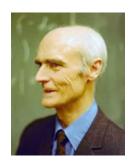
Géométrie Algorithmique

Des Données Géométriques à la Géométrie des Données

Jean-Daniel Boissonnat

Collège de France 23 mars 2017

Harold Coxeter (1971)



Au cours des siècles, la géométrie s'est développée. De nouveaux concepts, de nouvelles méthodes d'action furent forgés.

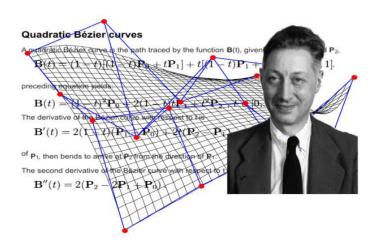
Par les moyens qui nous conviendront le mieux, revenons donc à Euclide ; et découvrons quelques-uns des plus récents résultats.

Peut-être pourrons-nous, ainsi, retrouver un peu de l'intimidation émerveillée que suscita en nous le premier contact avec la géométrie. . .

- Les origines de géométrie algorithmique
- 2 Structures de données et algorithmes géométriques
- Calcul géométrique
- Maillage de surfaces
- 5 Analyse topologique des données

La conception assistée par ordinateur

La réalité virtuelle remplace les maquettes physiques



Pierre Bézier

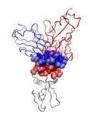
L'invention de la numérisation 3d

La fabrique du regard en trois dimensions

Capteur de Germain et Kryzé (Iria 1980)

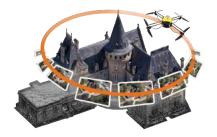
La numérisation aujourd'hui

De l'échelle atomique à l'échelle astronomique



Siemens Healthineers

The Michelangelo Project



Acute3D/Bentley Systems

Red shift survey

Interactions entre géométrie et calcul

La question de la complexité algorithmique

Michael Shamos Computational Geometry Yale 1978

Cette thèse examine les questions qui se posent quand on cherche à résoudre des problèmes géométriques avec un ordinateur, ce qui nous oblige à considérer des aspects du calcul géométrique qui ne sont simplement pas abordés par les mathématiques classiques. De nouvelles méthodes sont requises.

Un problème résolu par M. Shamos

Recherche de voisins

Problème : Quels sont, parmi n points du plan, les deux points les plus proches ?

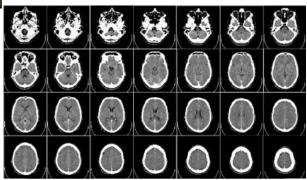
Bien qu'il y ait $\frac{n \times (n-1)}{2}$ paires de points, l'algorithme de Shamos a une complexité en $O(n \log n)$

Si n = 10.000.000, le temps de calcul passe de la semaine à la seconde!

- 1 Les origines de géométrie algorithmique
- Structures de données et algorithmes géométriques
- Calcul géométrique
- Maillage de surfaces
- 5 Analyse topologique des données

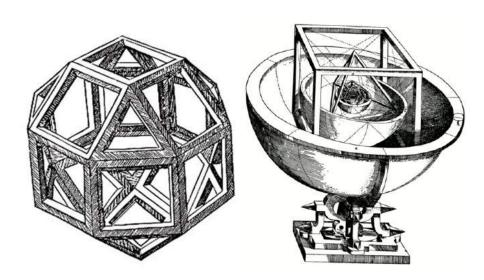
Structures de données géométriques

Représentation, Plan, Programme



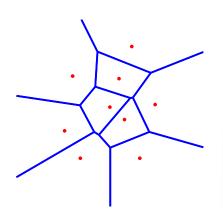
Polyèdres convexes

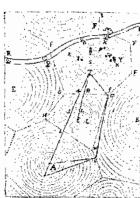
Une longue histoire : de l'antiquité à nos jours



