
Géométrie Algorithmique

Des Données Géométriques à la Géométrie des Données

Jean-Daniel Boissonnat

Collège de France
23 mars 2017

1 / 52

Harold Coxeter (1971)

Au cours des siècles, la géométrie s’est développée. De nouveaux concepts, de
nouvelles méthodes d’action furent forgés.

Par les moyens qui nous conviendront le mieux, revenons donc à Euclide ; et
découvrons quelques-uns des plus récents résultats.

Peut-être pourrons-nous, ainsi, retrouver un peu de l’intimidation émerveillée que
suscita en nous le premier contact avec la géométrie. . .

2 / 52

1 Les origines de géométrie algorithmique

2 Structures de données et algorithmes géométriques

3 Calcul géométrique

4 Maillage de surfaces

5 Analyse topologique des données

3 / 52

La conception assistée par ordinateur
La réalité virtuelle remplace les maquettes physiques

Pierre Bézier
4 / 52

L’invention de la numérisation 3d
La fabrique du regard en trois dimensions

Capteur de Germain et Kryzé (Iria 1980)

- Les donnees de ce type apparaissent dans des contextes scientifiques et industriels tres divers. En outre, elles proliferent a un rythme sans precedent, avec notamment la democratisation des appareils d’acquisition bon marche, en premier lieu des capteurs photographiques ou gyroscopiques des telephones portables, ou encore des scanners 3d comme la kinect. Par exemple, pres de 300 millions d’images ont ete uploadees sur Facebook en 2014, et on estime a pres d’un milliard le nombre total d’images echangees sur le Net. - Pour faire face a ce deluge de donnees, il y a aujourd’hui un besoin fort en nouvelles methodes automatiques pour analyser, classer et labeliser les donnees.Context: The data deluge

1

Data are generated at an unprecedented rate by:

• academia

• industry

• general public

5 / 52

La numérisation aujourd’hui
De l’échelle atomique à l’échelle astronomique

Siemens Healthineers The Michelangelo Project

Acute3D/Bentley Systems Red shift survey
6 / 52

Interactions entre géométrie et calcul
La question de la complexité algorithmique

Michael Shamos
Computational Geometry
Yale 1978

Cette thèse examine les questions qui se posent quand on cherche à résoudre des
problèmes géométriques avec un ordinateur, ce qui nous oblige à considérer des
aspects du calcul géométrique qui ne sont simplement pas abordés par les
mathématiques classiques. De nouvelles méthodes sont requises.

7 / 52

Un problème résolu par M. Shamos
Recherche de voisins

Problème : Quels sont, parmi n points du plan, les deux points les plus
proches ?

Bien qu’il y ait n×(n−1)
2 paires de points, l’algorithme de Shamos a

une complexité en O(n log n)

Si n = 10.000.000, le temps de calcul passe de la semaine à la
seconde !

8 / 52

1 Les origines de géométrie algorithmique

2 Structures de données et algorithmes géométriques

3 Calcul géométrique

4 Maillage de surfaces

5 Analyse topologique des données

9 / 52

Structures de données géométriques
Représentation, Plan, Programme

10 / 52

Polyèdres convexes
Une longue histoire : de l’antiquité à nos jours

11 / 52

Diagrammes de Voronoï
Fonction distance et croissance

G. Voronoï

(1868-1908)

R. Descartes

(1596-1650)

12 / 52

Diagrammes de Voronoï
Diagrammes de Voronoï dans la nature

13 / 52

Triangulations
Assemblage de simplexes

14 / 52

Triangulations
Sur la sphère vide, Boris Delaunay (1934)

15 / 52

Correspondances entre structures
Flatland et Spaceland

16 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Algorithmes
Dessine moi une enveloppe convexe

R. Graham

17 / 52

Complexités combinatoire et algorithmique

En dimension 3 [Euler ∼1750] En dimension d [Mc Mullen 1971]

|conv(P)| = O(|P|) |conv(P) = O
(
|P|b d

2 c
)

18 / 52

Calcul incrémental d’une enveloppe convexe de n
points en dimension 3

19 / 52

La révolution des algorithmes randomisés
Calcul incrémental d’une enveloppe convexe de n points en dimension 3

