	Work	



Theorem	[Feldman,	Langberg,	STOC’11]	

sensitivity(p)= ​​ max┬𝑥∈𝑋  ⁠​𝑘(𝑝,𝑥)/∑𝑝′↑▒𝑘(𝑝′,𝑥)   	

is	a	coreset	if |𝐶|~ ​dimension of 𝑋/​𝜖↑  	⋅∑𝑝↑▒sensitibity(𝑝) 	

Suppose	that	�
cost(𝑃,𝑥)≔∑𝑝∈𝑃↑▒𝑤(𝑝)𝑘(𝑝,𝑥)  	
where	 	 	𝑘:𝑃×𝑋→[0,∞). 	

A	sample	𝐶⊆𝑃	from	the	distribu2on	

[V.		Braverman,	F.,	Lang,	Submioed]



Importance	Weights	

Weights	Sampling	distribu2on		
40	

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑝)	
​1/
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑝) 	
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Sensi2vity	for	convex	op2miza2on

	•  We	want	to	minimize/es2mate	
𝑓(𝑥)~𝑐𝑜𝑠𝑡(𝑃,𝑥)=∑𝑝∈𝑃↑▒𝑘(𝑝,𝑥)  	
over	𝑥∈𝑋= ​ℝ↑𝑑 ,	
	
where	f	is	convex	

	

	



•  Example:     𝑘(𝑝,𝑥)= ​|𝑝𝑥|↑2 �
𝑓(𝑥)= ​||𝑃𝑥||↑2 , 	

42	

Query	space	as	a	convex	shape

Gif	by	Todd	Will

Every	unit	vector	𝑥		
is	mapped	to	𝑥⋅𝑓(𝑥)



•  Example:     𝑘(𝑝,𝑥)= ​|𝑝𝑥|↑2 �
𝑓(𝑥)= ​||𝑃𝑥||↑2 , 	
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Query	space	as	a	convex	shape

Gif	by	Todd	Will

Every	unit	vector	𝑥		
is	mapped	to	𝑥⋅𝑓(𝑥)

The	result	is	the	Ellipsoid		
​𝑋↓𝑓 = ​𝑥∈ ​ℝ↑𝑑  ⁠𝑓(𝑥)≤1  �
={𝑥∈ ​ℝ↑𝑑  ∣||𝐷​𝑉↑𝑇 𝑥||≤1}

where	𝑃=𝑈𝐷​𝑉↑𝑇 	is	the	SVD	of	𝐴,	and	
we	have	an	exact	“coreset”		
||𝑃𝑥||=||𝑈𝐷​𝑉↑𝑇 𝑥||=||𝐷​𝑉↑𝑇 𝑥||
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From	Sensi2vity	Lens

​𝑘(𝑝,𝑥)/𝑓(𝑥) = ​​|𝑝𝑥|↑2 /​||𝑃𝑥||↑2  = ​|​𝑝𝑥/||𝑃𝑥|| |↑2 = ​|​𝑢𝐷​𝑉↑𝑇 𝑥/||𝑈𝐷​𝑉↑𝑇 𝑥|| |↑2   �

 
 = ​|​𝑢𝐷​𝑉↑𝑇 𝑥/||𝐷​𝑉↑𝑇 𝑥|| |↑2 = ​|𝑢⋅ ​𝐷​𝑉↑𝑇 𝑥/||𝐷​𝑉↑𝑇 𝑥|| |↑2 ≤​||𝑢||↑2 

∑𝑖=1↑𝑛▒​||​𝑢↓𝑖 ||↑2  = ​||𝑈||↓𝐹↑2 =𝑑 



•  Example:     𝑘(𝑝,𝑥)= ​|𝑝𝑥|↑ �
𝑓(𝑥)= ​||𝑃𝑥||↓1 	
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The	general	case

•  Every	unit	vector	𝑥	is	mapped	to	𝑥⋅𝑓(𝑥)	
•  The	result	is	a	convex	shape	

​𝑋↓𝑓 = ​𝑥∈ ​ℝ↑𝑑  ⁠𝑓(𝑥)≤1  �
      ={𝑥∈ ​ℝ↑𝑑  ∣​||𝐴𝑥||↓1 ≤1}

Complexity	>	 ​𝑛↑𝑑 >𝑛
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Theorem	(John’s	Ellipsoid)