Diagrammes de Voronoï

Fonction distance et croissance

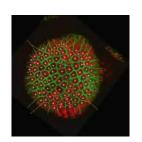


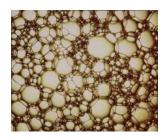


G. Voronoï (1868-1908)

R. Descartes (1596-1650)

Diagrammes de Voronoï Diagrammes de Voronoï dans la nature

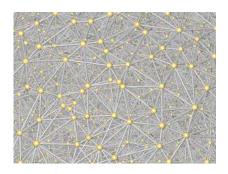




Triangulations

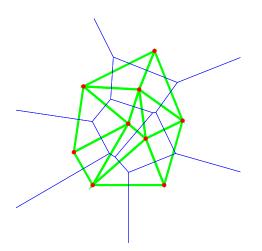
Assemblage de simplexes





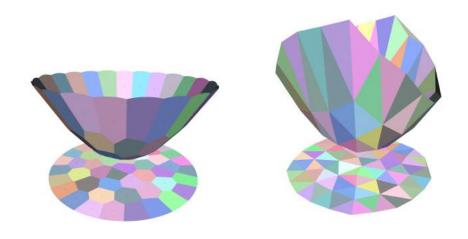
Triangulations

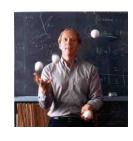
Sur la sphère vide, Boris Delaunay (1934)



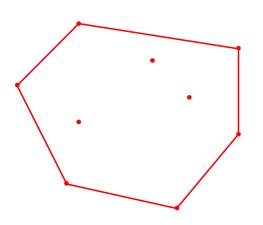
Correspondances entre structures

Flatland et Spaceland

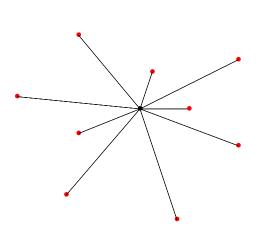




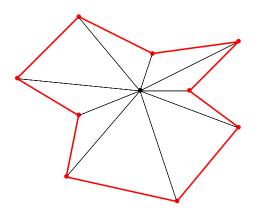
R. Graham



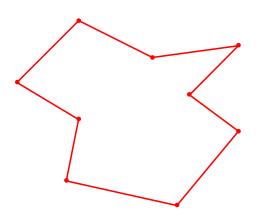
R. Graham



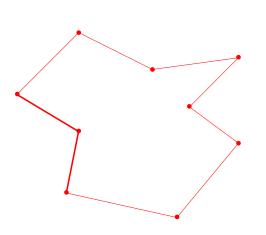
R. Graham



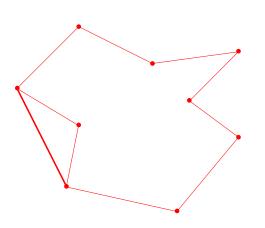
R. Graham



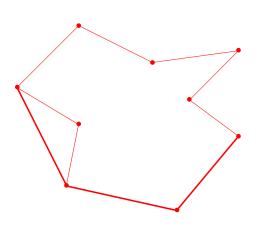
R. Graham



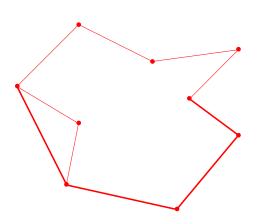
R. Graham



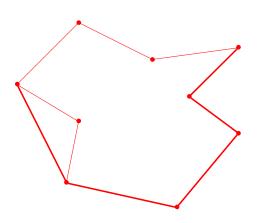
R. Graham



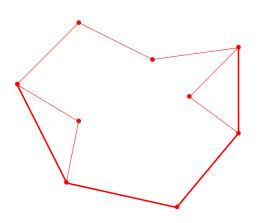
R. Graham



R. Graham

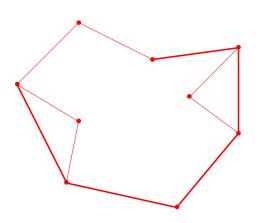


R. Graham



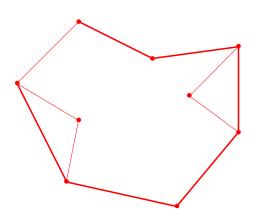


R. Graham

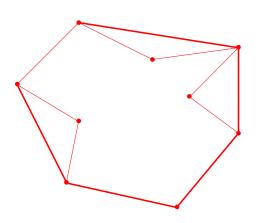


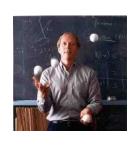


R. Graham

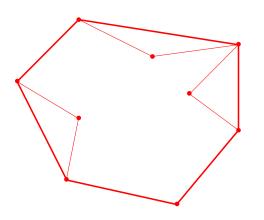


R. Graham



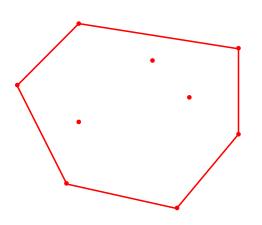


R. Graham





R. Graham



R. Graham

Complexités combinatoire et algorithmique

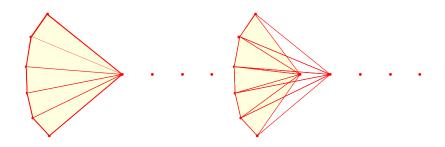
En dimension 3 [Euler
$$\sim$$
 1750]

