Reconstruction de surfaces

Surface Reconstruction

Pierre Alliez

Inria Sophia Antipolis – Méditerranée

TITANE team: https://team.inria.fr/titane/

pierre.alliez@inria.fr

Outline

- Context
 - Sensors
 - Applications
- Problem statement
- Main approaches
- Quest for robustness
- What next

Context

Sensors

- Contact -> contact-free
- Short -> long range sensing

Laser

Aerial

Remote Sensing

Context

Sensors

- Structured-light (infrared, active)
- Passive stereo vision
- Digital cameras

Depth sensing

Photo-modeling

Context

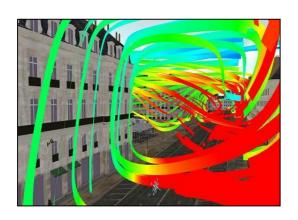
Instrumented sensors

- Accelerometer
- Gyroscope
- GPS
- Compass / magnetometer
- Robotized platforms

Photo Phoenix Aerial Systems

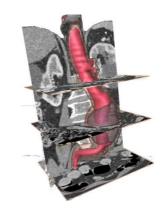
Digitizing the Physical World

Applications

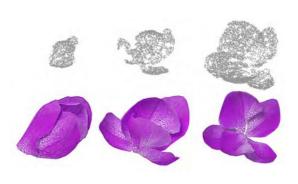


Computational engineering

Reverse engineering



Computer-aided medicine



Biology
Zheng et al. 4D Reconstruction of Blooming Flowers.

Scene interpretation Choi et al. *Robust Reconstruction of Indoor Scenes*.

Underwater exploration Geology / Archeology

Cultural Heritage
Data from Culture 3D Cloud [De Luca].

PROBLEM STATEMENT

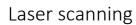
Problem Statement

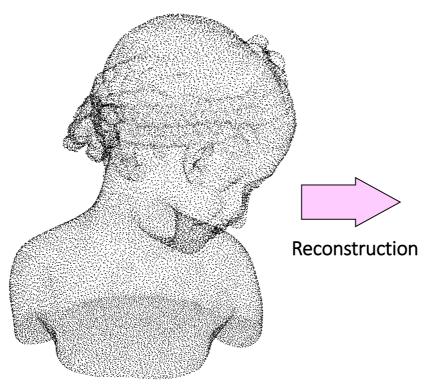
<u>Input</u>:

Dense point set *P* sampled over surface *S*

Output:

Surface: Approximation of *S* in terms of topology and geometry





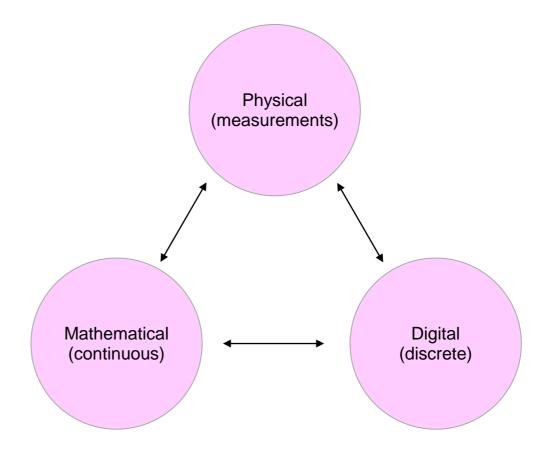
Point set

Reconstructed surface

Scientific Challenge

Transitions

- Physical
- Mathematical
- Digital



Real-World Problems

<u>Input</u>:

Dense point set *P* sampled over surface *S*:

- Imperfect sampling
 - Non-uniform
 - Anisotropic
 - Missing data (holes)
- Uncertainty
 - Noise

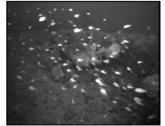


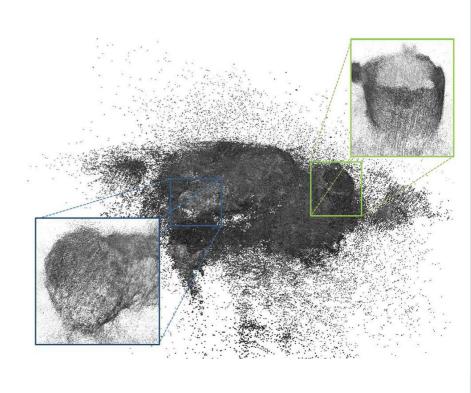
Real-World Problems

<u>Input</u>:

Dense point set *P* sampled over surface *S*:

- Imperfect sampling
 - Non-uniform
 - Anisotropic
 - Missing data (holes)
- Uncertainty
 - Noise
 - Outliers





"La lune": Data from Dassault Systèmes. Sun King's flagship, sank off the Toulon coastline in 1664.

Real-World Problems

<u>Input</u>:

Point set *P* sampled over surface *S*:

- Imperfect sampling
 - Non-uniform
 - Anisotropic
 - Missing data (holes)
- Uncertainty
 - Noise
 - Outliers

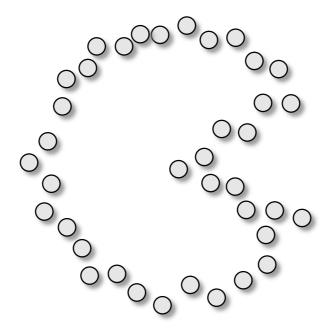
Output:

Surface: Approximation of *S* in terms of topology and geometry

Desired properties:

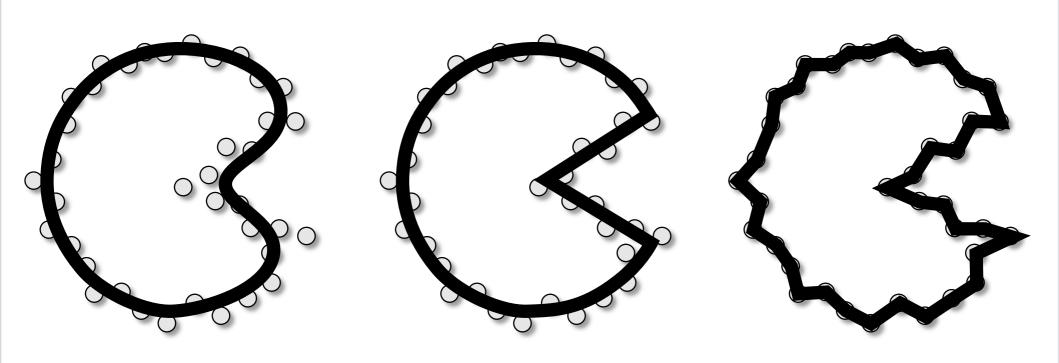
- Watertight
- Intersection free
- Data fitting vs smoothness

III-posed Problem



Many candidate shapes for the reconstruction problem.

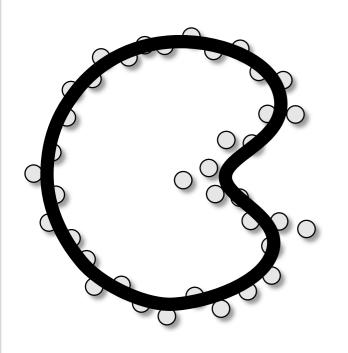
III-posed Problem

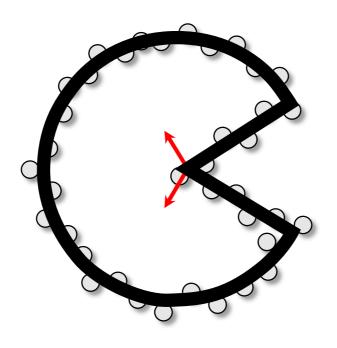


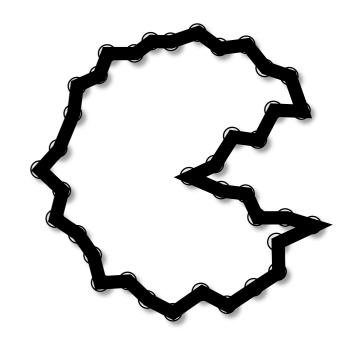
Many candidate shapes for the reconstruction problem.

MAIN APPROACHES

Priors







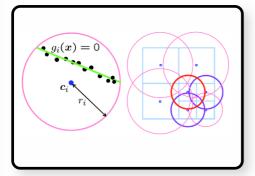
Smooth

Piecewise Smooth

"Simple"

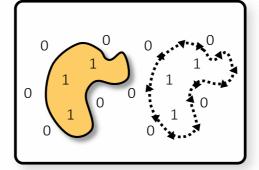
Surface Smoothness Priors

Local Smoothness



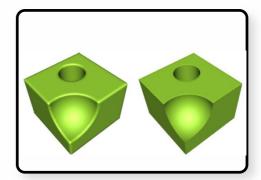
Local fitting
No control away from data
Solution by interpolation

Global Smoothness



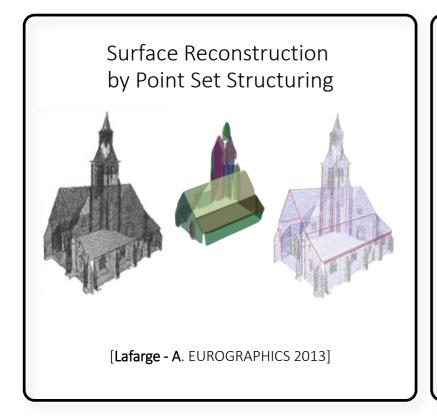
Global: linear, eigen, graph cut, ...
Robustness to missing data

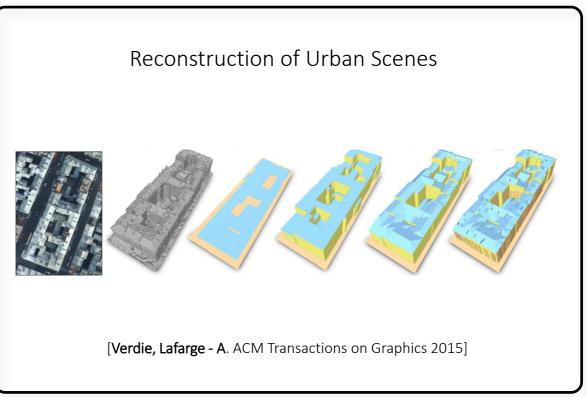
Piecewise Smoothness



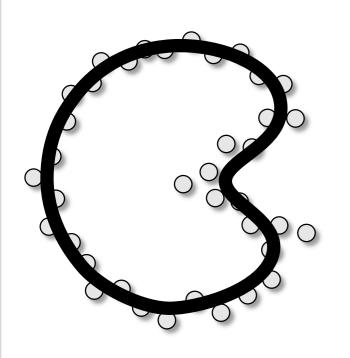
Sharp near features
Smooth away from features

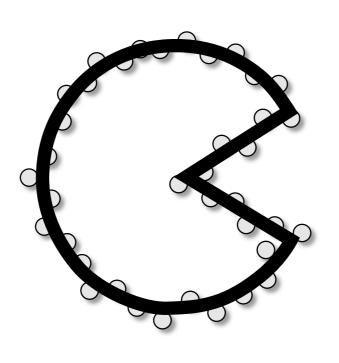
Domain-Specific Priors

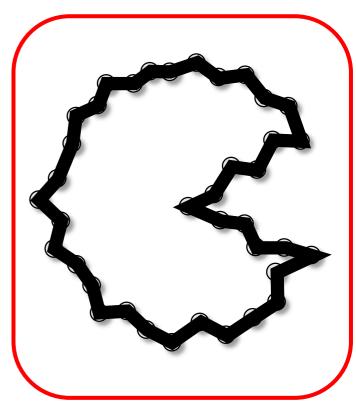




Priors





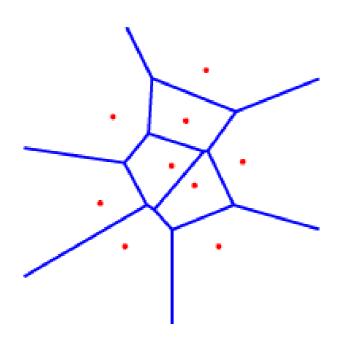


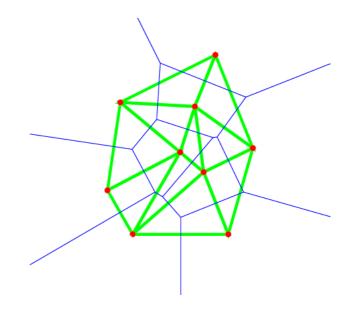
Smooth

Piecewise Smooth

"Simple"

Voronoi Diagram & Delaunay Triangulation





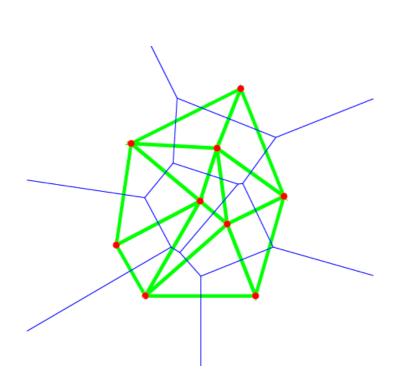
Let $\mathcal{E} = \{\mathbf{p_1}, \dots, \mathbf{p_n}\}$ be a set of points (so-called sites) in \mathbb{R}^d . We associate to each site $\mathbf{p_i}$ its Voronoi region $V(\mathbf{p_i})$ such that:

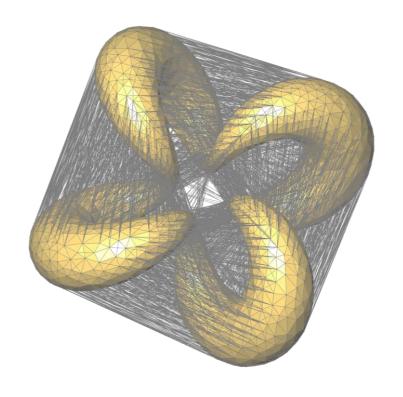
$$V(\mathbf{p_i}) = \{\mathbf{x} \in \mathbb{R}^d : \|\mathbf{x} - \mathbf{p_i}\| \le \|\mathbf{x} - \mathbf{p_j}\|, \forall j \le n\}.$$

Delaunay triangulation: simplicial complex such that k+1 points form a Delaunay simplex if their Voronoi cells have nonempty intersection.