𝑓(𝑥)~||𝐸𝑥||=||𝐷​𝑉↑𝑇 𝑥||

•  Every	convex	body	
contains	an	ellipsoid	​𝐸/𝑑 	
such	that	𝐸	contains	it.	contains	it. ​𝐸/𝑑 

𝐸

•  For	a	𝐸∈ ​ℝ↑𝑑×d 	and	every	
𝑥∈ ​ℝ↑𝑑  :

•  We	define	𝑃=𝑈𝐷​𝑉↑𝑇 	as	the	f-SVD	of	P	
•  Bugs:	(i)	only	d-approxima2on	

	(ii)	not	subset	of	input	point	set	𝑃	
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From	Sensi2vity	Lens

​𝑘(𝑝,𝑥)/𝑓(𝑥) = ​|𝑝𝑥|/​||𝑃𝑥||↓1  = ​|𝑝𝑥|/​||𝑈𝐷​𝑉↑𝑇 𝑥||↓1  ≈ ​|𝑢𝐷​𝑉↑𝑇 𝑥|/​||𝐷​𝑉↑𝑇 𝑥||↓2  ≤ ​||𝑢||

↓1 �



∑𝑖=1 ↑𝑛▒​||𝑢_𝑖||↓1 =? 
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Sensi2vity	for	convex	op2miza2on

	•  We	want	to	minimize/answer	
𝑓(𝑥)~∑𝑝∈𝑃↑▒𝑘(𝑝,𝑥)  	
	

•  𝑘(𝑝,𝑥)~𝑔(|𝑝𝑥|)	

•  𝑎⋅𝑘(𝑝,𝑥)~𝑘(𝑝,𝑎⋅𝑥)	
•  Otherwise,	we	use	level	sets	for	​𝑋↓𝑓 	
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Main	Theorem	[F,	Tukan]

The	sensi2vity	of	a	point	𝑝∈𝑃	is	at	most		is	at	most	
​​max┬𝑥 ⁠​𝑘(𝑝,𝑥)/𝑓(𝑥)  ≤∑𝑖=1↑𝑑▒𝑘(𝑝, ​𝐸↑−1 ​𝑒↓𝑖 )  	

and	the	total	sensi2vity	(~size	of	coreset):	
	


 ​∑𝑝∈𝑃↑▒𝑠(𝑝) ∈𝑑↑𝑂(1) 	
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Proof	Sketch	-	sensi2vity
		
​𝑘(𝑝,𝑥)/𝑓(𝑥) ~ ​𝑘(𝑝,𝑥)/||𝐸𝑥|| ~𝑘(𝑝, ​𝑥/||𝐸𝑥|| )=𝑘(𝑢𝐸, ​𝐸↑−1 𝑦)�
 
     ~𝑔(|𝑢𝑦|)≤𝑔(​|𝑢|↓2 )≤𝑔(​|𝑢|↓1 )	
=𝑔(∑𝑖=1↑𝑑▒|𝑢​𝑒↓𝑖 |  )~∑𝑖=1↑𝑑▒𝑔(|𝑢​𝑒↓𝑖 |)  �
~∑𝑖=1↑𝑑▒𝑘(𝑢𝐸, ​𝐸↑−1 ​𝑒↓𝑖 ) =∑𝑖=1↑𝑑▒𝑘(𝑝, ​𝐸↑−1 ​𝑒↓𝑖 ) 	
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Proof	Sketch	–	total	sensi2vity
		
∑𝑝∈𝑃↑▒∑𝑖=1↑𝑑▒𝑘(𝑝, ​𝐸↑−1 ​𝑒↓𝑖 )  =∑𝑖=1↑𝑑▒∑𝑝∈𝑃↑▒𝑘(𝑝, ​𝐸↑−1 ​𝑒↓𝑖 )    �
=∑𝑖=1↑𝑑▒𝑓(​𝐸↑−1 ​𝑒↓𝑖 )~ ∑𝑖=1↑𝑑▒||𝐸⋅ ​𝐸↑−1 ​𝑒↓𝑖 ||~  �

∑𝑖=1↑𝑑▒||​𝑒↓𝑖 ||=𝑑 	
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How	do	we	compute	the	ellipsoid	E?

𝑓(𝑥)~||𝐸𝑥||=||𝐷​𝑉↑𝑇 𝑥||

𝐸

​𝑋↓𝑓 = ​𝑥∈ ​ℝ↑𝑑  ⁠𝑓(𝑥)≤1  �
     

Only	using	oracle	membership.