En dimension d [Mc Mullen 1971]

$$|\operatorname{conv}(P)| = O(|P|)$$

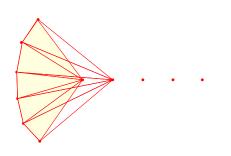
$$|\operatorname{conv}(P) = O\left(|P|^{\lfloor \frac{d}{2} \rfloor}\right)$$

Calcul incrémental d'une enveloppe convexe de n points en dimension 3



La révolution des algorithmes randomisés

Calcul incrémental d'une enveloppe convexe de n points en dimension 3



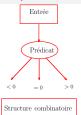
M. Rabin, K. Clarkson and P. Shor

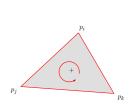
- aucun algorithme incrémental ne peut faire mieux que $O(n^2)$ dans le cas le pire
- l'algorithme randomisé a une complexité moyenne $O(n \log n)$
- triangulation de Delaunay 3d : 1 million de points en 8.5s

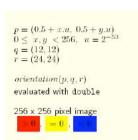
- Les origines de géométrie algorithmique
- 2 Structures de données et algorithmes géométriques
- Calcul géométrique
- Maillage de surfaces
- 5 Analyse topologique des données

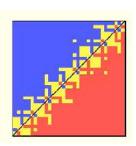
La double nature des objets géométriques

Le comportement chaotique des algorithmes géométriques



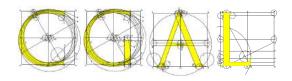




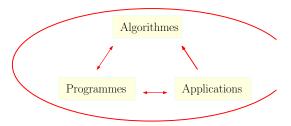


Kettner et al. [2008]

Une bibliothèque logicielle pour la géométrie algorithmique



Computational Geometry Algorithms Library



CGAL: un succès européen

Une collaboration entre plusieurs sites

ETH Zurich MPI Saarbrucken Tel Aviv University INRIA Sophia Antipolis

inscrite dans la durée (1996-)

- 700.000 lignes de code
- 3 000 pages de documentation
- 10 000 téléchargements par an, 1 000 utilisateurs
- distribué par GeometryFactory
- intégré dans plus de 200 logiciels commerciaux

CGAL: un succès européen

Une collaboration entre plusieurs sites

ETH Zurich MPI Saarbrucken Tel Aviv University INRIA Sophia Antipolis

inscrite dans la durée (1996-)

- 700.000 lignes de code
- 3 000 pages de documentation
- 10 000 téléchargements par an, 1 000 utilisateurs
- distribué par GeometryFactory
- intégré dans plus de 200 logiciels commerciaux

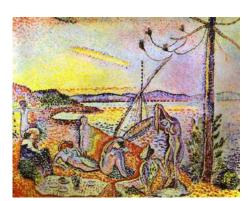
- 1 Les origines de géométrie algorithmique
- 2 Structures de données et algorithmes géométriques
- Calcul géométrique
- Maillage de surfaces
- 5 Analyse topologique des données

Courbes et surfaces

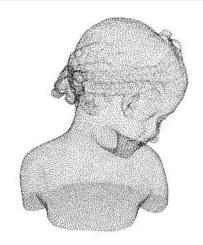
Passage continu-discret

Claude Shannon

Henri Matisse



Pour une théorie de l'échantillonnage géométrique

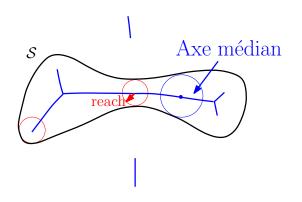


- Quels espaces?
- Critères de qualité

- Conditions d'échantillonnage
- Algorithmes de maillage

Portée (reach)

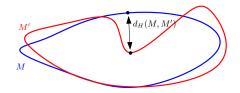
Résumer la complexité d'une forme géométrique en un nombre