Delaunay-based Reconstruction

Key idea: assuming dense enough sampling, reconstructed triangles are Delaunay triangles.



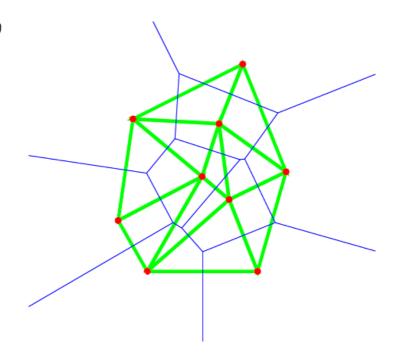


Delaunay-based Reconstruction

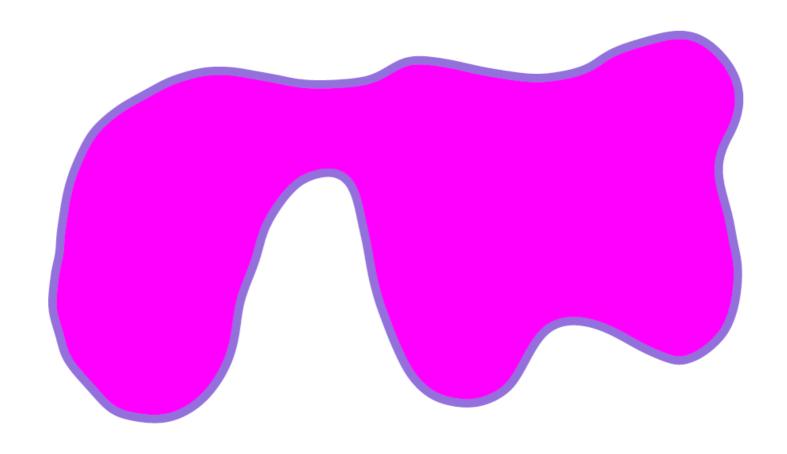
Key idea: assuming <u>dense enough</u> sampling, reconstructed triangles are Delaunay triangles.

First define

- Medial axis
- Local feature size
- Epsilon-sampling

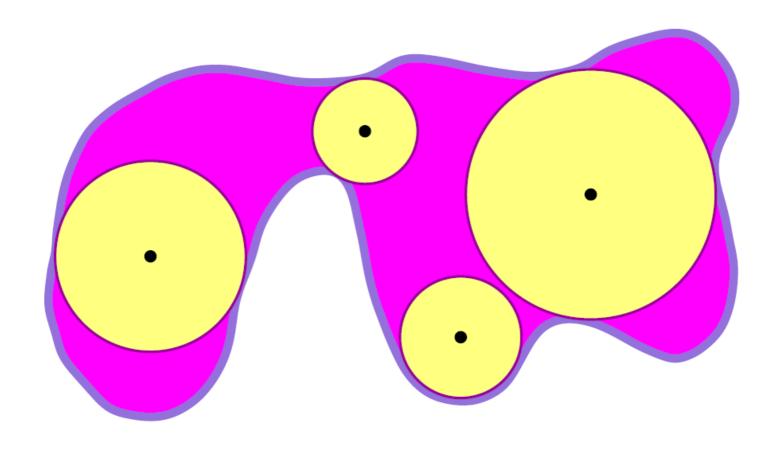


Medial Axis (2D)





Medial Axis



Medial Axis

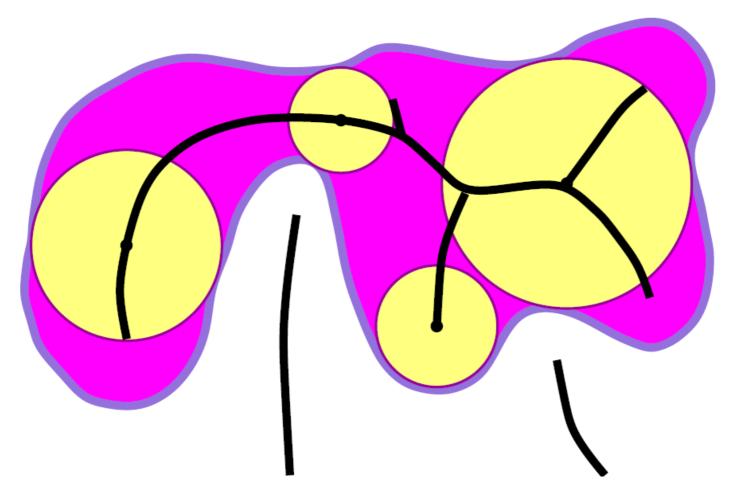
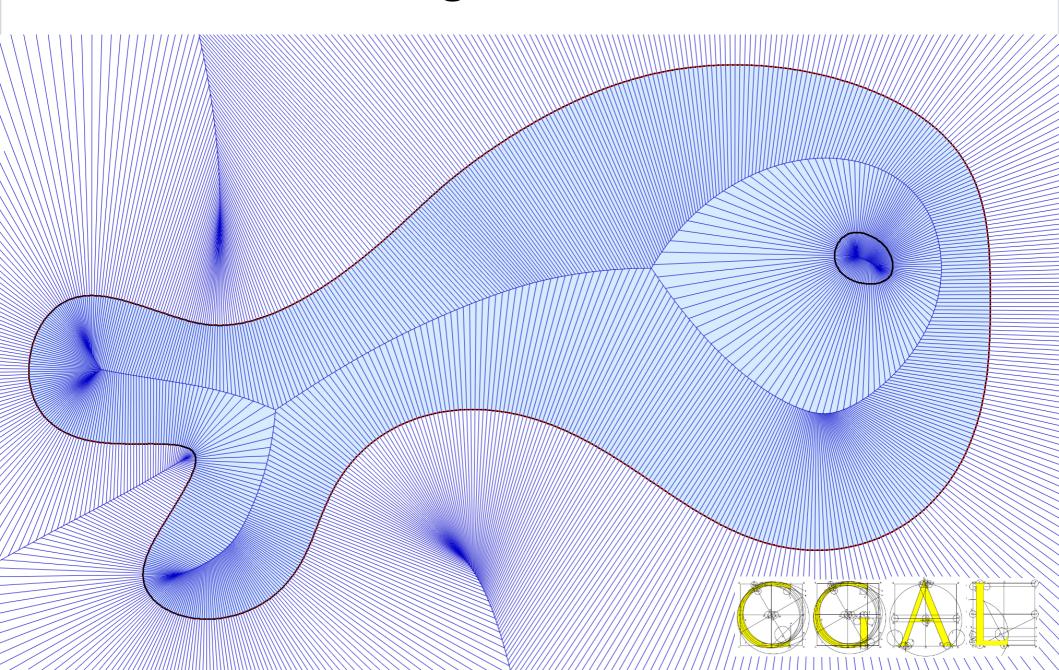
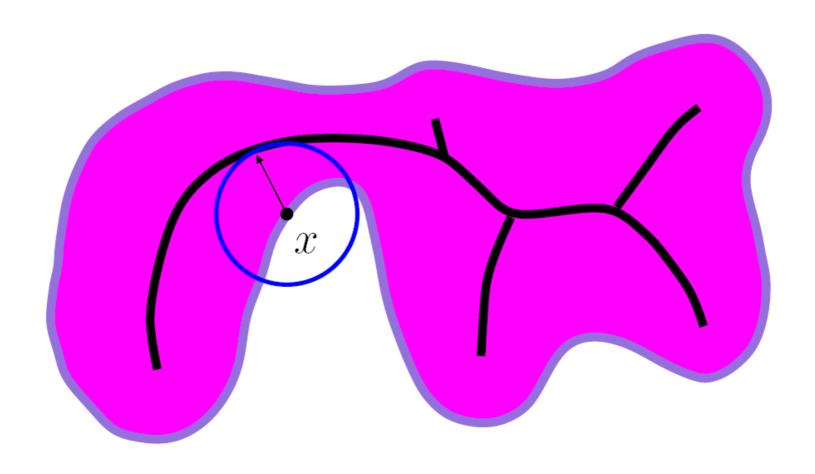


Figure from O. Devillers

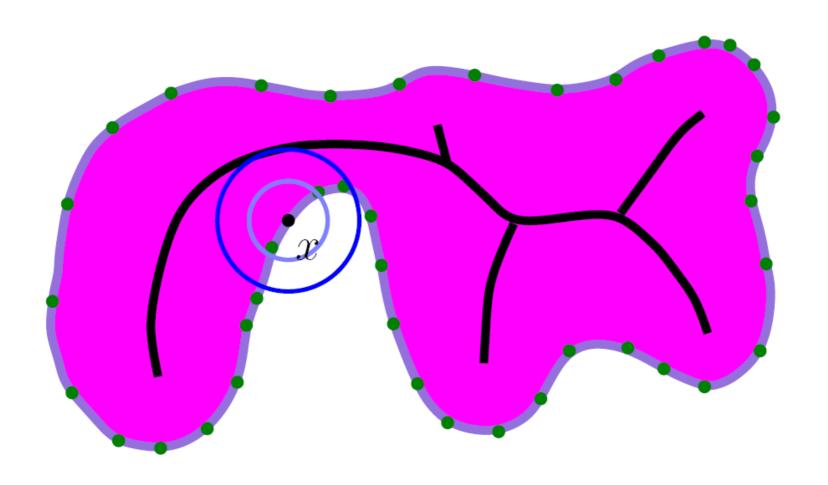
Voronoi Diagram & Medial Axis



Local Feature Size

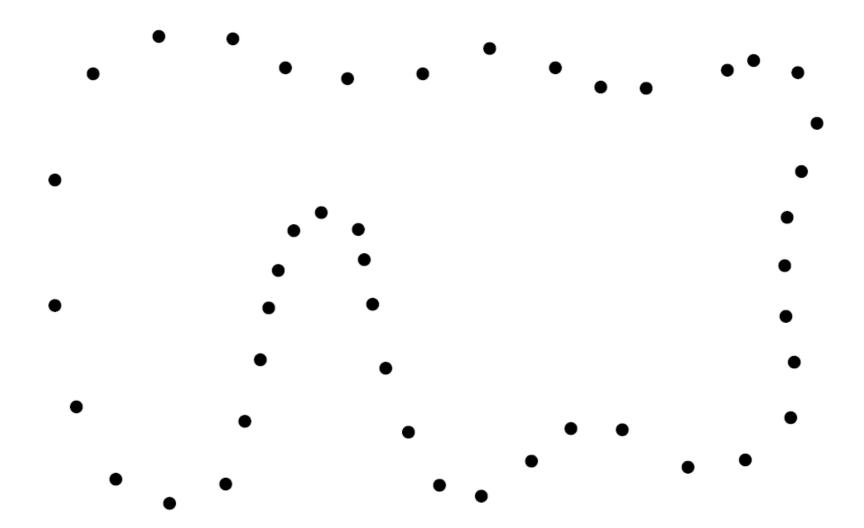


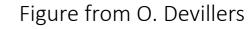
Epsilon-Sampling



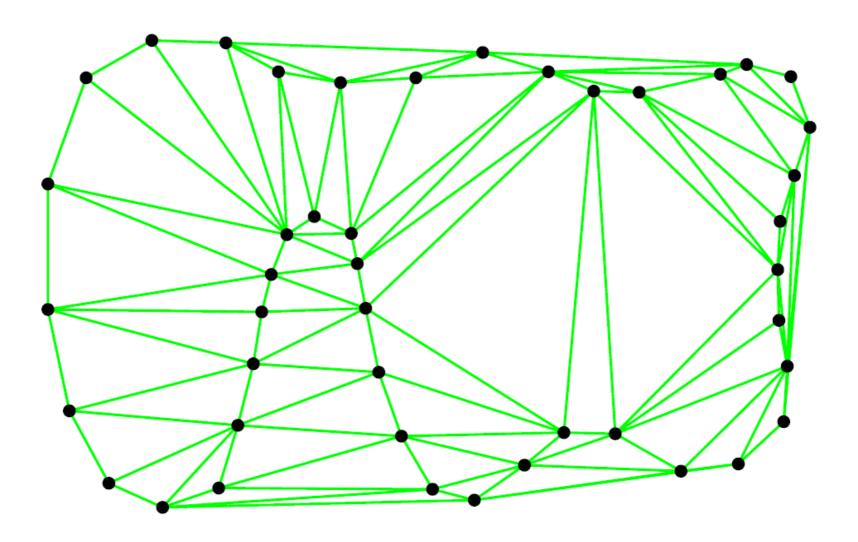


Crust Algorithm [Amenta et al.]