•  In	control	space	we	know	start	&	des2na2on	
configura2ons	

•  Can	only	ask	boolean	queries	regarding	
feasible	posi2ons	

•  As	in	Baoleships	(game)

53	

Path	Planning	in	the	Dark



•  We	want	minimum	number	of	queries	for	
maximum	approxima2on	error	

•  Exis2ng	algorithms	have	no	guarantee	for	
op2mality		

•  Approxima2on	by	convex	polygons	

54	

Path	Planning	in	the	Dark
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Path	Planning
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Our	AlgorithmRRT
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Open	Problems	
•  More	Coresets		

-  Deep	learning,	Decision	trees,	Sparse	data	
	3D	Naviga2on	and	Mapping,	Robo2cs	

•  Private	Coresets,	 	[STOC’11,	with	Fiat	et	al.]	
•  Homomorphic	Encryp2on	Coresets	
•  Generic	sowware	library	

-	Coresets	on	Demand	on	the	cloud	

•  Sensor	Fusion	(GPS+Video+Audio+Text+..)		

58	
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Thank	you	!



𝑘−Segment Queries	

Input:	d-dimensional	signal	P	over	2me	
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Coreset	for	k-means		
[Feldman,	Sohler,	Monemizadeh,	SoCG’07]	

Coreset	for	𝑘-means	can	be	computed	by	
choosing	points	from	the	distribu2on:	

sensitivity(𝑝) =	 ​𝑑𝑖𝑠𝑡(𝑝, ​𝑞↑∗ )/∑𝑝′↑▒𝑑𝑖𝑠𝑡(𝑝′, ​𝑞↑∗ )  + ​1/​𝑛↓𝑝  	

​𝑛↓𝑝 	=	number	of	points	in	the	cluster	of	p	

​𝑞↑∗ 	=	k-means	of	P	
	 	 		

 	
|C|=	 ​𝑘⋅𝑑/​𝜖↑2  		



Coreset	for	k-means		
[Feldman,	Sohler,	Monemizadeh,	SoCG’07]	

Coreset	for	𝑘-means	can	be	computed	by	
choosing	points	from	the	distribu2on:	

sensitivity(𝑝) =	 ​𝑑𝑖𝑠𝑡(𝑝, ​𝑞↑∗ )/∑𝑝′↑▒𝑑𝑖𝑠𝑡(𝑝′, ​𝑞↑∗ )  + ​1/​𝑛↓𝑝  	

​𝑛↓𝑝 	=	number	of	points	in	the	cluster	of	p	

​𝑞↑∗ 	=	k-means	of	P	
	 	 		

 	
|C|=	 ​𝑘⋅𝑑/​𝜖↑2  		

Or	approxima2on	[SoCg07,	Feldma,	Sharir,	Fiat]	



Coreset	for	k-means		
[Feldman,	Sohler,	Monemizadeh,	SoCG’07]	

Coreset	for	𝑘-means	can	be	computed	by	
choosing	points	from	the	distribu2on:	

sensitivity(𝑝) =	 ​𝑑𝑖𝑠𝑡(𝑝, ​𝑞↑∗ )/∑𝑝′↑▒𝑑𝑖𝑠𝑡(𝑝′, ​𝑞↑∗ )  + ​1/​𝑛↓𝑝  	

​𝑛↓𝑝 	=	number	of	points	in	the	cluster	of	p	

​𝑞↑∗ 	=	k-means	of	P	
	 	 		

 	
|C|=	 ​𝑘⋅𝑑/​𝜖↑2  				 ​𝑘⋅(​𝑘/𝜀 )/​𝜖↑2  		

Or	approxima2on	[SoCg07,	Feldma,	Sharir,	Fiat]	

	[SODA’13,	Feldman,	Schmidt,	..]	



Coreset	for	k-means		
[Feldman,	Sohler,	Monemizadeh,	SoCG’07]	

Coreset	for	𝑘-means	can	be	computed	by	
choosing	points	from	the	distribu2on:	

sensitivity(𝑝) =	 ​𝑑𝑖𝑠𝑡(𝑝, ​𝑞↑∗ )/∑𝑝′↑▒𝑑𝑖𝑠𝑡(𝑝′, ​𝑞↑∗ )  + ​1/​𝑛↓𝑝  	
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	[SODA’13,	Feldman,	Schmidt,	..]	
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The	chicken-and-egg	problem	

