Géométrie Algorithmique Données, Modèles, Programmes

6. Espace des configurations

Jean-Daniel Boissonnat

Collège de France 17 mai 2017

Géométrie algorithmique

Données, modèles, programmes

- Modèles géométriques discrets
 F. Cazals : Modèles géométriques pour la prédiction des interactions macro-moléculaires
- La puissance de l'aléa : algorithmes randomisés P. Calka : Probabilités géométriques
- Le calcul géométrique
 - S. Pion : La bibliothèque logicielle CGAL
- Génération de maillages
 J-M. Mirebeau : Les deux réductions de Voronoï et leur application aux équations aux dérivées partielles
- Courbes et surfaces
 P. Alliez : Reconstruction de surfaces
- Espaces de configurations
 - A. de Mesmay : Dessin de graphes
- Structures de données géométriques D. Feldman : Core sets
- 6 Géométrie des données
 - F. Chazal : Analyse topologique des données

Fonctions distance et reconstruction homotopique

Triangulation des variétés topologiques

Espace des sphères

Associer un point à une sphère

$$B(c,r) \subset \mathbb{R}^d \ o \ \hat{b} = (c,c^2 - r^2) \in \mathbb{R}^{d+1}$$

$$D(b_1, b_2) = (p_1 - p_2)^2 - r_1^2 - r_2^2$$

Espaces de configurations d'un système physique

Associer un point à chaque configuration du système

Le problème du déménageur de pianos

Configuration : 3 paramètres (par ex., la position d'un point de référence et l'orientation du piano)

Une configuration est libre si le piano n'est pas en collision avec un obstacle

L'algorithme du déménageur de piano

- Initialisation : Calculer l'ensemble des configurations libres L
- Requête : Etant données une configuration de départ A et une configuration d'arrivée B, chercher un chemin reliant A à B dans L

Du piano aux robots

- Le principe marche encore...
- ... mais la dimension de l'espace des configurations rend le problème difficile

Si on ne calcule *L* que pour 100 valeurs de chacun des paramètres, il faut tester $P = 100^d$ positions où *d* est le nombre de degrés de liberté

Piano : d = 3, $P = 10^{6}$ (1 million)

Robot industriel : d = 6, $P = 10^{12}$

Robot humanoide ??

[Laumond]

Espace des configurations de molécules

Docking, repliement, analyse des champs énergétiques

L'espace des configurations peut être de très grande dimension

Espace des images

Une image de 10 millions de pixels

 \rightarrow un point dans un espace de 10 millions de dimensions !

caméra : 3 ddl lumière : 2 ddl

Les points-images sont proches d'une structure de dimension intrinsèque 5 plongée dans un espace ambiant de très grande dimension

Capture de mouvement

Typiquement $N = 100, D = 100^3, d \le 15$

Pour une théorie de l'échantillonnage géométrique

- Quels espaces ?
- Critères de qualité

- Conditions d'échantillonnage
- Algorithmes de reconstruction

2 Un peu de topologie

3 Fonctions distance et reconstruction homotopique

Triangulation des variétés topologiques

Connectivité et applications continues entre espaces Homéomorphisme

Homéomorphisme

 $f: X \to Y$ est une application bijective continue et d'inverse continue

 $X \approx Y$

Plongement

Si $f: X \to Y$ est un homéomorphisme sur son image, f est appelé un plongement de X dans Y

Connectivité et applications continues entre espaces Homotopie

Deux applications continues f_0 , $f_1 : X \to Y$ sont homotopes s'il existe une application continue $h : [0, 1] \times X \to Y$ t.q.

 $\forall x \in X, h(0,x) = f_0(x) \text{ et } h(1,x) = f_1(x)$

Rétract par déformation : $f : X \to Y \subseteq X$ est un rétract par déformation si f est homotope à l'application identité.

Connectivité et applications continues entre espaces Homotopie

Deux applications continues f_0 , $f_1 : X \to Y$ sont homotopes s'il existe une application continue $h : [0, 1] \times X \to Y$ t.q.

 $\forall x \in X, h(0,x) = f_0(x) \text{ et } h(1,x) = f_1(x)$

Rétract par déformation : $f : X \to Y \subseteq X$ est un rétract par déformation si f est homotope à l'application identité.