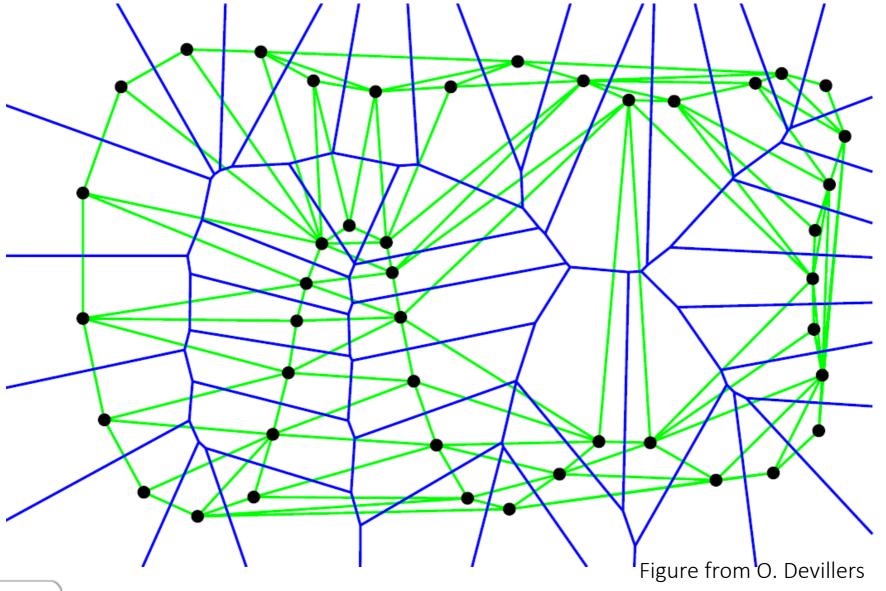


Delaunay Triangulation

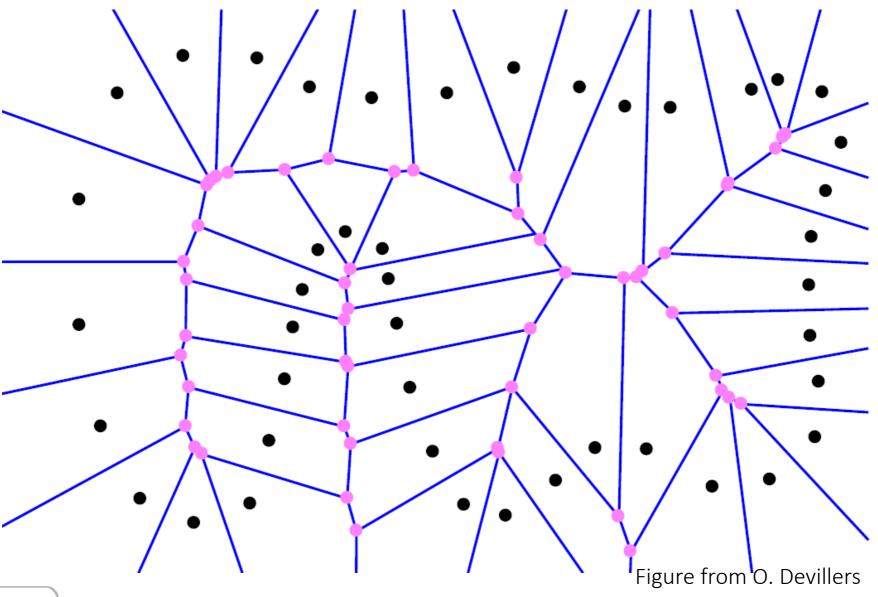




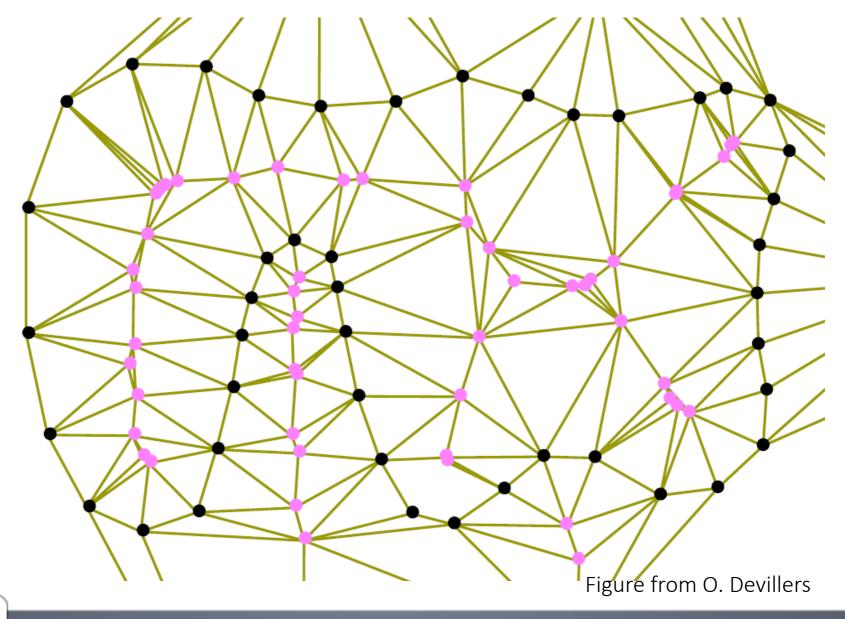
Delaunay Triangulation & Voronoi Diagram



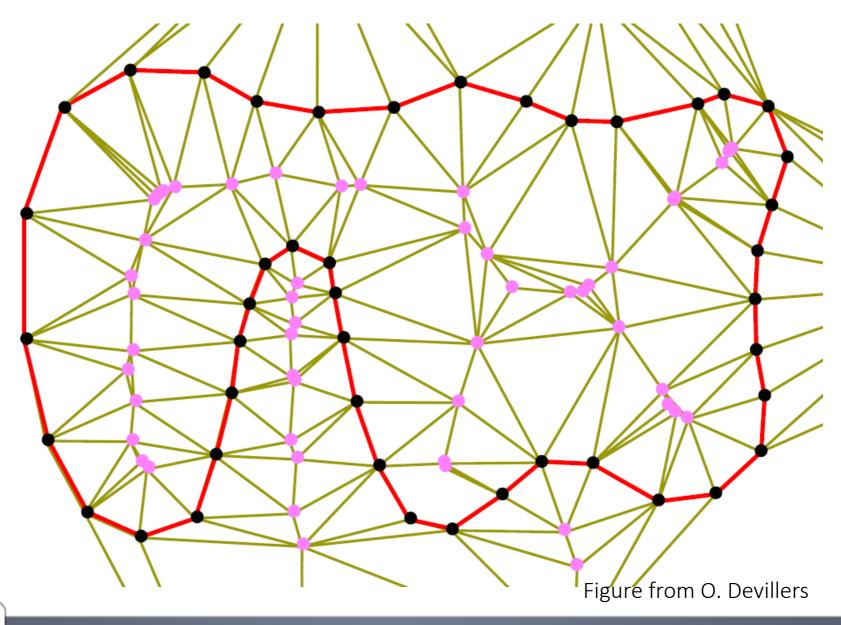
Voronoi Vertices



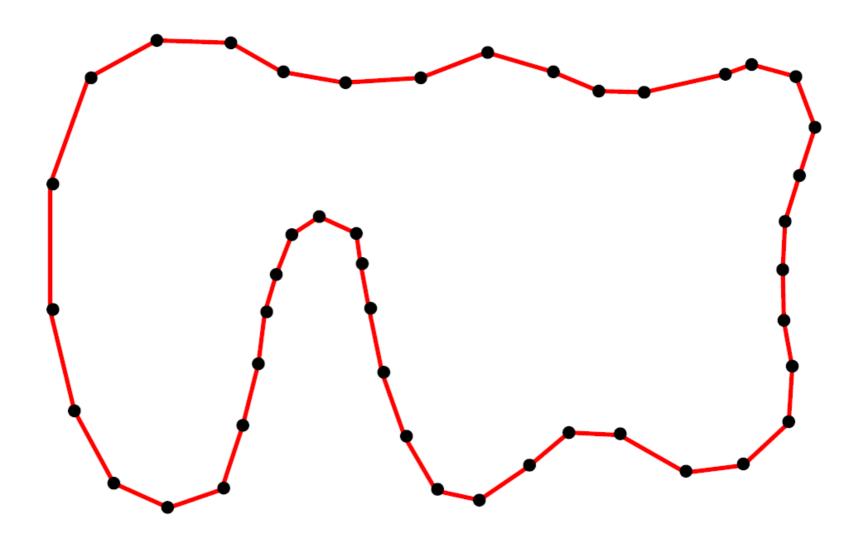
Augmented Delaunay Triangulation



Crust



Crust



Delaunay-based Reconstruction

Several Delaunay algorithms are <u>provably correct</u>

- Boissonnat
- Amenta, Bern, Eppstein
- Attali
- Dey, Goswami
- Cazals & Giesen
- •

Dey. Curve and surface reconstruction: algorithms with mathematical analysis.

Delaunay-based Reconstruction

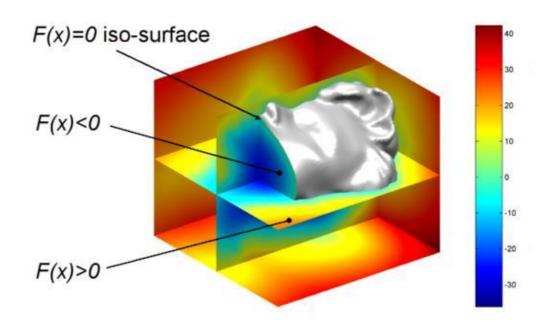
Several Delaunay algorithms are **provably correct**... in the absence of noise and undersampling.

———— perfect data ?

Delaunay-based Reconstruction

Several Delaunay algorithms are **provably correct**... in the absence of noise and undersampling.

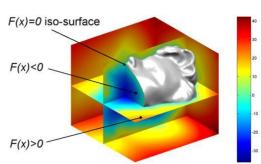
Motivates reconstruction by fitting approximating implicit surfaces



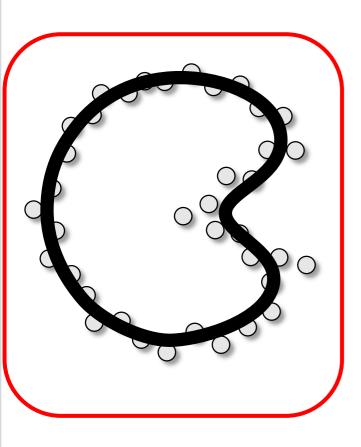
Implicit Surface Approaches

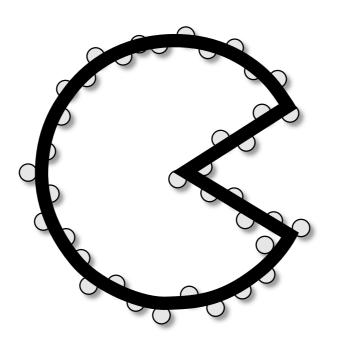
Solve for scalar function (IR³ -> IR) defined as approximate

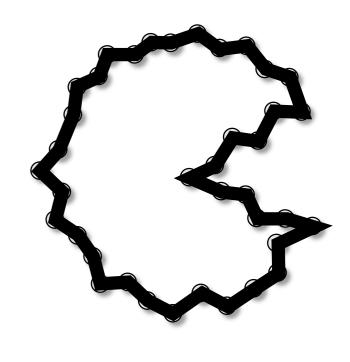
- Signed distance to inferred surface S
 [Hoppe 92, Carr et al. 01, Belyaev et al. 02]
- Unsigned distance to S
 [Hornung-Kobbelt 06]
- <u>Indicator</u> (characteristic) function of inferred solid [Kahzdan et al. 06]



Priors







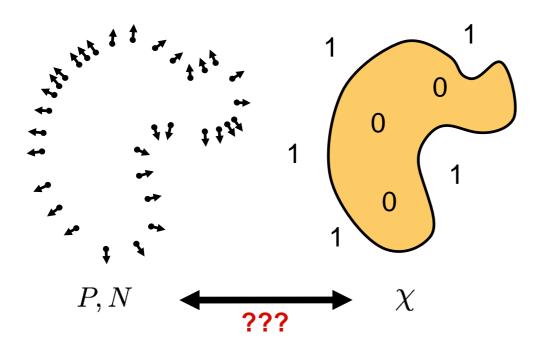
Smooth

Piecewise Smooth

"Simple"

