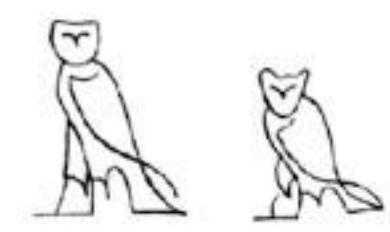
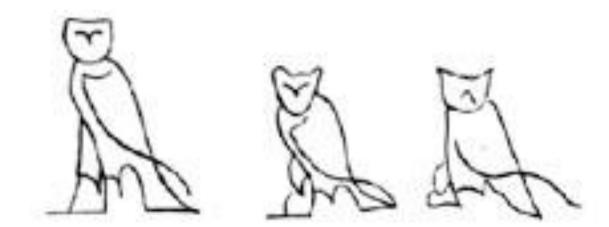
Geometry, Dynamics, and Natural Algorithms

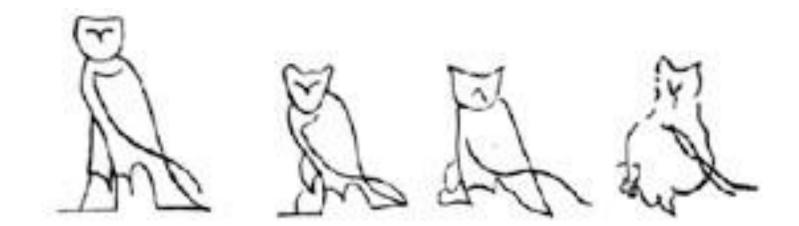
Bernard Chazelle

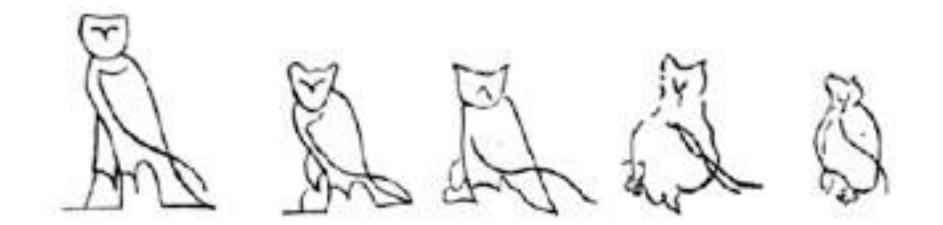
Princeton University

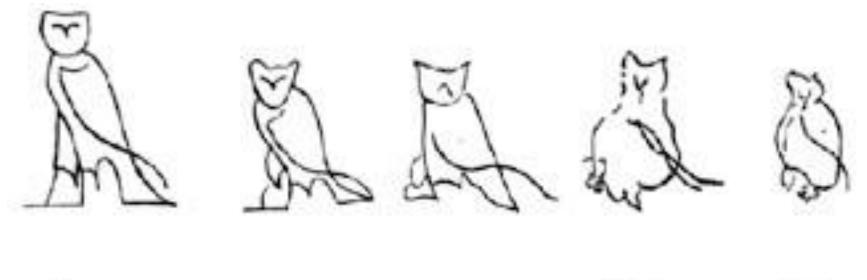