Connectivité et applications continues entre espaces

Equivalence d'homotopie

X et *Y* ont le même type d'homotopie ($X \simeq Y$) s'il existe deux applications continues $f: X \to Y$ et $g: Y \to X$ telles que

 $f \circ g$ est homotopique à l'application identité dans Y

 $g \circ f$ est homotopique à l'application identité dans X

X est dit contractible s'il a le même type d'homotopie qu'un point

Connectivité et applications continues entre espaces

Equivalence d'homotopie

X et *Y* ont le même type d'homotopie ($X \simeq Y$) s'il existe deux applications continues $f: X \to Y$ et $g: Y \to X$ telles que

 $f \circ g$ est homotopique à l'application identité dans Y

 $g \circ f$ est homotopique à l'application identité dans X

X est dit contractible s'il a le même type d'homotopie qu'un point

Complexes simpliciaux

Représenter la topologie d'un objet par une structure combinatoire

H. Poincaré (1854-1912)

Soit *V* un ensemble fini. Un complexe simplicial (abstrait) sur *V* est un ensemble fini de sous-ensembles de *V* appelés les simplexes ou faces de *K* qui vérifient :

Les éléments de *V* appartiennent à *K* (sommets)

2) Si
$$au \in K$$
 et $\sigma \subseteq au$, alors $\sigma \in K$

Nerf d'un recouvrement

Représenter la topologie d'un objet par une structure combinatoire

Théorème du nerf(J. Leray, 1945)Si le éléments du recouvrement sont contractiles, le nerf et la réunion
des boules ont le même type d'homotopie.

Complexe de Čech

Nerf d'un ensemble de boules

Un ensemble fini de points $\mathcal{P} \in \mathbb{R}^d$

J. Leray (1906-1998)

Corollaire du théorème du nerf(J. Leray, 1945)Le complexe de Čech a le même type d'homotopie que l'union des
boules

2) Un peu de topologie

Fonctions distance et reconstruction homotopique

Triangulation des variétés topologiques

Reconstruction de formes géométriques

Union de boules et fonctions distance

Echantillon P

Union des boules $P^{+\alpha}$

Théorèmes de reconstruction

Union de boules et fonctions distance

Niyogi, Smale, Weinberger [2008]

Si \mathbb{M} est une sous-variété de portée τ positive, P un échantillon ε -dense de \mathbb{M} , alors pour tout $\alpha \in [\sim \varepsilon, \sim \tau]$, $P^{+\alpha} \simeq \mathbb{M}$

Chazal, Cohen-Steiner, Lieutier [2009]

Extension au cas de compacts généraux

Chazal, Cohen-Steiner, Mérigot [2011]

Extension au cas de données comportant des points aberrants

Reconstruction de formes géométriques Du discret au continu (AR)

Deux questions

La question algorithmique

Le complexe de Čech est gros $(O(n^d))$ et difficile à calculer (il faut calculer des petites boules englobantes)

- peut-on éviter la dépendance exponentielle en d?
- peut-on majorer la complexité combinatoire par une mesure de la dimension intrinsèque ?
- recherche de représentations compactes

La question de la qualité de l'approximation

Le complexe de Čech n'est en général pas homéomorphe à X et ne peut pas être plongé dans le même espace que X

2 Un peu de topologie

Triangulation des variétés topologiques

Courbes, surfaces et variétés

Cartes et atlas

Variété : *X* est une variété sand bord de dimension *k* si tout $x \in X$ a un voisinage homéomorphe à une boule ouverte de dimension *k*

- ϕ_i homéomorphisme
- ϕ_{ij} application de transition entre cartes

Exemple : Les espaces de configurations de mécanismes

Dimension intrinsèque et plongement

Théorème de plongement de Whitney

Toute variété de dimension k peut être plongée dans \mathbb{R}^{2k+1}

Certaines surfaces comme la bouteille de Klein ne peuvent pas être plongées dans \mathbb{R}^3

L'espace des images naturelles

Patches à fort contraste [Lee, Pedersen, Mumford 2003], [Carlsson et al 2008]

La géométrie complexe du cyclo-octane C_8H_{16} Variétés stratifiées

Martin et al. [2010]

Triangulation des variétés

Affiner l'approximation, réduire la complexité

Triangulation des variétés lisses

Une longue histoire

[Cairns, Whitehead, Whitney,...]

Hassler Whitney

Triangulation d'une variété ${\mathbb M}$

Un complexe simplicial homéomorphe à ${\mathbb M}$

Variétés PL

Définition

Un complexe simplicial \hat{S} est une variété PL de dimension k ssi le link de chaque sommet est la triangulation d'une sphère (topologique) de dimension k

Triangulation de Delaunay des variétés

Peut-on étendre les techniques de maillage de surfaces ?

- Le fléau de la dimension
 - La complexité combinatoire de DT dépend exponentiellement de la dimension ambiante d même si les points appartiennent à une sous-variété de petite dimension

Le cas le pire est obtenu quand les points appartiennent à une curve, e.g. la courbe des moments

Les prédicats requis pour construire DT sont les signes de polynômes de degré d + 2 des coordonnées des points

• Codimensions élevées

 La plupart des méthodes de maillage et de reconstruction de surfaces de R³ reposent sur le fait que les surfaces sont des variétés de codimension 1

Le fléau de la dimension

On ne peut pas subdiviser l'espace ambiant !