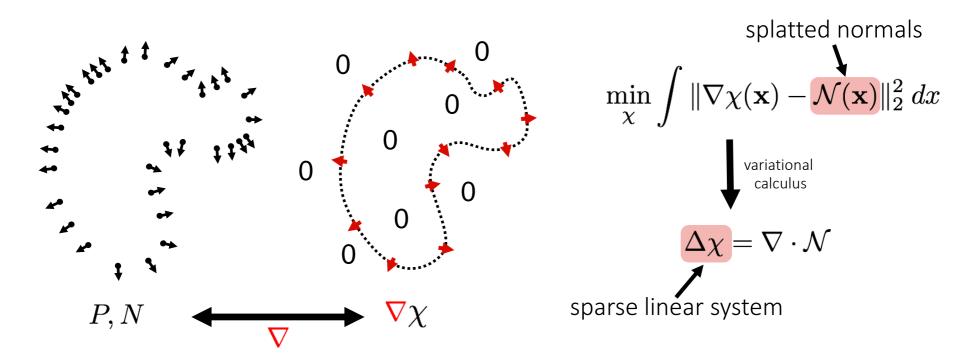
Indicator Function

Compute indicator function from oriented points (points + normals)



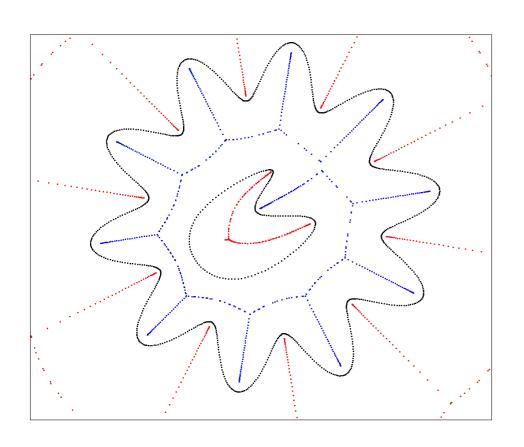
Poisson Surface Reconstruction

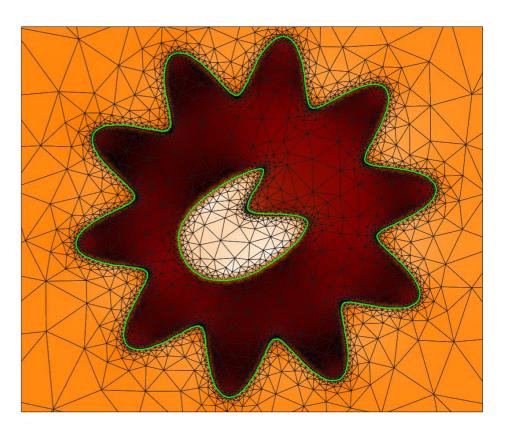
Compute indicator function from oriented points



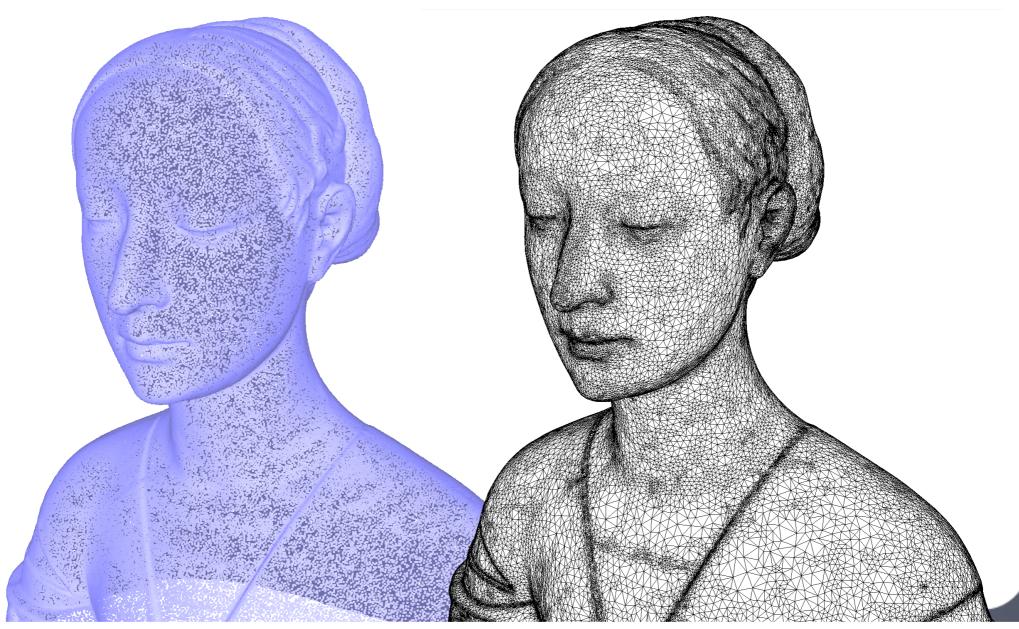
Poisson Surface Reconstruction.
Kazhdan, Bolitho, Hoppe.
EUROGRAPHICS Symposium on Geometry Processing 2006.

2D Poisson Reconstruction





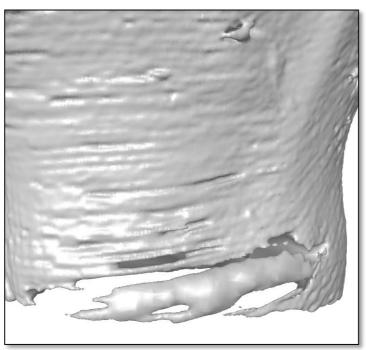
3D Poisson Reconstruction

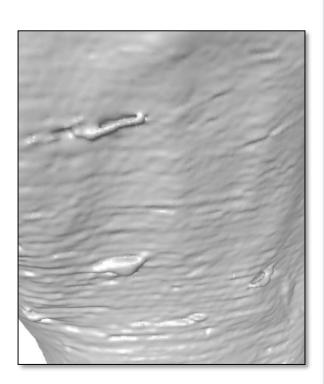


Oriented point set (data from CNR Pisa)

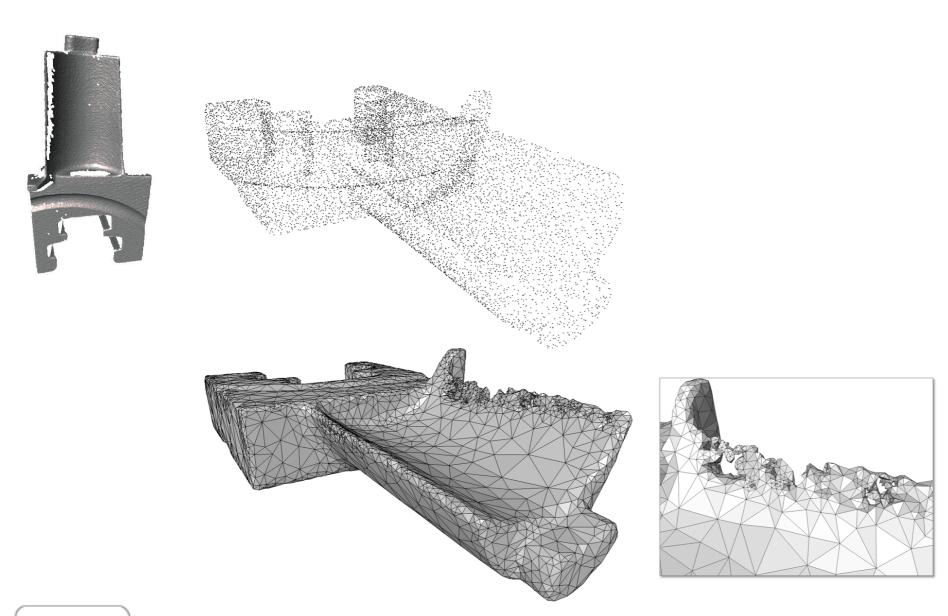
Reconstructed surface (via CGAL library)

Failure Case 1



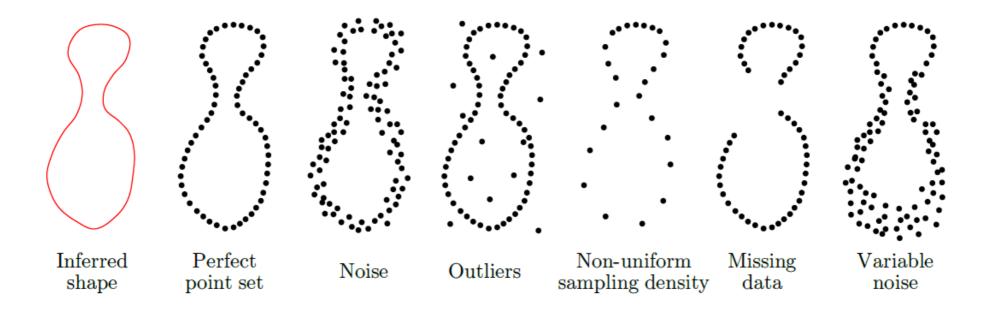


Failure Case 2



QUEST FOR ROBUSTNESS

Quest for Robustness



Poisson Reconstruction

Requires <u>oriented normals</u>, as many other implicit approaches.

Poisson Reconstruction

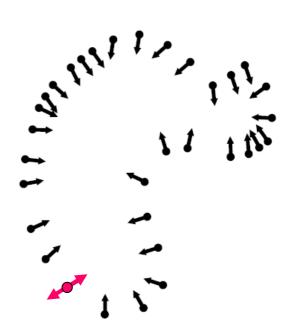
Requires <u>oriented normals</u>, as many other implicit approaches.

Normal estimation Normal orientation

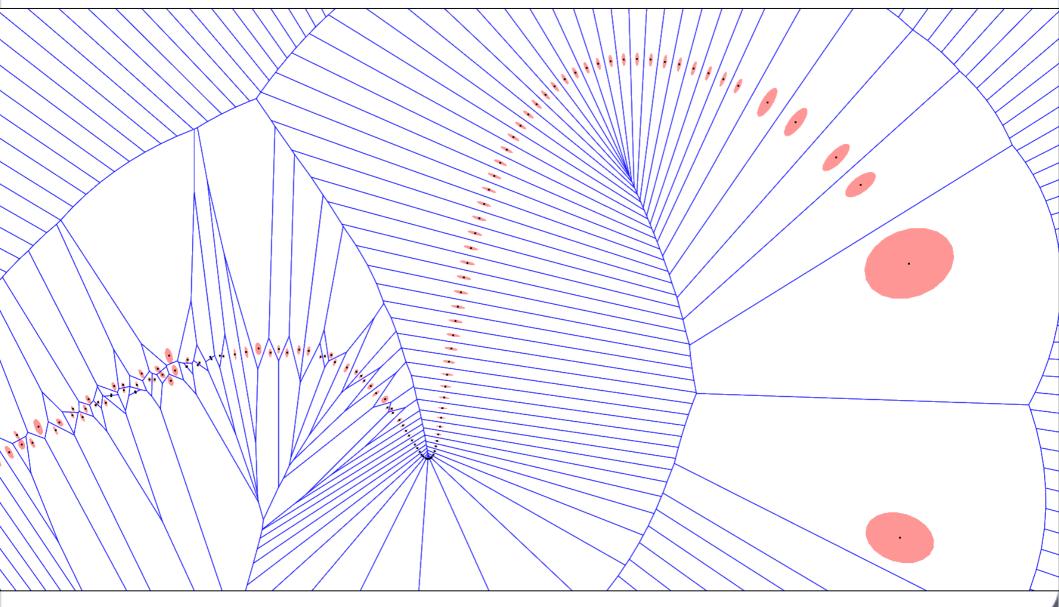
ill-posed problems

Poisson Reconstruction

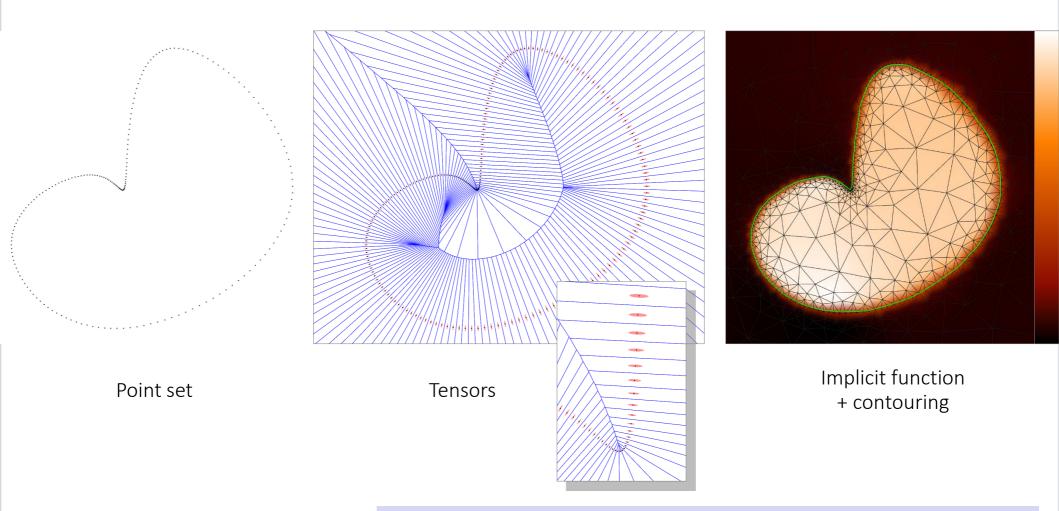
Can we deal with <u>unoriented normals</u>?