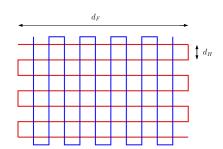


H. Federer (1920-2010)

Critères de qualité

1. Distance de Hausdorff / Distance de Fréchet



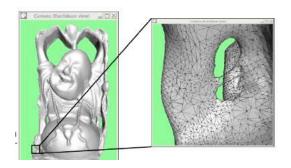


Critères de qualité

2. Angles entre les facettes et la surface

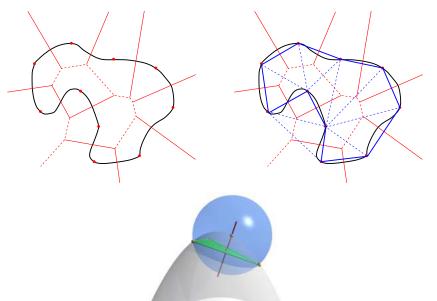
Critères de qualité

3. Topologie

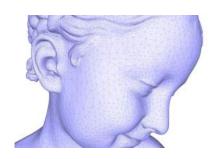


Maillage de surfaces

Triangulation de Delaunay restreinte $\mathrm{Del}_{|\mathcal{S}}(\mathcal{P})$



Triangulation de Delaunay restreinte à une surface

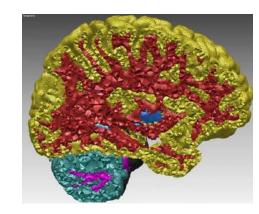


Amenta et Bern [1998], Amenta et Dey [2002] Boissonnat et Cazals [2000], Boissonnat et Oudot [2005]

Si $\mathcal S$ est une surface compacte de portée $\tau>0$ sans bord de $\mathbb R^3$, et $\mathcal P$ est un échantillon de $\mathcal S$ ε -dense et séparé, pour ε assez petit devant τ alors $\mathrm{Del}_{\mathbb IS}(\mathcal P)$ est une triangulation de $\mathcal S$ qui a les qualités 1-3 précédentes

Maillages tétraédriques à partir d'images 3d

Visualisation, robotique chirurgicale, simulations numériques

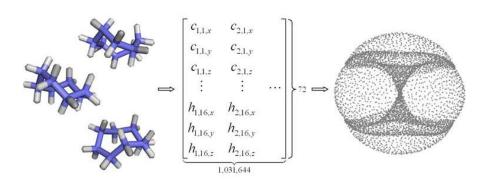


Reconstruction et maillages 3d à partir d'images

Acute3D, Bentley Systems

Au delà de la dimension 3

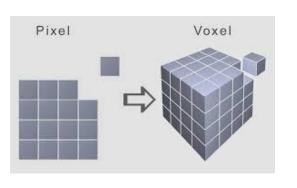
La géométrie complexe du cyclo-octane C_8H_{16}



Martin et al. [2010]

Le fléau de la dimension

On ne peut pas subdiviser l'espace ambiant!



Résolution =
$$1/N$$

Nombre de cellules = N^d

$$N = 1000$$

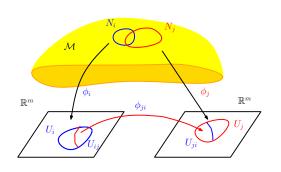
$$N^2 = 1$$
 million

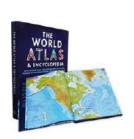
$$N^2 = 1$$
 million $N^3 = 1$ milliard

$$N^6 = 1.000.000.000.000.000.000$$

Courbes, surfaces et variétés

Cartes et atlas





Triangulation des variétés

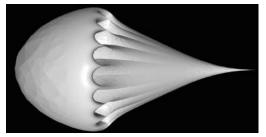
Réduction de dimension et de complexité

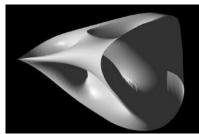
Boissonnat, Dyer, Ghosh [2014-2017]

Existence et construction de triangulations de Delaunay sur des variétés

Le complexe tangent

Maillage d'une surface de Riemann plongée dans \mathbb{R}^8



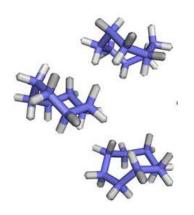


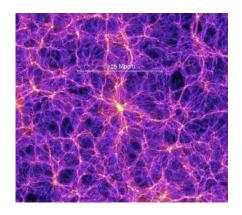
Données fournies par A. Alvarez

- Les origines de géométrie algorithmique
- Structures de données et algorithmes géométriques
- Calcul géométrique
- Maillage de surfaces
- 6 Analyse topologique des données