Résolution = 1/N

Nombre de cellules $= N^d$

∜

N = 1000

 $N^2 = 1$ million $N^3 = 1$ milliard $N^6 = 1.000.000.000.000.000$

Triangulation de Delaunay des variétés Du local au global

- Construire des triangulations de Delaunay locales (étoiles)
- Stabiliser les triangulations locales en les perturbant si besoin
 - ⇒ un simplexe apparait dans l'étoile de tous ses sommets
- 8 Réunir les étoiles pour former une variété PL

Le cas des sous-variétés de \mathbb{R}^d

Le complexe de Delaunay tangent

Triangulations locales

$$\forall p \in \mathcal{P} : \quad T_p(\mathcal{P}) = \operatorname{star}(p, \operatorname{Del}_{|T_p}))$$

Complexe tangent

$$TC(\mathcal{P}) = \{T_p(\mathcal{P}), p \in \mathcal{P}\}$$

Le complexe de Delaunay tangent

[Freedman 2002], [B.& Flottoto 2004], [B. Ghosh 2014]

- + Sous-complexe de $Del(\mathcal{P})$: $Del_{T\mathbb{M}}(\mathcal{P}) \subseteq Del(\mathcal{P})$
- + Complexité : $\text{Del}_{TM}(\mathcal{P})$ peuvent être calculés sans calculer $\text{Del}(\mathcal{P})$
- Incohérences : Un simplexe n'apparait pas nécessairement dans les étoiles de tous ses sommets
 - $\Rightarrow \text{Del}_{T\mathbb{M}}(\mathcal{P})$ n'est pas nécessairement une variété PL

Construction de $\text{Del}_{T\mathbb{M}}(\mathcal{P})$

Complexité linéaire en d, exponentielle en k

Si $H \subset \mathbb{R}^d$ est un sous-espace affine de dimension k, $Vor(\mathcal{P}) \cap H$ est un diagramme de Voronoï pondéré de H

$$\begin{split} \|x - p_i\|^2 &\leq \|x - p_j\|^2 \\ \Leftrightarrow \|x - p'_i\|^2 - \|p_i - p'_i\|^2 \leq \|x - p'_i\|^2 - \|p_j - p'_j\|^2 \\ \psi_p(p_i) &= (p'_i, -\|p_i - p'_i\|^2) \\ \operatorname{Vor}(\mathcal{P}) \cap H &= \operatorname{Vor}(\psi_p(\mathcal{P})) \\ \end{split}$$
 (diag. de Laguerre)

Construction de $\text{Del}_{T\mathbb{M}}(\mathcal{P})$

Complexité linéaire en d, exponentielle en k

Si $H \subset \mathbb{R}^d$ est un sous-espace affine de dimension k, $Vor(\mathcal{P}) \cap H$ est un diagramme de Voronoï pondéré de H

$$\begin{aligned} \|x - p_i\|^2 &\leq \|x - p_j\|^2 \\ \Leftrightarrow & \|x - p'_i\|^2 - \|p_i - p'_i\|^2 \leq \|x - p'_i\|^2 - \|p_j - p'_j\|^2 \\ \psi_p(p_i) &= (p'_i, -\|p_i - p'_i\|^2) \\ \operatorname{Vor}(\mathcal{P}) \cap H &= \operatorname{Vor}(\psi_p(\mathcal{P})) \end{aligned} (diag. de Laguerre) \end{aligned}$$

Corollaire : construction de $\text{Del}_{T_p}(\mathcal{P})$ projeter \mathcal{P} dans T_p en temps O(dn)construire $\text{star}(\psi_p(p_i))$ dans $\text{Del}(\psi_p(p_i)) \subset T_{p_i}$ star $(p_i) \approx \text{star}(\psi_p(p_i))$ (isomorphe)

Configurations témoins

1
$$\tau \in \operatorname{star}(p_i) \Rightarrow B(c_{p_i}(\tau) \cap \mathcal{P} = \emptyset$$

2 $\tau \notin \operatorname{star}(p_j) \Rightarrow B(c_{p_j}(\tau) \cap \mathcal{P} = \mathcal{C} \neq \emptyset$
3 $\exists p \in \mathcal{C} : \phi = \tau * p \in \operatorname{Del}(\mathcal{P})$
(dim $(\phi) = k + 1$)

si le diamètre de τ est $O(\varepsilon)$ et son épaisseur O(1)

- \Rightarrow c_i et c_j sont proches & $aff(\tau) \approx T_{p_i} \approx T_{p_j}$
- \Rightarrow la protection de $\phi = \tau * p$ est $O(\varepsilon^2)$