Unoriented Normals?



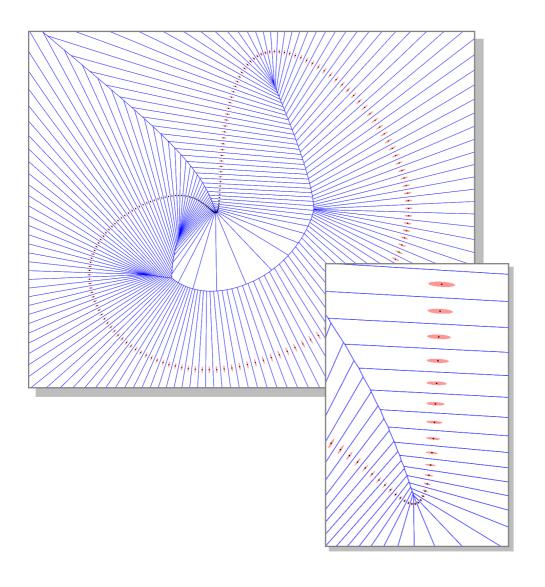
Spectral Reconstruction

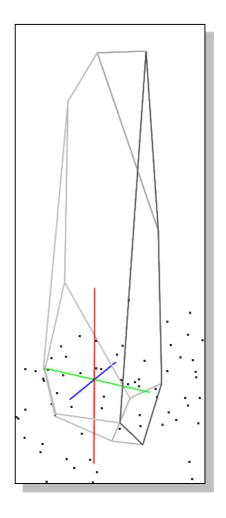


Voronoi-based Variational Reconstruction of Unoriented Point Sets. A., Cohen-Steiner, Tong, Desbrun.

EUROGRAPHICS Symposium on Geometry Processing 2007.

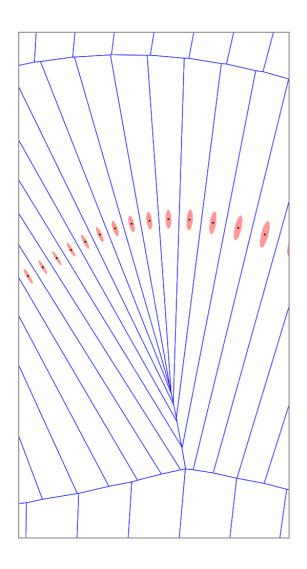
Tensor Estimation

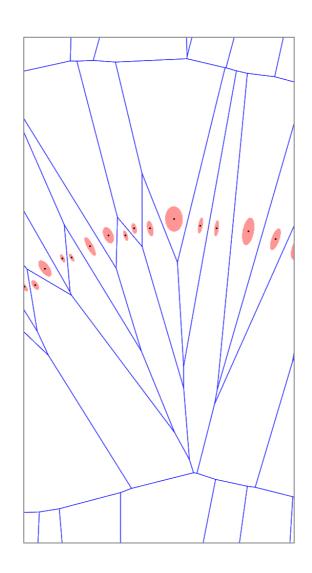


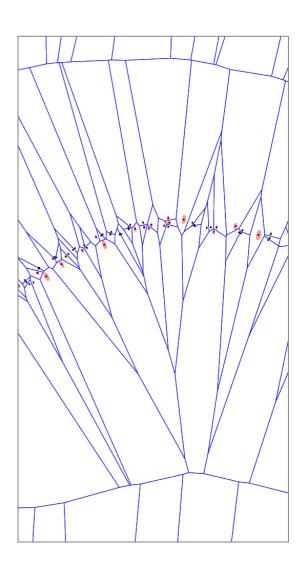


$$\int_{\Omega} (X - p)(X - p)^T dV$$

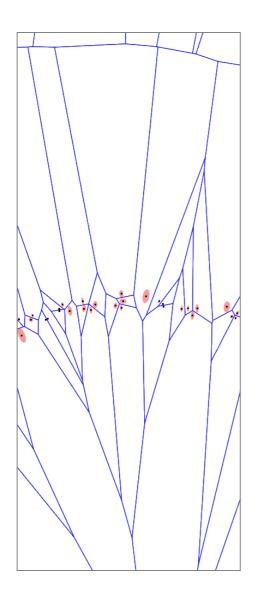
Noise-free vs Noisy

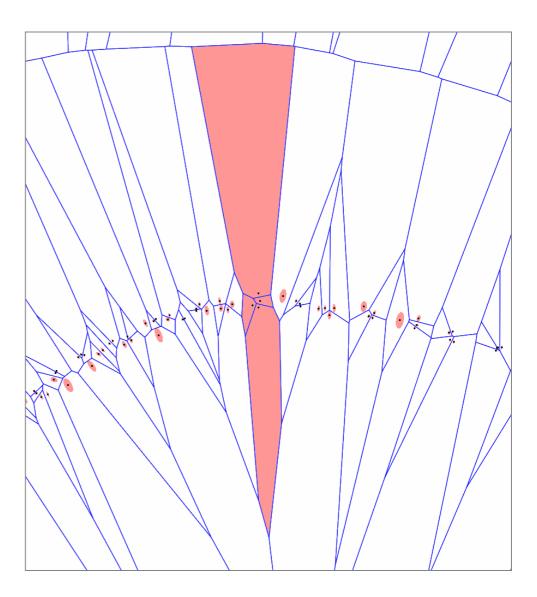




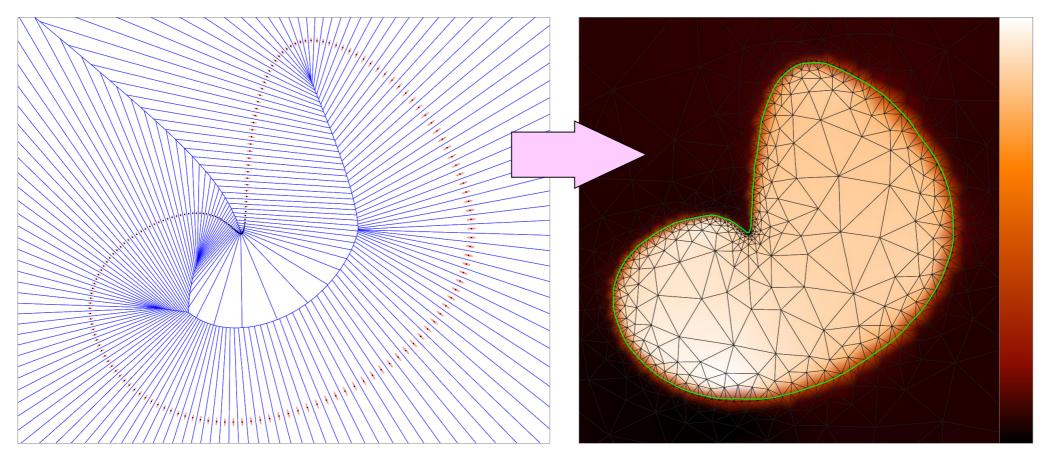


Dealing with Noise





Implicit Function

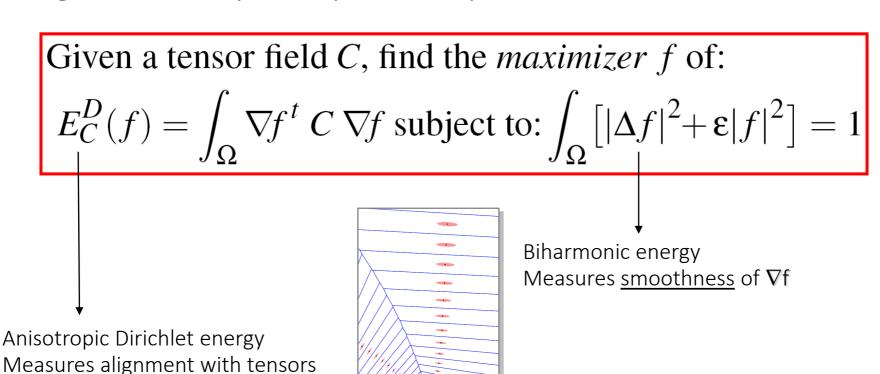


Tensors

Implicit function

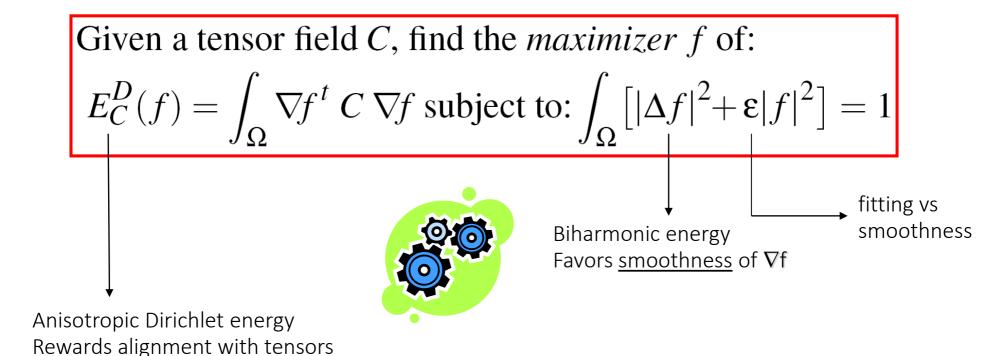
Formulation

Find implicit function f such that its gradient ∇f best aligns to the principal component of the tensors.



Formulation

Find implicit function f such that its gradient ∇f best aligns to the principal component of the tensors.



Rationale

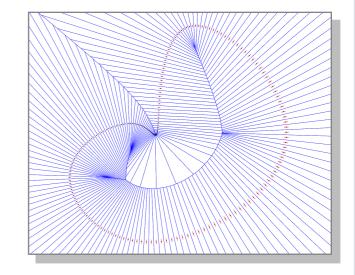
On areas with:

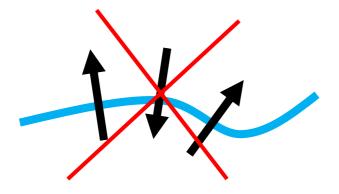
anisotropic tensors: favors alignment

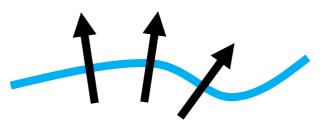
<u>isotropic</u> tensors: favors smoothness

<u>Large aligned gradients + smoothness</u>

leads to consistent orientation of ∇f







Generalized Eigenvalue Problem

Given a tensor field C, find the maximizer f of:

$$E_C^D(f) = \int_{\Omega} \nabla f^t C \nabla f$$
 subject to: $\int_{\Omega} [|\Delta f|^2 + \varepsilon |f|^2] = 1$