M. Rabin, K. Clarkson and P. Shor

aucun algorithme incrémental ne peut faire mieux que O(n2) dans
le cas le pire

l’algorithme randomisé a une complexité moyenne O(n log n)

triangulation de Delaunay 3d : 1 million de points en 8.5s
20 / 52

1 Les origines de géométrie algorithmique

2 Structures de données et algorithmes géométriques

3 Calcul géométrique

4 Maillage de surfaces

5 Analyse topologique des données

21 / 52

La double nature des objets géométriques
Le comportement chaotique des algorithmes géométriques

< 0 = 0 > 0

Prédicat

Entrée

combinatoireStructure

pi

pj
pk

+CGAL The meshing packages Implementation Robustness issues

The trouble with double
Example : orientation test

[Kettner, Mehlhorn, Pion, Schirra, Yap, ESA’04]Kettner et al. [2008]

22 / 52

Une bibliothèque logicielle pour la géométrie
algorithmique

!"#$%&'&(")'*+,-"#-&./++++++++
0*1".(&2#3+4(5.'./

6(-..-+0**(-7
89:80

0);.-'3+<'5.(
,-"#-&./<'=&"./

>?(+<"1-*
@-*A0B(B+C)(B-.3(&/

Algorithmes

Programmes Applications

23 / 52

CGAL : un succès européen

Une collaboration entre plusieurs sites

ETH Zurich
MPI Saarbrucken
Tel Aviv University
INRIA Sophia Antipolis
...

inscrite dans la durée (1996–)

700.000 lignes de code

3 000 pages de documentation

10 000 téléchargements par an, 1 000 utilisateurs

distribué par GeometryFactory

intégré dans plus de 200 logiciels commerciaux

24 / 52

CGAL : un succès européen

Une collaboration entre plusieurs sites

ETH Zurich
MPI Saarbrucken
Tel Aviv University
INRIA Sophia Antipolis
...

inscrite dans la durée (1996–)

700.000 lignes de code

3 000 pages de documentation

10 000 téléchargements par an, 1 000 utilisateurs

distribué par GeometryFactory

intégré dans plus de 200 logiciels commerciaux

24 / 52

1 Les origines de géométrie algorithmique

2 Structures de données et algorithmes géométriques

3 Calcul géométrique

4 Maillage de surfaces

5 Analyse topologique des données

25 / 52

Courbes et surfaces
Passage continu-discret

Claude Shannon

Henri Matisse

26 / 52

Pour une théorie de l’échantillonnage géométrique

Quels espaces ?

Critères de qualité

Conditions d’échantillonnage

Algorithmes de maillage

27 / 52

Portée (reach)
Résumer la complexité d’une forme géométrique en un nombre

H. Federer

(1920-2010)

Axe médian

reach

S

28 / 52

Critères de qualité
1. Distance de Hausdorff / Distance de Fréchet

The Hausdor↵ distance

The distance function to a compact M ⇢ Rd, dM : Rd ! R+ is defined by

dM (x) = inf
p2M

kx� pk

The Hausdorf distance between two compact sets M,M 0 ⇢ Rd:

dH(M,M 0) = sup
x2Rd

|dM (x)� dM 0(x)|

dH(M,M 0)

M

M 0

dF

dH

29 / 52

Critères de qualité
2. Angles entre les facettes et la surface

30 / 52

Critères de qualité
3. Topologie

31 / 52

Maillage de surfaces
Triangulation de Delaunay restreinte Del|S(P)

Context and Motivation

Delaunay refinement meshing engine

The algorithms refines:

Bad facets: f ∈ Del|S(P)
– oversized (sizing field)
– badly shaped (min angle bound)
– inaccurate (distance bound)

Bad Tetrahedra : t ∈ Del|O(P)
– oversized (sizing field)
– badly-shaped (radius-egde ratio)

Required oracle on domain to be meshed
• point location in domain and subdomains
• intersection detection/computation between boundary surfaces
and segments (Delaunay edges)

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 9 / 36

32 / 52

Triangulation de Delaunay restreinte à une surface

Amenta et Bern [1998], Amenta et Dey [2002]
Boissonnat et Cazals [2000], Boissonnat et Oudot [2005]

Si S est une surface compacte de portée τ > 0 sans bord de R3,

et P est un échantillon de S ε-dense et séparé, pour ε assez petit devant τ

alors Del|S(P) est une triangulation de S qui a les qualités 1-3 précédentes

33 / 52

Maillages tétraédriques à partir d’images 3d
Visualisation, robotique chirurgicale, simulations numériques

CGALmesh Achievements

Meshing 3D domains
Input from segmented 3D medical images

[INSERM] [SIEMENS]

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 22 / 3634 / 52

Reconstruction et maillages 3d à partir d’images

Acute3D, Bentley Systems

35 / 52

Au delà de la dimension 3
La géométrie complexe du cyclo-octane C8H16

Figure 1. Conformation Space of Cyclo-Octane. The set of conformations of cyclo-octane can
be represented as a surface in a high dimensional space. On the left, we show various
conformations of cyclo-octane. In the center, these conformations are represented by the 3D
coordinates of their atoms. On the right, a dimension reduction algorithm is used to obtain a
lower dimensional visualization of the data.