 ϕ est appelé une configuration témoin (d'une incohérence)

Configurations témoins

1
$$\tau \in \operatorname{star}(p_i) \Rightarrow B(c_{p_i}(\tau) \cap \mathcal{P} = \emptyset$$

2 $\tau \notin \operatorname{star}(p_j) \Rightarrow B(c_{p_j}(\tau) \cap \mathcal{P} = \mathcal{C} \neq \emptyset$
3 $\exists p \in \mathcal{C} : \phi = \tau * p \in \operatorname{Del}(\mathcal{P})$
(dim(ϕ) = k + 1)

si le diamètre de τ est $O(\varepsilon)$ et son épaisseur O(1)

- \Rightarrow c_i et c_j sont proches & $aff(\tau) \approx T_{p_i} \approx T_{p_j}$
- $\Rightarrow \quad \text{la protection de} \quad \phi = \tau * p \quad \text{est} \quad O(\varepsilon^2)$

 ϕ est appelé une configuration témoin (d'une incohérence)

Reconstruction de sous-variétés lisses

- **O** Pour chaque sommet *v*, calculer l'étoile star(p) de *p* dans $Del_p(\mathcal{P})$
- Supprimer les incohérences parmi les étoiles en protégeant les simplexes de Del_{TM}(P) et les configurations témoins
- ${f 0}$ Réunir les étoiles pour obtenir une triangulation de ${\cal P}$

Suppression des incohérentes entre étoiles

Hypotheses

- \mathbb{M} : une sous-variété différentiable de portée positive de dim. $k \subset \mathbb{R}^d$
- \mathcal{P} : un ε -net de \mathbb{M} pour un ε suffisamment petit
- on connait en chaque point $p \in \mathcal{P}$ l'espace tangent T_p (de dim. k)

Proposition

Sous les hypothèses, l'algorithme termine et supprime toutes les incohérences

 $\Rightarrow \hat{\mathbb{M}}$ est une variété PL

Reconstruction de sous-variétés : résultat principal

Garanties sur la qualité de l'approximation

- $\hat{\mathbb{M}}$ est une sous-variété PL de dimension k
- $\hat{\mathbb{M}} \subset \operatorname{tub}(\mathbb{M}, O(\varepsilon^2)\operatorname{rch}(\mathbb{M}))$
- Angles entre les facettes et les espaces tangents de $\mathbb{M} = O(\varepsilon)$
- $\hat{\mathbb{M}}$ est homéomorphe à \mathbb{M}

Complexité de l'algorithme

- linéaire en d
- exponentielle en k

Reconstruction de surfaces de Riemannian plongée dans \mathbb{R}^8

Données fournies par A. Alvarez

Triangulation de l'espace des conformations de C_8H_{16}

Triangulations de Delaunay de variétés

Extensions et applications

• Cas d'une sous-variété \mathbb{M} de \mathbb{R}^d

Si \mathcal{P} est un net suffisamment dense et protégé de \mathbb{M} , alors

$$\mathrm{Del}_{\mathbb{R}^d|\mathbb{M}}(\mathcal{P}) = \mathrm{Del}_{T\mathbb{M}}(\mathcal{P}) = \mathrm{Del}_{\mathrm{geo}}(\mathcal{P})$$
 triangulent \mathbb{M}

- Cas d'une variété riemannienne M équippée d'une métrique M
 Si P est un net suffisamment dense et protégé de M, alors
 Del_M(P) existe et peut être calculé via des triangulations locales dans les espaces tangents (en utilisant l'application exponentielle)
- Z Une condition sur la densité seule n'est pas suffisante
- Génération de maillages anisotropiques

Phénomènes anisotropes

Maillage anisotrope

- Un complexe simplicial
- Simplexes allongés selon des directions spécifiées

Applications

- Adaptation de maillages (résolution d'EDP pour des phénomènes aniso.)
- Approximation de surfaces liée au tenseur de courbure
- Approximation de fonctions liée à la matrice Hessienne

Approximation de diagrammes de Voronoï riemanniens

Métrique riemannienne $g : x \in \Omega \mapsto G_x$, G_x matrice sym. déf. pos.

Distance anisotrope : $d_{G_x}(a,b) = d_x(a,b) = \sqrt{(a-b)^t G_x(a-b)}$

[Boissonnat, Rouxel-Labbé, Wintraeken 2017]

Delaunay triangulation riemannienne

Arêtes droites

Théorème On peut construire un échantillon d'un domaine Ω tel que le nerf du diagramme de Voronoï riemannien soit une triangulation de Ω

Triangulation de Delaunay riemannienne

Surface PL munie d'une métrique associée à la deuxième forme fondamentale (courbure)