A: anisotropic Laplacian operator

$$E_C^D(F) \approx F^t A F$$

B: isotropic Bilaplacian operator

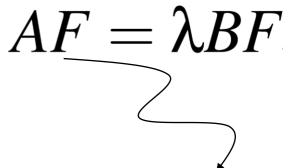
$$E^B(f) \approx F^t B F$$

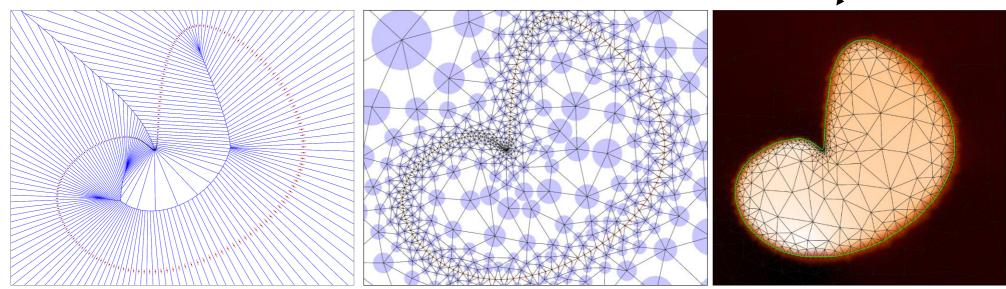
$$AF = \lambda BF$$

max

Eigenvector

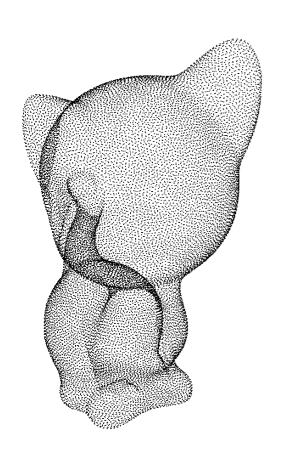
Generalized Eigenvalue Problem

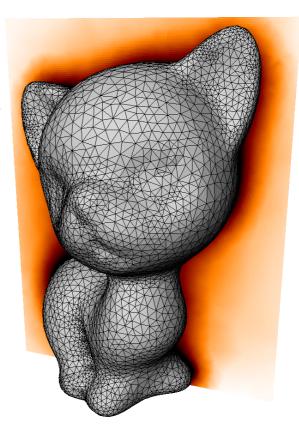




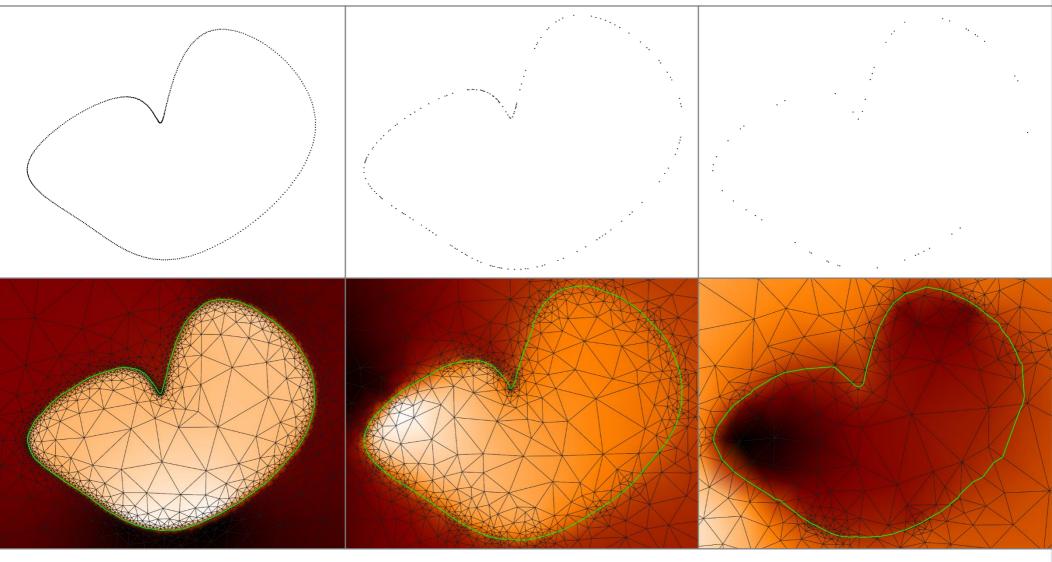
Eigenvector

Implicit Reconstruction

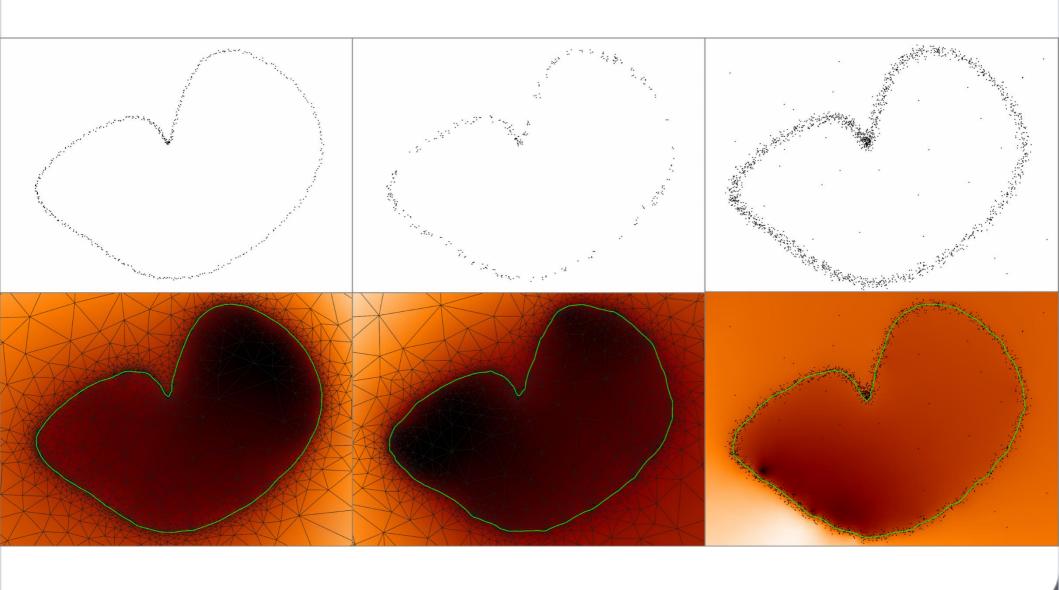




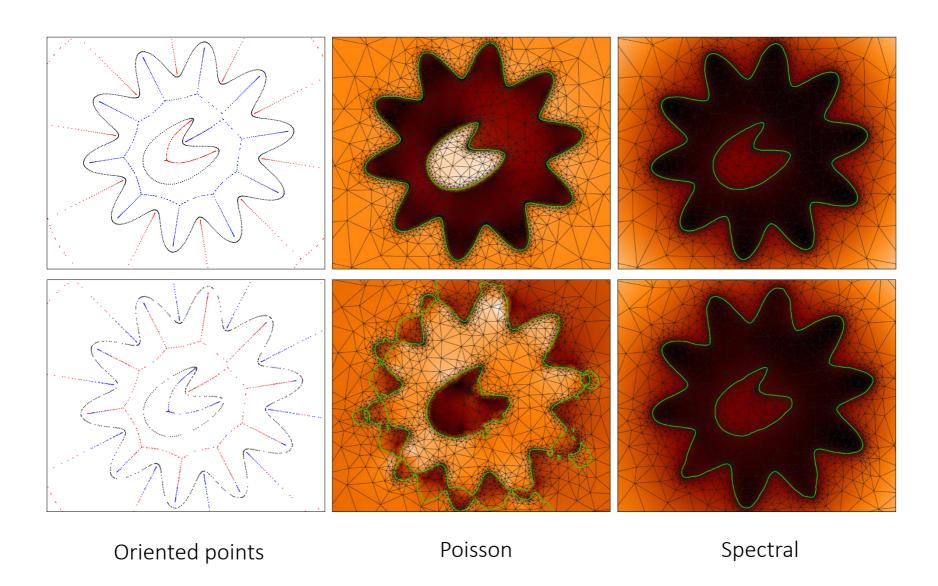
Robustness to Sparse Sampling



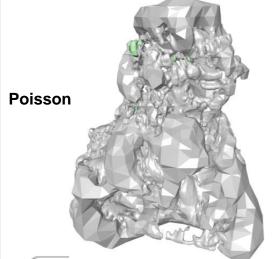
Robustness to Noise

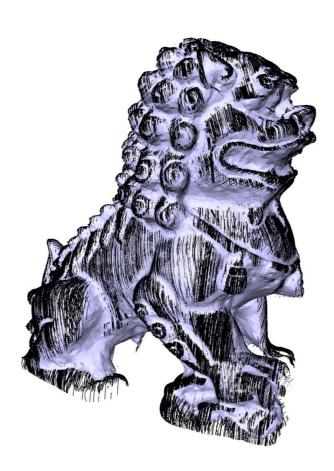


vs Poisson Reconstruction



vs Poisson Reconstruction

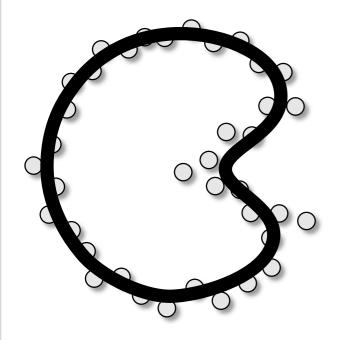


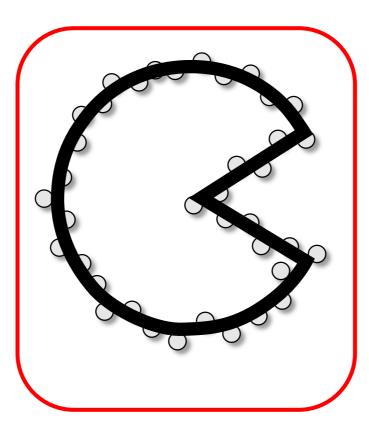


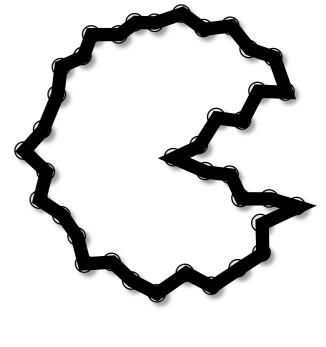
Priors

Perfect point set

Non-uniform sampling density







Smooth

Piecewise Smooth

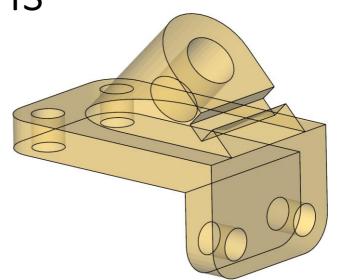
"Simple"

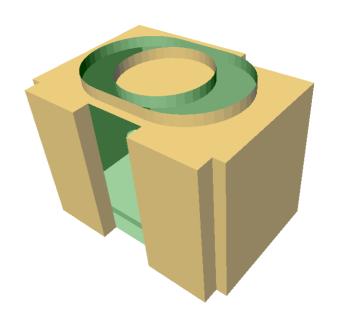
Motivations

Complex shapes:

- Sharp features
- Boundaries
- Non-manifold features

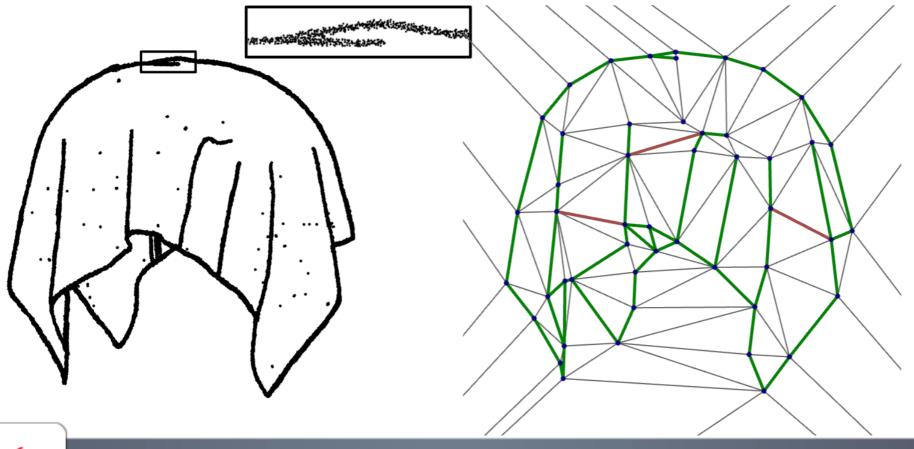
Calls for feature preservation





Approach in 2D

Given a point set S, find a coarse triangulation T such that S is well approximated by uniform measures on the 0- and 1-simplices of T.



Approach in 2D

Given a point set S, find a coarse triangulation T such that S is well approximated by uniform measures on the O- and 1-simplices of T.

How to measure distance D(S,T)?

⇒ optimal transport between measures

How to construct T that minimizes D(S,T)?

optimal location problem \Rightarrow greedy decimation

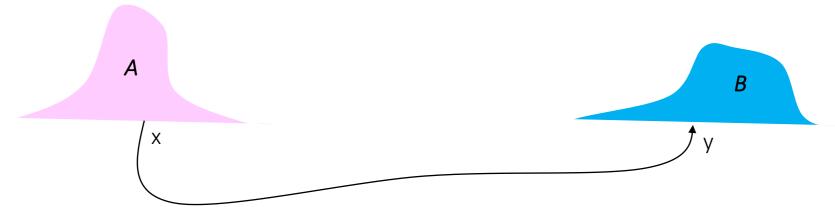
- Mérigot
- Peyré
- Schmitzer
- Cuturi
- Solomon
- ...