Frederic C. Bartlett 1932



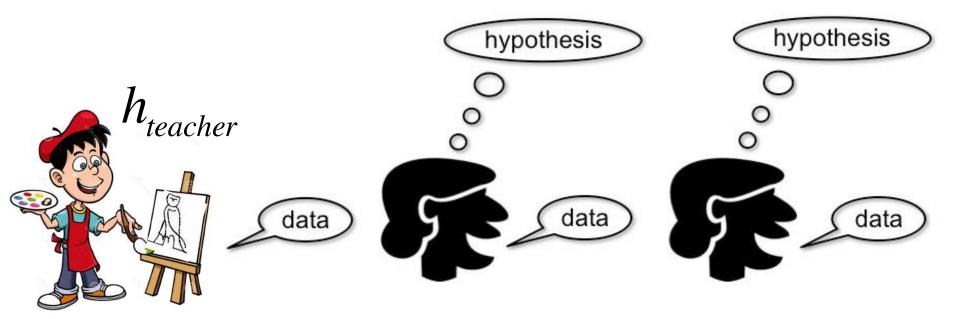


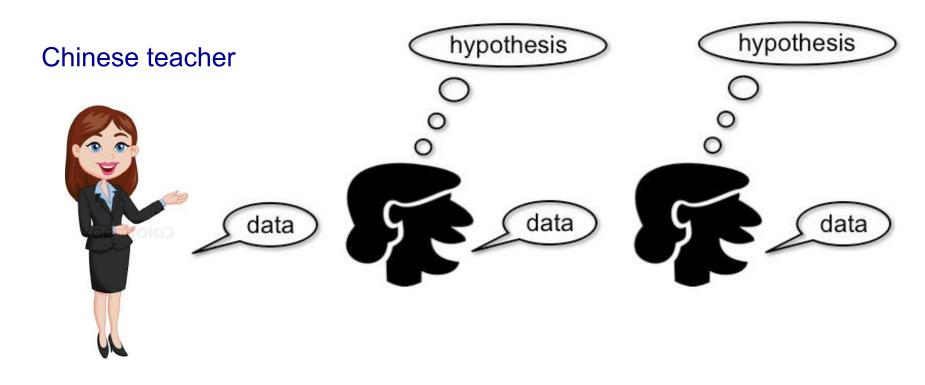




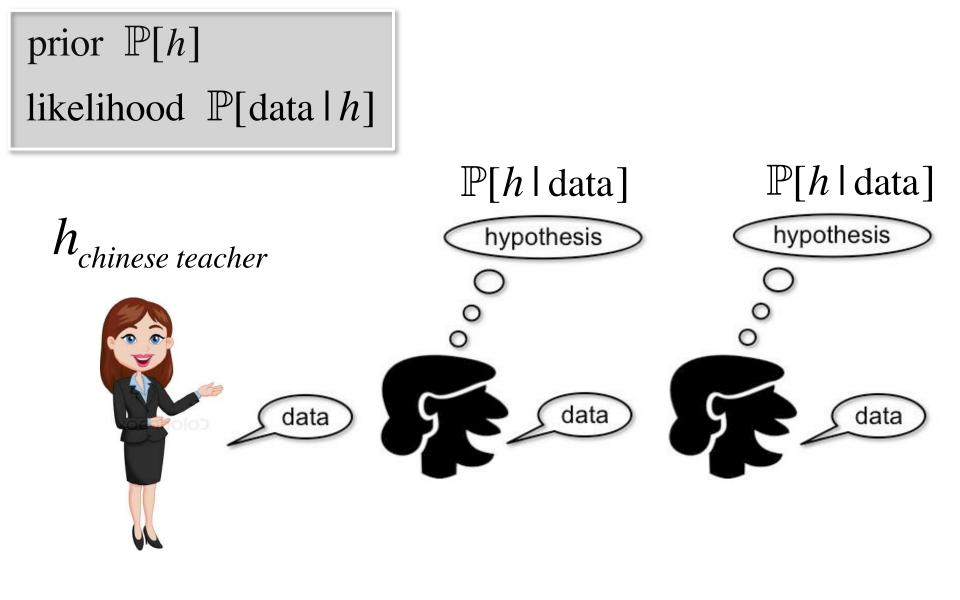


Iterated learning

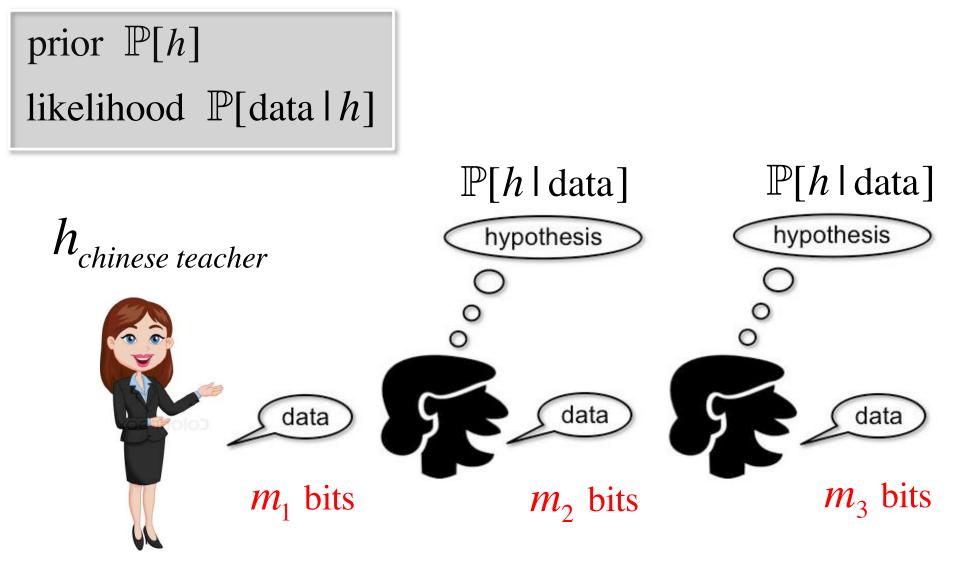




Kalish & Griffiths (2005)