Figure 2. Decomposing Cyclo-Octane. The cyclo-octane conformation space has an interesting
decomposition. The local geometry of a self-intersection consists of a cylinder (top left) and a
Mobius strip (top right), while the self-intersection is a ring traversing the middle of each object
(shown in red). Globally, cyclo-octane conformations can be separated into a sphere (bottom
left) and a Klein bottle (bottom right).

!"#$%"&%'&"&()*+%,-./-"(&*"0.-"+.-1&.,2-"+2$&01&!"#$%"&3.-,.-"+%.#4&"&5.67822$&9"-+%#&3.(,"#14&:.-&+82&;#%+2$&!+"+2'&<2,"-+(2#+&.:&=#2-/1>'&
?"+%.#"*&?)6*2"-&!26)-%+1&@$(%#%'+-"+%.#&)#$2-&6.#+-"6+&<=A@3BCADC@5EFBBBG&

Martin et al. [2010]

36 / 52

Le fléau de la dimension
On ne peut pas subdiviser l’espace ambiant !

Résolution = 1/N

⇒

Nombre de cellules = Nd

N = 1000

N2 = 1 million N3 = 1 milliard N6 = 1.000.000.000.000.000.000

37 / 52

Courbes, surfaces et variétés
Cartes et atlas

Rm

M

Nj
Ni

φi φj

Uij Uji

φji

Ui
Uj

Rm

38 / 52

Triangulation des variétés
Réduction de dimension et de complexité

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.

Boissonnat, Dyer, Ghosh [2014-2017]

Existence et construction de triangulations de Delaunay sur des
variétés

39 / 52

Le complexe tangent
Maillage d’une surface de Riemann plongée dans R8

Données fournies par A. Alvarez

40 / 52

1 Les origines de géométrie algorithmique

2 Structures de données et algorithmes géométriques

3 Calcul géométrique

4 Maillage de surfaces

5 Analyse topologique des données

41 / 52

Géométrisation de l’analyse de données
Dimension apparente, dimension intrinsèque et inférence

Figure 1. Conformation Space of Cyclo-Octane. The set of conformations of cyclo-octane can
be represented as a surface in a high dimensional space. On the left, we show various
conformations of cyclo-octane. In the center, these conformations are represented by the 3D
coordinates of their atoms. On the right, a dimension reduction algorithm is used to obtain a
lower dimensional visualization of the data.

Figure 2. Decomposing Cyclo-Octane. The cyclo-octane conformation space has an interesting
decomposition. The local geometry of a self-intersection consists of a cylinder (top left) and a
Mobius strip (top right), while the self-intersection is a ring traversing the middle of each object
(shown in red). Globally, cyclo-octane conformations can be separated into a sphere (bottom
left) and a Klein bottle (bottom right).

!"#$%"&%'&"&()*+%,-./-"(&*"0.-"+.-1&.,2-"+2$&01&!"#$%"&3.-,.-"+%.#4&"&5.67822$&9"-+%#&3.(,"#14&:.-&+82&;#%+2$&!+"+2'&<2,"-+(2#+&.:&=#2-/1>'&
?"+%.#"*&?)6*2"-&!26)-%+1&@$(%#%'+-"+%.#&)#$2-&6.#+-"6+&<=A@3BCADC@5EFBBBG&�

� � � � � � �

42 / 52

Analyse topologique multi-échelle
Clusters et culminance

Cluster Analysis

2

Input: a finite set of observations:

Task:

partition the data points into a collection of relevant subsets called clusters

- point cloud with coordinates

- distance / (dis-)similarity matrix

Geometric Inference 15

example. Now, if the data is incomplete or corrupted by noise, we may only
have access to a noisy approximation f of g. A natural question is then whether
the topology of the object of interest K can be recovered knowing only the
noisy implicit function f . Perhaps the simplest idea would be to estimate the
topology of K by the one of the corresponding sublevel set f−1(−∞, x] of f .
Unfortunately, this naive approach tends to produce topological noise, which
takes the form of spurious topological features, such as additional connected
components as in Figure 10, or additional loops and tunnels as in Figure 11.
Persistent homology is the natural way of dealing with this problem.

g

x

f

x

Fig. 10. The x sublevel set of g (left) has two connected components, but the one
of its approximation f has four additional components (right).