Distance between Measures (1D)

Transport plan: π on $\mathbb{R} \times \mathbb{R}$ whose marginals are A and B

Transport cost:
$$W_2(A,B,\pi) = \left(\int_{\mathbb{R}\times\mathbb{R}} \|x-y\|^2 d\pi(x,y)\right)^{1/2}$$

Optimal transport: $W_2(A, B) = \inf_{\pi} W_2(A, B, \pi)$



Distance between Measures (1D)

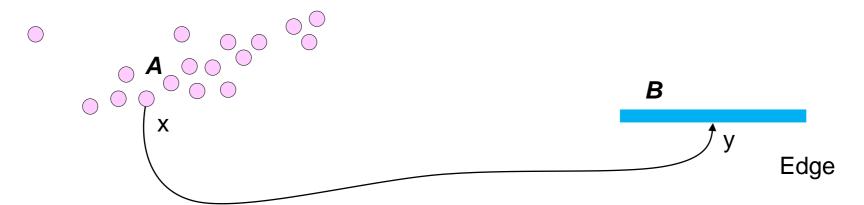
Transport plan: π on $\mathbb{R} \times \mathbb{R}$ whose marginals are A and B

Transport cost: $W_2(A,B,\pi) = \left(\int_{\mathbb{R} \times \mathbb{R}} \|x-y\|^2 d\pi(x,y)\right)^{1/2}$

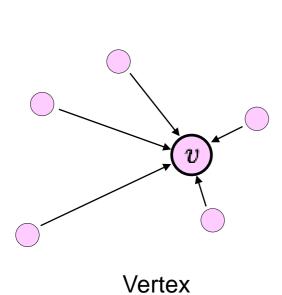
Optimal transport: $W_2(A,B) = \inf_{\pi} W_2(A,B,\pi)$

(discrete measure)

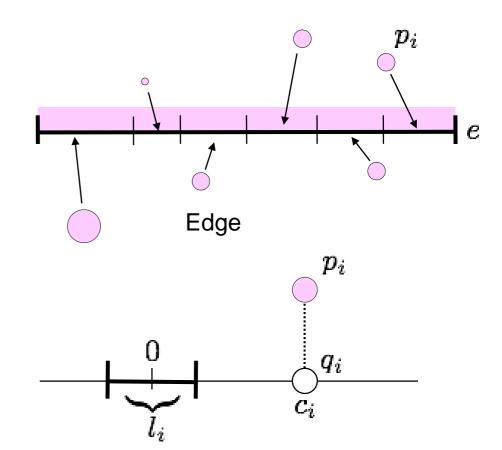
(continuous measure)



Piecewise Uniform Measures

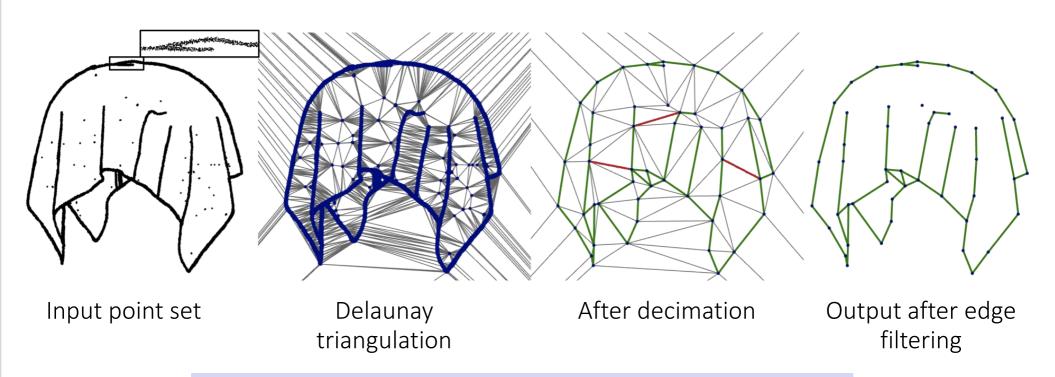


$$W_2(v, S_v) = \sqrt{\sum_{p_i \in S_v} m_i \|p_i - v\|^2}.$$



$$N(e, S_e) = \sqrt{\sum_{p_i \in S_e} m_i \|p_i - q_i\|^2}$$
 $T(e, S_e) = \sqrt{\sum_{p_i \in S_e} \frac{M_e}{|e|} \int_{-l_i/2}^{l_i/2} (x - c_i)^2 dx} = \sqrt{\sum_{p_i \in S_e} m_i \left(\frac{l_i^2}{12} + c_i^2\right)}$

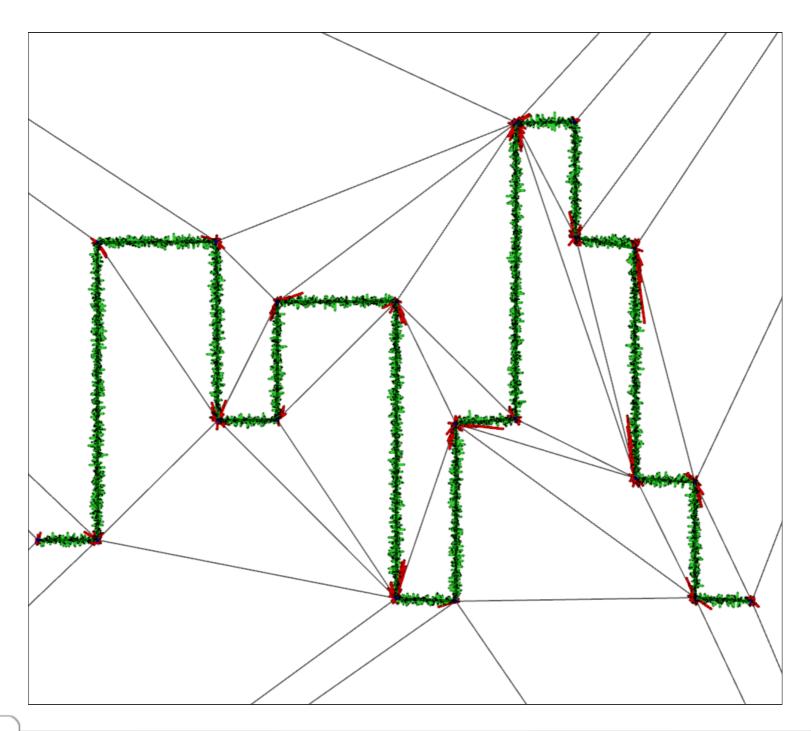
Algorithm Overview



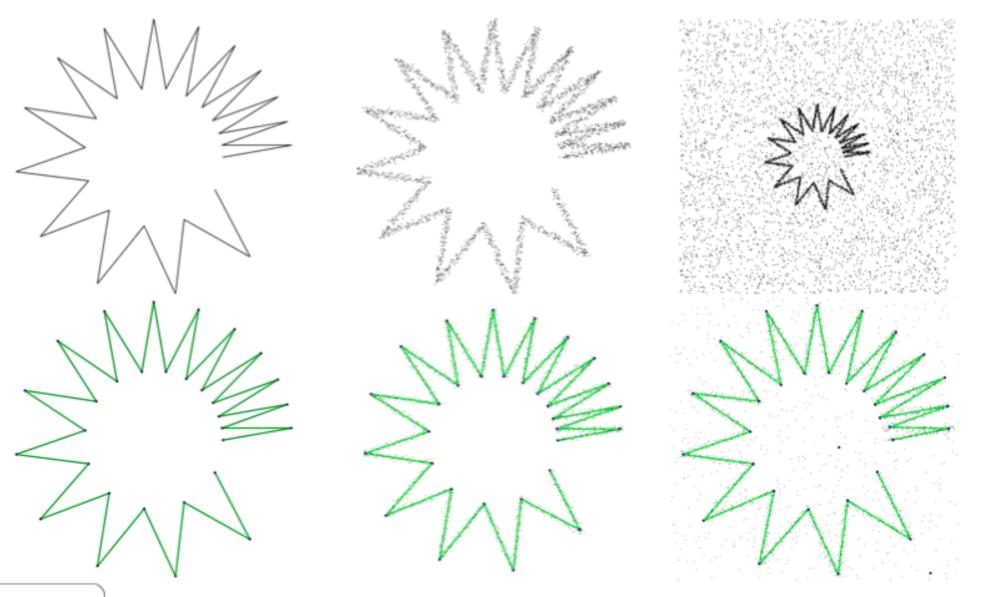
An Optimal Transport Approach to Robust Reconstruction and Simplification of 2D Shapes.

De Goes, Cohen-Steiner, A., Desbrun.

EUROGRAPHICS Symposium on Geometry Processing 2011.

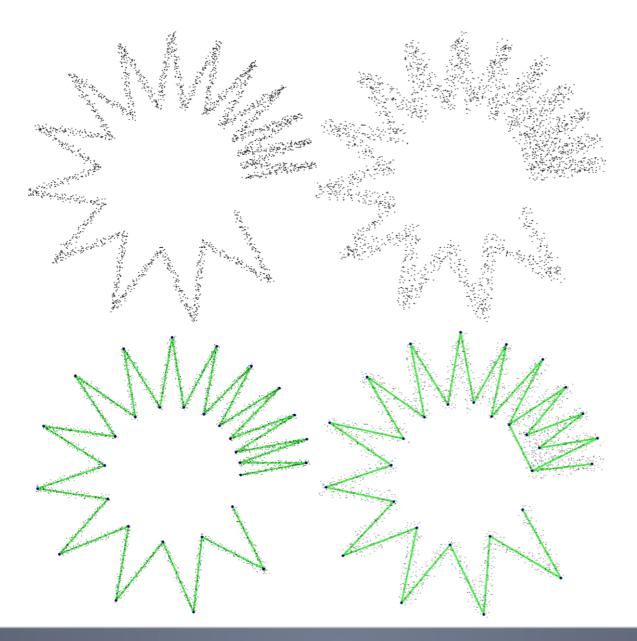


Robustness

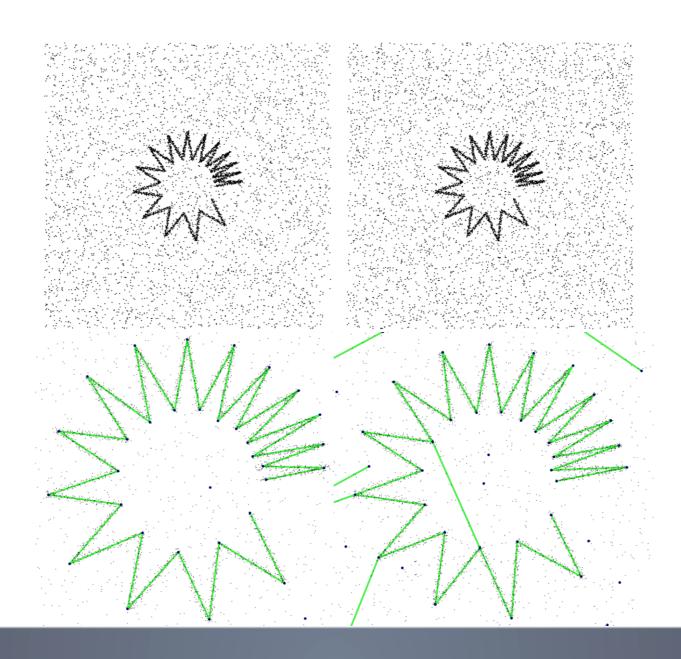


(nría

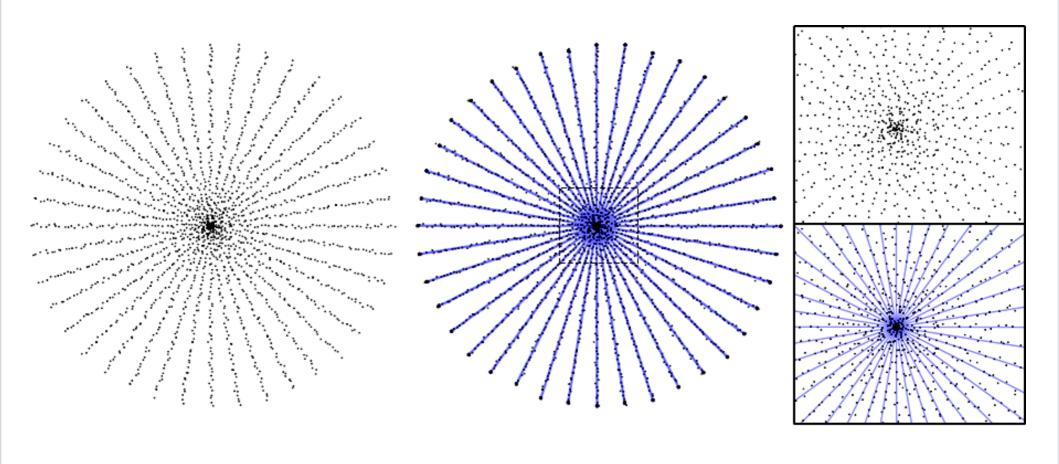
More Noise



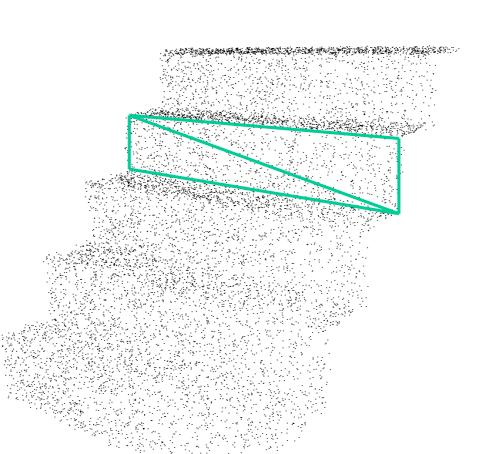
More Outliers



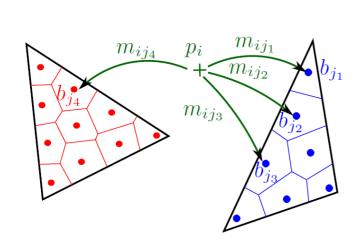
Features and Robustness



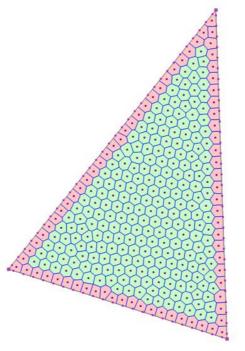
Surface Reconstruction?