Géométrisation de l'analyse de données

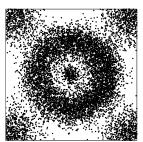
Dimension apparente, dimension intrinsèque et inférence

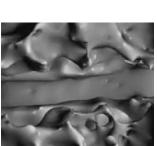




Analyse topologique multi-échelle

Clusters et culminance







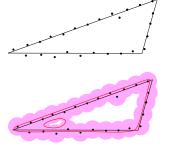
Analyse topologique multi-échelle

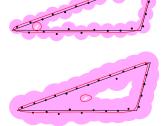
Evolution de la topologie des sous-niveaux de la fonction distance

Marston Morse (1892-1977)

« La théorie de Morse domine, tel un énigmatique monolithe, une bonne part du paysage mathématique contemporain. Ce monolithe, nous n'avons pas fini de l'interroger. »

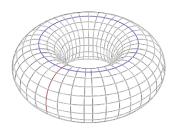
René Thom (1977)



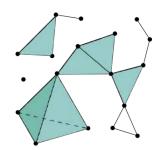


Topologie algorithmique

Homologie simpliciale



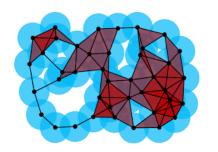
$$\beta_0 = 1$$
$$\beta_1 = 2$$
$$\beta_2 = 1$$



H. Poincaré (1854-1912)

Complexe de Cech

Nerf d'un ensemble de boules



J. Leray (1906-1998)

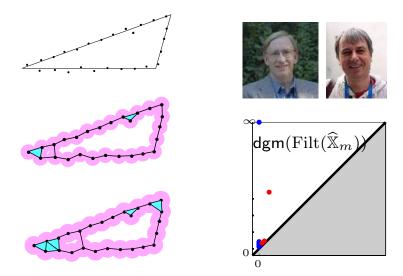
Corollaire du théorème du nerf

(J. Leray, 1945)

Le complexe de Cech a la même homologie que la réunion des boules

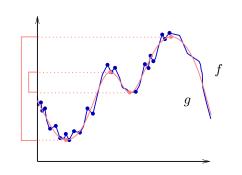
L'algorithmique de l'homologie persistante

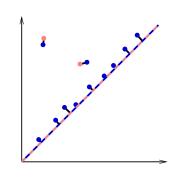
Nuage de points, filtration et diagramme de persistance



Stabilité des diagrammes de persistance

Signature topologique





Cohen-Steiner, Edelsbrunner, Harer [2007]:

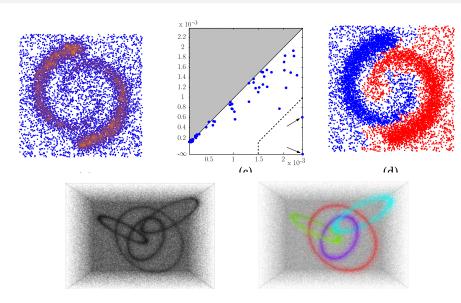
$$d_b(\operatorname{diag}(f),\operatorname{diag}(g)) \leq \sup(|f \in g|)_{\infty}$$

Chazal, de Silva, Glisse, Oudot [2012]

Applications de l'analyse topologique des données

Détection de clusters

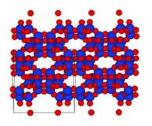
Chazal et al. [2013]

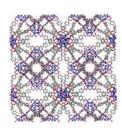


Applications de l'analyse topologique des données

« You know my methods, apply them »

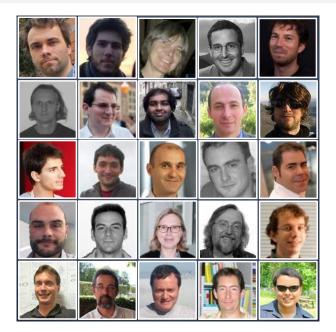
Le projet GUDHI





- Science des matériaux (Lee et col. 2017, Pugnaloni et col. 2016))
- Ecoulements turbulents (Kramar et col. 2016)
- Epidémiologie (Taylor et col. 2015)
- Analyse musicale (Bergomi 2016)
- Cosmologie (Susbie et al. 2011)
- **.**...

Remerciements



Une géométrie ne peut être plus vraie qu'une autre, elle peut simplement être plus commode.

Henri Poincaré