Fig. 11. Estimated interface between grey matter and white matter in the brain
contains spurious loops.

43 / 52

Analyse topologique multi-échelle
Evolution de la topologie des sous-niveaux de la fonction distance

Marston Morse

(1892-1977)

« La théorie de Morse domine, tel un énigmatique monolithe,
une bonne part du paysage mathématique contemporain. Ce
monolithe, nous n’avons pas fini de l’interroger. »

René Thom (1977)

Motivation: getting topological information
without reconstructing

How to determine the number of “cycles” of the underlying shape from the
point cloud approximation?

Motivation: getting topological information
without reconstructing

How to determine the number of “cycles” of the underlying shape from the
point cloud approximation?

Motivation: getting topological information
without reconstructing

How to determine the number of “cycles” of the underlying shape from the
point cloud approximation?

Motivation: getting topological information
without reconstructing

How to determine the number of “cycles” of the underlying shape from the
point cloud approximation?

44 / 52

Topologie algorithmique
Homologie simpliciale

β0 = 1
β1 = 2
β2 = 1

H. Poincaré

(1854-1912)

45 / 52

Complexe de Cech
Nerf d’un ensemble de boules

J. Leray

(1906-1998)

Corollaire du théorème du nerf (J. Leray, 1945)
Le complexe de Cech a la même homologie que la réunion des boules

46 / 52

L’algorithmique de l’homologie persistante
Nuage de points, filtration et diagramme de persistanceMotivation: getting topological information

without reconstructing

How to determine the number of “cycles” of the underlying shape from the
point cloud approximation?

Using the Čech complex

for p0, · · · pk 2 L, � = [p0p1 · · · pk] 2 C↵(L) i↵
k\

i=0

B(pi, ↵) 6= ;
The Čech complex C↵(L):

Nerve theorem: For any ↵ > 0, L↵ and C↵(L) are homotopy equivalent and
the homotopy equivalences can be chosen to commute with inclusions.

· · · ! Hk(L
↵+") ! Hk(L

↵+3") ! · · ·
#

· · · ! Hk(C↵+"(L)) ! Hk(C↵+3"(L)) ! · · ·

Allow to work with simplicial complexes but... still too di�cult to compute

Using the Čech complex

for p0, · · · pk 2 L, � = [p0p1 · · · pk] 2 C↵(L) i↵
k\

i=0

B(pi, ↵) 6= ;
The Čech complex C↵(L):

Nerve theorem: For any ↵ > 0, L↵ and C↵(L) are homotopy equivalent and
the homotopy equivalences can be chosen to commute with inclusions.

· · · ! Hk(L
↵+") ! Hk(L

↵+3") ! · · ·
#

· · · ! Hk(C↵+"(L)) ! Hk(C↵+3"(L)) ! · · ·

Allow to work with simplicial complexes but... still too di�cult to compute

Persistent homology for (point cloud) data

1

0
0

bXm Filt(bXm)

dgm(Filt(bXm))

Build topol.
structure

Persistent
homology

• Build a geometric filtered simplicial complex on top of bXm ! multiscale topol.
structure.

• Compute the persistent homology of the complex ! multiscale topol. signature.

• Compare the signatures of “close” data sets ! robustness and stability results.

• Statistical properties of signatures

47 / 52

Stabilité des diagrammes de persistance
Signature topologique

Geometric Inference 23

coordinates (x, y) in the extended plane [−∞,+∞], with the same multiplicity
as the interval. Also, we include the diagonal {(x, x) |x ∈ [−∞,+∞]} with
infinite multiplicity, for reasons that will become clear in the next paragraph.
An example of persistence diagram is shown in Figure 16. The shading in
the persistence diagram indicates the values of persistence Betti numbers.
Indeed, in this representation, the k-triangle lemma states that βx,y

k is the
total multiplicity of the k-dimensional persistence diagram falling in the upper
left quadrant with corner (x, y), hence we get 3, 2, and 1 as we go from the
darkest shaded area to the lightest one.