Kalish & Griffiths (2005) Gibbs sampling: mixes to prior

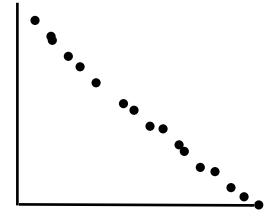


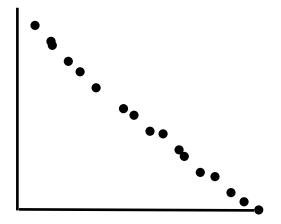
with C. Wang (2016) Lengthen learning sessions $m_1 < m_2 < m_3 < \cdots$

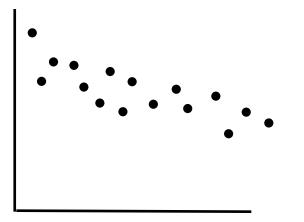
(ε, δ) – sustainability

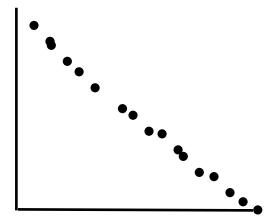
For any learner, with prob > $1 - \varepsilon$, total variation between $h_{teacher}$ and random hfrom posterior is at most δ .

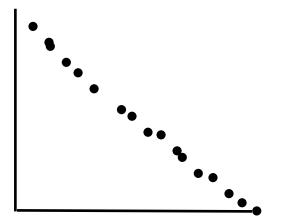
 $m_t = \frac{1}{\delta^2} \ln \frac{t}{\varepsilon}$

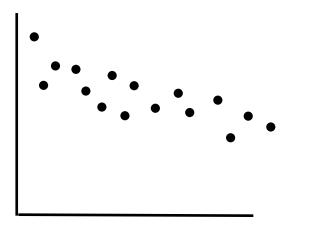


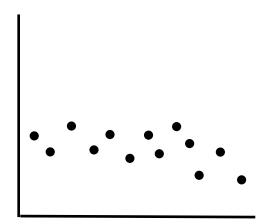


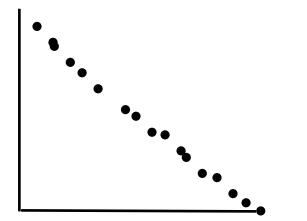


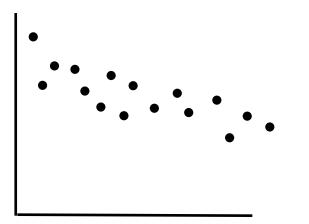


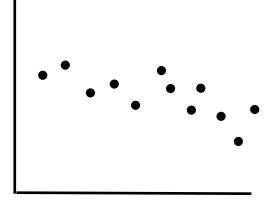


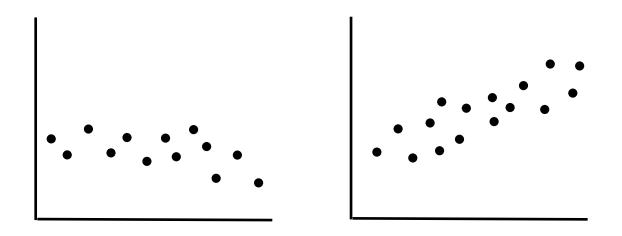














Kalish, Griffiths, Lewandowsky (2007)