1. We	need	approxima2on	to	compute	the	
coreset	

2. We	compute	coreset	to	get	a	fast	
approxima2on	to	a	problem	

Lee-ways:		
I.  Bi-criteria	approxima2on	
II.  Heuris2cs	
III.	polynomial	2me	reduced	to	linear	2me	
by	the	merge-reduce	tree	



Input:	d-dimensional	signal	P	over	2me	
Query:	k	segments		over	2me	
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𝑘−Segment Queries	

k-Piecewise	linear	func2on	f	over	t	



Input:	d-dimensional	signal	P	over	2me	
Query:	k	segments		over	2me	
Output:	Sum	of	squared	distances	from	P	
	
	

𝑘−Segment Queries	
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10 10|| (10) ||p f−
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(10)f

cost(𝑃,𝑓):=∑𝑡↑▒ ​‖𝑓(𝑡)− ​𝑝↓𝑡 ‖↑2  	



Observa2on:	
No	small	coreset	𝐶⊂𝑃	exists			exists		
for	k-segment	queries	



Input	P:	 	n	points	on	the	x-axis	

1 2 3 4 6 7 8 9 10 11 t5
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Coreset	C: 		all	points	except	one		

Input	P:	 	n	points	on	the	x-axis	



Input	P:	 	n	points	on	the	x-axis	

Coreset	C: 		all	points	except	one		

Query	f:					 	covers	all	except	this	one	
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5|| (5) ||p f−
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Input	P:	 	n	points	on	the	x-axis	

Coreset	C: 		all	points	except	one		

Query	f:					 	covers	all	except	this	one	

Cost(𝑃,𝑓)	>	0	

Cost(𝐶,𝑓)	=	0	



Input	P:	 	n	points	on	the	x-axis	

Coreset	C: 		all	points	except	one		

Query	f:					 	covers	all	except	this	one	

Cost(𝑃,𝑓)	>	0	 Unbounded	factor	
approxima2on	

1 2 3 4 6 7 8 9 10 11 t
5|| (5) ||p f−

5

Cost(𝐶,𝑓)	=	0	



For	every	point	p:		
Sensi2vity(p)	=​​ max┬𝑞∈𝑄  ⁠​𝑑𝑖𝑠𝑡(𝑝,𝑞)/∑𝑝′↑▒𝑑𝑖𝑠𝑡(𝑝′,𝑞)   =1	
	
Total	sensi2vi2es:	n	



Observa2on:		
Points	on	a	segment	can	be	stored		by	
the	two	indexes	of	their	end-points	

1 2 3 4 6 7 8 9 10 11 t5



1 2 3 4 5 6 7 8 9 10 11 t

Observa2on:		
Points	on	a	segment	can	be	stored		by	
the	two	indexes	of	their	end-points	
and	the	slope	of	the	segment	
	



1 2 3 4 5 6 7 8 9 10 11 t

Observa2on:		
Points	on	a	segment	can	be	stored		by	
the	two	indexes	of	their	end-points	
and	the	slope	of	the	segment	
	



Defini2on:	Coreset	
A	weighted	set	𝐶⊂𝑃	such	that			such	that		
for	every	k-segment	f	:	
	 	 	 		cost(𝑃,𝑓)  ~   costw(𝐶,𝑓)	
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1 2 3 4 5 6 7 8 9 10 11 t

10 11p =

10 10|| (10) ||p f−

9
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(10)f

~	

∑𝑡↑▒ ‖𝑓(𝑡)−𝑝𝑡‖ 	 ∑​𝑝↓𝑡 ∈𝐶↑▒𝑤(​𝑝↓𝑡 )⋅ ‖𝑓(𝑡)−𝑝𝑡‖ 	
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Surprising	Applica2ons	

1. (1-epsilon)	approxima2ons:	
Heuris2cs	work	beoer	on	coresets	
	

2. Running	constant	factor	on	epsilon-
coresets	helps	

3. Coreset	for	one	problem	is	good	for	
a	lot	of	unrelated	problems	

4. Coreset	for	O(1)	points	
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Implementa2on		

•  The	worst	case	and	sloppy	(constant)	analysis	is	not	
so	relevant	

•  In	Thoery:		
a	random	sample	of	size	1/𝜖	yields	(1+𝜖)				yields	(1+𝜖)			
approxima2on	with	probability	at	least	1−𝛿.	

						In	Prac2ce:		
	Sample	s	points,	output	the		 		
	approxima2on	𝜖	and	its	distribu2on	

•  Never	implement	the	algorithm	as	explained	in	the	
paper.	
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