Stability

Persistence diagrams are a compact encoding of the evolution of the topology
of the sublevel sets of a function as the threshold increases. It turns out that
they are also stable with respect to perturbation of the function, which is a key
property in the context of unprecise data. To make this statement precise, we
use the bottleneck distance between two multisets in the extended plane. The
l∞ distance between two points (x, y) and (x′, y′) in the extended plane is the
maximum difference between their coordinates, that is, max(|x−x′|, |y− y′|).
Now we say that two multisets have bottleneck distance at most d if there is
a one-to-one matching between them such that paired points are at most d
away in the l∞ metric.

Theorem 8 (Stability of persistence diagrams [15, 2]). Given two con-
tinuous tame functions f and g on a triangulable topological space, the bot-
tleneck distance between their k-dimensional persistence diagrams does not
exceed sup |f − g|.

Sg

g

f

Fig. 17. A real function g, a noisy approximation f , and an optimal matching
between their persistence diagrams.

Figure 17 gives an illustration of this theorem. The two points in the
persistence diagram of function g are matched with nearby points also present
in the diagram of the noisy approximation f . Additional spurious critical

Cohen-Steiner, Edelsbrunner, Harer [2007] :

db(diag(f), diag(g)) ≤ sup(|f ∈ g|)∞

Chazal, de Silva, Glisse, Oudot [2012]
48 / 52

Applications de l’analyse topologique des données
Détection de clusters Chazal et al. [2013]

✐
✐

✐
✐

✐
✐

✐
✐

41:4 F. Chazal et al.

Fig. 2. Our approach in a nutshell: (a) estimation of the underlying density function f at the data points;
(b) result of the basic graph-based hill-climbing step; (c) approximate PD showing two points far off the
diagonal corresponding to the two prominent peaks of f ; (d) final result obtained after merging the clusters
of non-prominent peaks.

of the obtained family of clusterings. While these techniques bear some connections
with ours, they are actually based on a different clustering paradigm that suffers from
its own limitations—see, for example, Section 14.3.12 in Hastie et al. [2009].

Our Method. Our clustering scheme, called ToMATo (Topological Mode Analysis
Tool), combines the original graph-based hill-climbing algorithm of Koontz et al. [1976]
with a cluster merging step guided by persistence. As illustrated in Figure 2(b), hill-
climbing is very sensitive to perturbations of the density function f that arise from a
density estimator f̃ . Computing the PD of f̃ enables us to quantify the prominences
of its peaks and, in favorable cases, to distinguish those that correspond to peaks of
the true density f from those that are inconsequential. In Figure 2(c), for instance,
we can see two points (pointed to by arrows) that are further from the diagonal than
the other points: these correspond to the two prominent peaks of f̃ (one of them is at
y = −∞, since the highest peak never dies). To obtain the final clustering, we merge
every cluster of prominence less than a given thresholding parameter τ into its parent
cluster in the persistence hierarchy. As shown in Figures 2(c) and 2(d), the PD gives us
a precise understanding of the relationship between the choice of τ and the number of
obtained clusters.

In practice, we run ToMATo twice: in the first run we set τ = +∞ to merge all
clusters and thus compute the PD; then, using the PD we choose a value for τ (which
amounts to selecting the number of clusters) and re-run the algorithm to obtain the
final result. The feedback provided by the PD proves invaluable in interpreting the
clustering results in many cases. Indeed, the PD gives a clear indication of whether or
not there is a natural number of clusters, and because it is a planar point cloud we can
understand its structure visually, regardless of the dimensionality of the input data.

ToMATo is highly generic and agnostic to the choice of distance, underlying graph,
and density estimator. Our theoretical guarantees make use of graphs that do not
require the geographic coordinates of the data points at hand (only pairwise distances
are used) nor estimates of the density at extra points. This makes the algorithm appli-
cable in very general settings. ToMATo is also highly efficient: in the worst case it has
an almost-linear running time in the size of the underlying graph, and only a linear
memory usage in the number of data points. Most often, we use Euclidean distances;
however, other metrics such as diffusion distances can be used. Indeed, the choice of
metric and density estimator define the space we study, while our algorithm gives the
structure of this space. Finally, ToMATo comes with a solid mathematical formulation.
We show that, given a finite sampling of an unknown space with pointwise estimates
of an unknown density function f , our algorithm computes a faithful approximation
of the PD of f . Under conditions of a sufficient signal-to-noise ratio in this PD, we can

Journal of the ACM, Vol. 60, No. 6, Article 41, Publication date: November 2013.