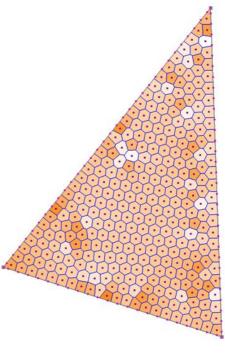
Surface Reconstruction?



Fractional transport plan Piecewise uniform measure



Voronoi "Bins"

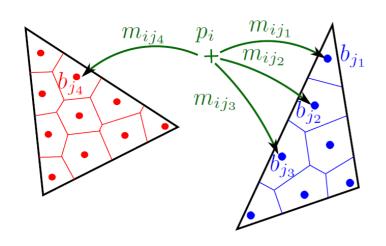


Bin capacities

Solve through Linear Programming

Minimize
$$\sum_{ij} m_{ij} ||p_i - b_j||^2$$

w.r.t. the variables m_{ij} and l_j , and subject to:

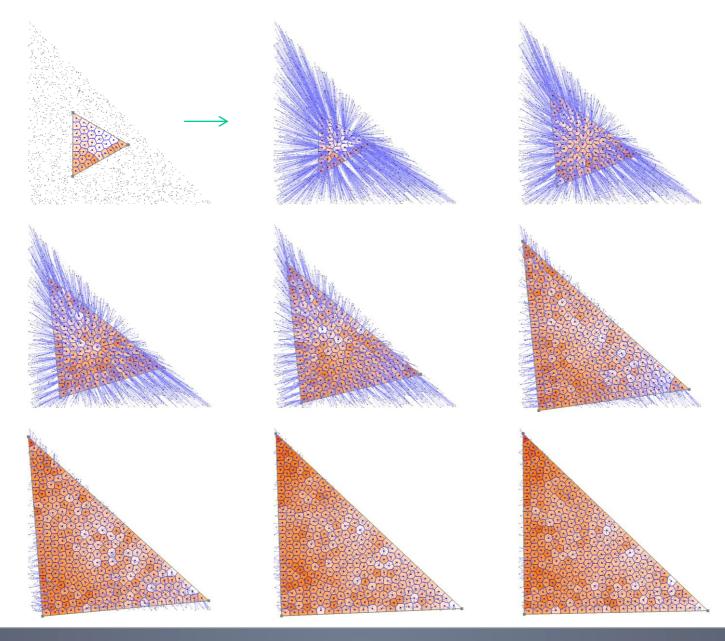


$$\begin{cases} \forall i: \sum_j m_{ij} = m_i & \text{Mass conservation} \\ \forall j: \sum_i m_{ij} = c_j \cdot l_{s(j)} & \text{Piecewise uniform} \\ \forall i, \ j: m_{ij} \geq 0, \ l_j \geq 0 & \text{Positive densities} \end{cases}$$

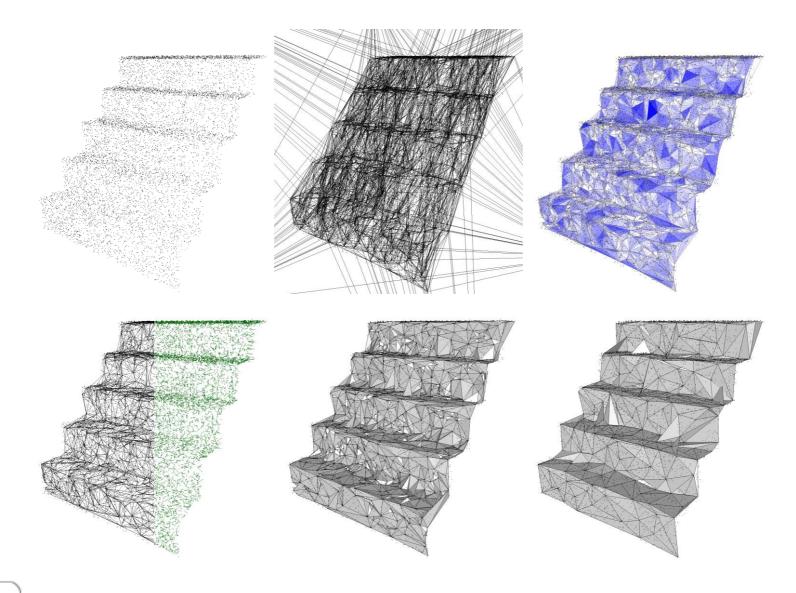
Feature-Preserving Surface Reconstruction and Simplification from Defect-Laden Point Sets.

Digne, Cohen-Steiner, A., Desbrun, De Goes. Journal of Mathematical Imaging and Vision.

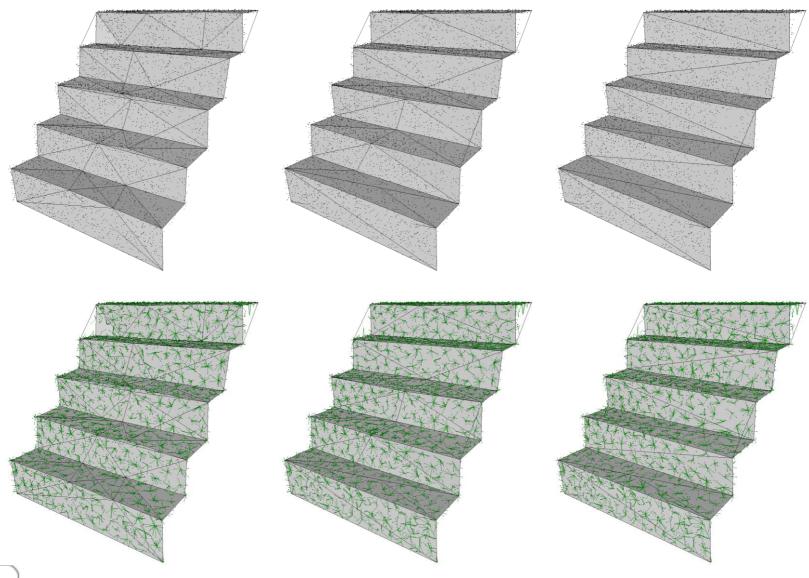
Vertex Relocation



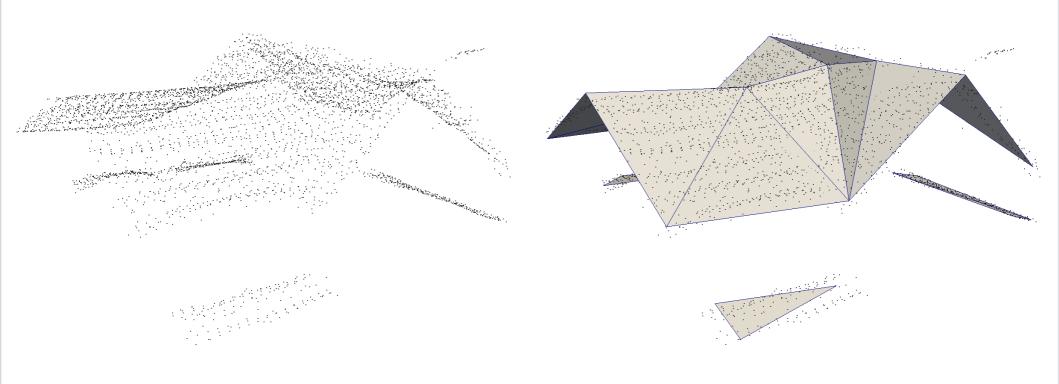
Stairs



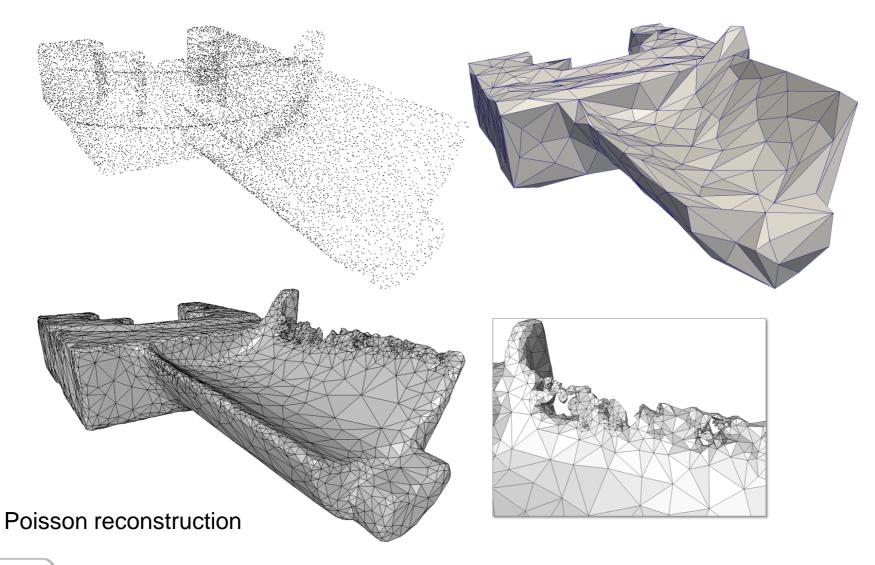
Stairs



LIDAR Data (urban)

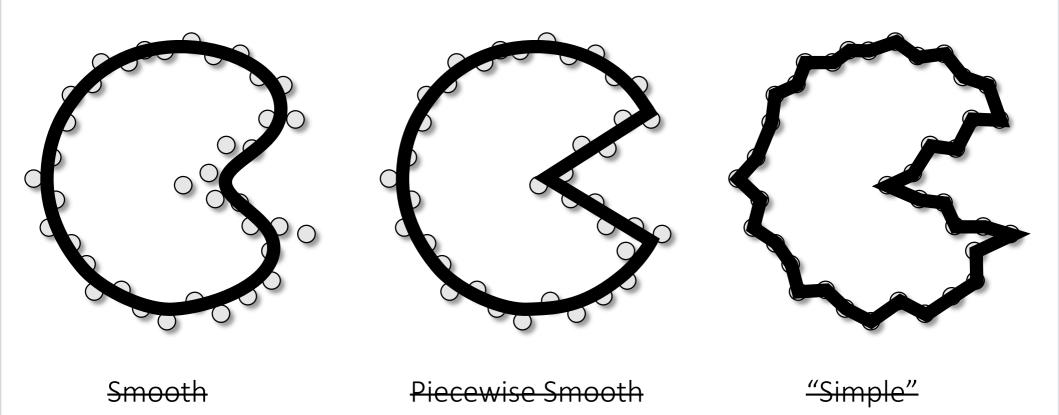


Blade



WHAT NEXT

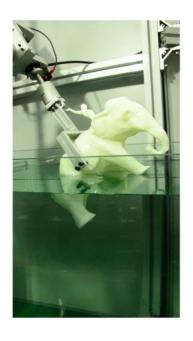
Priors

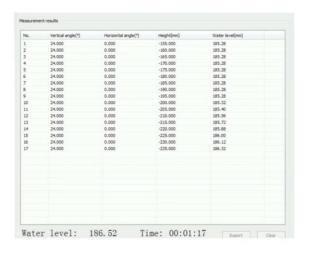


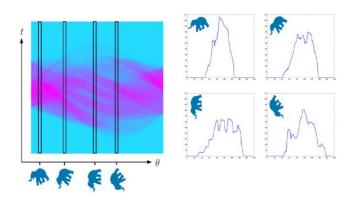
Machine learning

Novel Acquisition Paradigms

« Dip » transform







Dip Transform for 3D Shape Reconstruction. Aberman et al.

To appear at ACM SIGGRAPH 2017

Novel Acquisition Paradigms

Community data

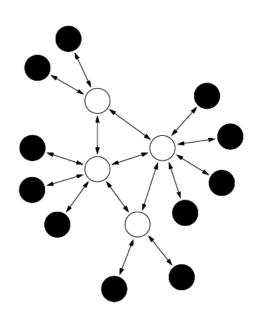
Snavely, Seitz, Szeliski. Photo tourism: Exploring photo collections in 3D.

Novel Acquisition Paradigms

Sensor networks

Scientific challenges:

- Fusion from heterogeneous sensors
- Progressive acquisition
- Continuous update
- High level queries



3D Digitization

Societal impact:

- Cultural heritage accessible for all
- Telepresence via virtual/augmented/mixed reality
- New era of mass customization

Thank you.

Recent survey:

A Survey of Surface Reconstruction from Point Clouds. Berger, Tagliasacchi, Seversky, Alliez, Guennebaud, Levine, Sharf and Silva. Computer Graphics Forum, 2016.

Pierre Alliez

Inria Sophia Antipolis – Méditerranée

TITANE team: https://team.inria.fr/titane/

pierre.alliez@inria.fr