✐
✐

✐
✐

✐
✐

✐
✐

41:4 F. Chazal et al.

Fig. 2. Our approach in a nutshell: (a) estimation of the underlying density function f at the data points;
(b) result of the basic graph-based hill-climbing step; (c) approximate PD showing two points far off the
diagonal corresponding to the two prominent peaks of f ; (d) final result obtained after merging the clusters
of non-prominent peaks.

of the obtained family of clusterings. While these techniques bear some connections
with ours, they are actually based on a different clustering paradigm that suffers from
its own limitations—see, for example, Section 14.3.12 in Hastie et al. [2009].

Our Method. Our clustering scheme, called ToMATo (Topological Mode Analysis
Tool), combines the original graph-based hill-climbing algorithm of Koontz et al. [1976]
with a cluster merging step guided by persistence. As illustrated in Figure 2(b), hill-
climbing is very sensitive to perturbations of the density function f that arise from a
density estimator f̃ . Computing the PD of f̃ enables us to quantify the prominences
of its peaks and, in favorable cases, to distinguish those that correspond to peaks of
the true density f from those that are inconsequential. In Figure 2(c), for instance,
we can see two points (pointed to by arrows) that are further from the diagonal than
the other points: these correspond to the two prominent peaks of f̃ (one of them is at
y = −∞, since the highest peak never dies). To obtain the final clustering, we merge
every cluster of prominence less than a given thresholding parameter τ into its parent
cluster in the persistence hierarchy. As shown in Figures 2(c) and 2(d), the PD gives us
a precise understanding of the relationship between the choice of τ and the number of
obtained clusters.

In practice, we run ToMATo twice: in the first run we set τ = +∞ to merge all
clusters and thus compute the PD; then, using the PD we choose a value for τ (which
amounts to selecting the number of clusters) and re-run the algorithm to obtain the
final result. The feedback provided by the PD proves invaluable in interpreting the
clustering results in many cases. Indeed, the PD gives a clear indication of whether or
not there is a natural number of clusters, and because it is a planar point cloud we can
understand its structure visually, regardless of the dimensionality of the input data.

ToMATo is highly generic and agnostic to the choice of distance, underlying graph,
and density estimator. Our theoretical guarantees make use of graphs that do not
require the geographic coordinates of the data points at hand (only pairwise distances
are used) nor estimates of the density at extra points. This makes the algorithm appli-
cable in very general settings. ToMATo is also highly efficient: in the worst case it has
an almost-linear running time in the size of the underlying graph, and only a linear
memory usage in the number of data points. Most often, we use Euclidean distances;
however, other metrics such as diffusion distances can be used. Indeed, the choice of
metric and density estimator define the space we study, while our algorithm gives the
structure of this space. Finally, ToMATo comes with a solid mathematical formulation.
We show that, given a finite sampling of an unknown space with pointwise estimates
of an unknown density function f , our algorithm computes a faithful approximation
of the PD of f . Under conditions of a sufficient signal-to-noise ratio in this PD, we can

Journal of the ACM, Vol. 60, No. 6, Article 41, Publication date: November 2013.

Context

Geometric Inference and Geometric Approximation

Context

Geometric Inference and Geometric Approximation

49 / 52

Applications de l’analyse topologique des données
« You know my methods, apply them »

Le projet GUDHILet’s dive straight in
i Structure described by points

zeolite ITW

bulk water

Metal organic frameworks (MOF’s)

‘Generalisation’ of zeolites. Porous materials.

MOF’s: organic linkers attached to metal centers

Science des matériaux (Lee et col. 2017, Pugnaloni et col. 2016))
Ecoulements turbulents (Kramar et col. 2016)
Epidémiologie (Taylor et col. 2015)
Analyse musicale (Bergomi 2016)
Cosmologie (Susbie et al. 2011)
...

50 / 52

Remerciements

51 / 52

Une géométrie ne peut être plus vraie qu’une autre, elle peut
simplement être plus commode.

Henri Poincaré

52 / 52

	Les origines de géométrie algorithmique
	Structures de données et algorithmes géométriques
	Calcul géométrique
	Maillage de surfaces
	Analyse topologique des données