LINEAR REGRESSION IN \mathbb{R}^d

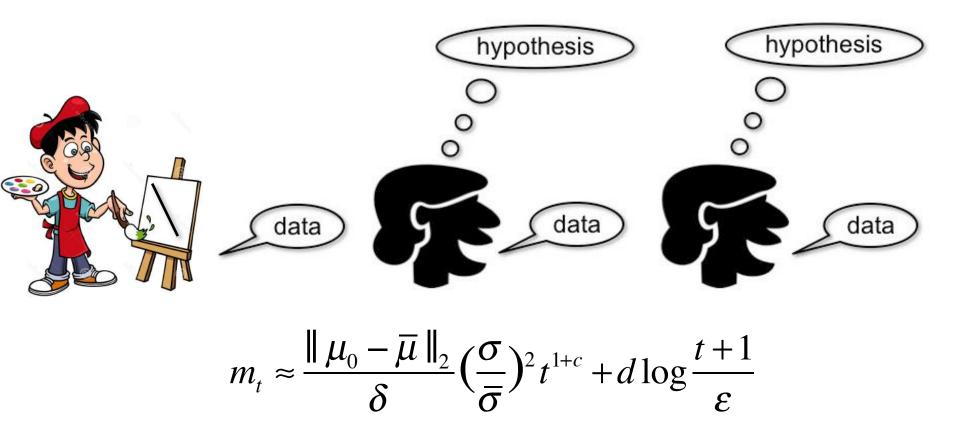
$y = h^T x + \mathcal{N}(0,\sigma^2)$

prior $\mathbb{P}[h] \sim \mathcal{N}(\overline{\mu}, \overline{\sigma}^2 I_d)$ teacher $\mathbb{P}[h] \sim \mathcal{N}(\mu_0, \overline{\sigma}^2 I_d)$ likelihood $\mathbb{P}[y | X, h] \sim \mathcal{N}(Xh, \sigma^2)$

y = Xh + noise

prior $\mathbb{P}[h] \sim \mathcal{N}(\overline{\mu}, \overline{\sigma}^2 I_d)$ teacher $\mathbb{P}[h] \sim \mathcal{N}(\mu_0, \overline{\sigma}^2 I_d)$ likelihood $\mathbb{P}[y | X, h] \sim \mathcal{N}(Xh, \sigma^2)$

$$y = Xh + noise$$



Sustained iterated learning requires keeping system out of equilibrium

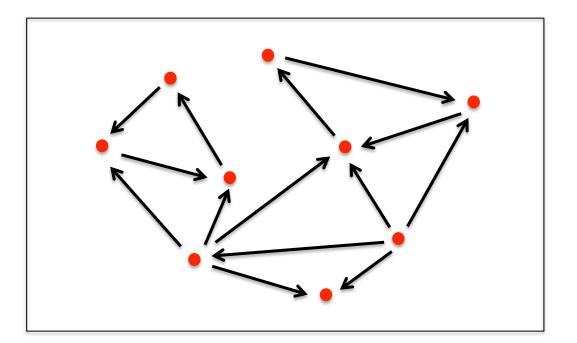
Markov chain



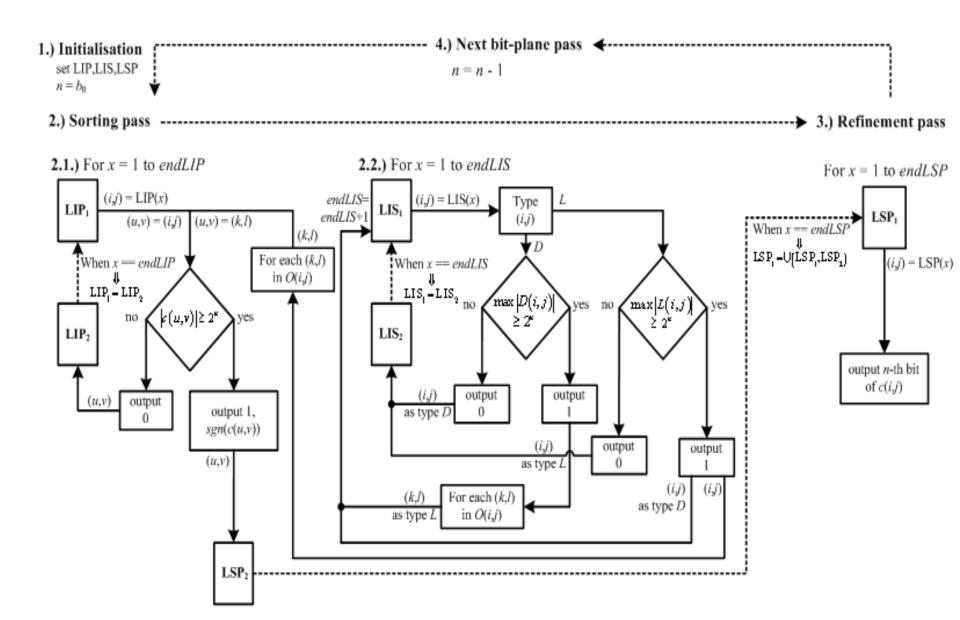
Markov chain

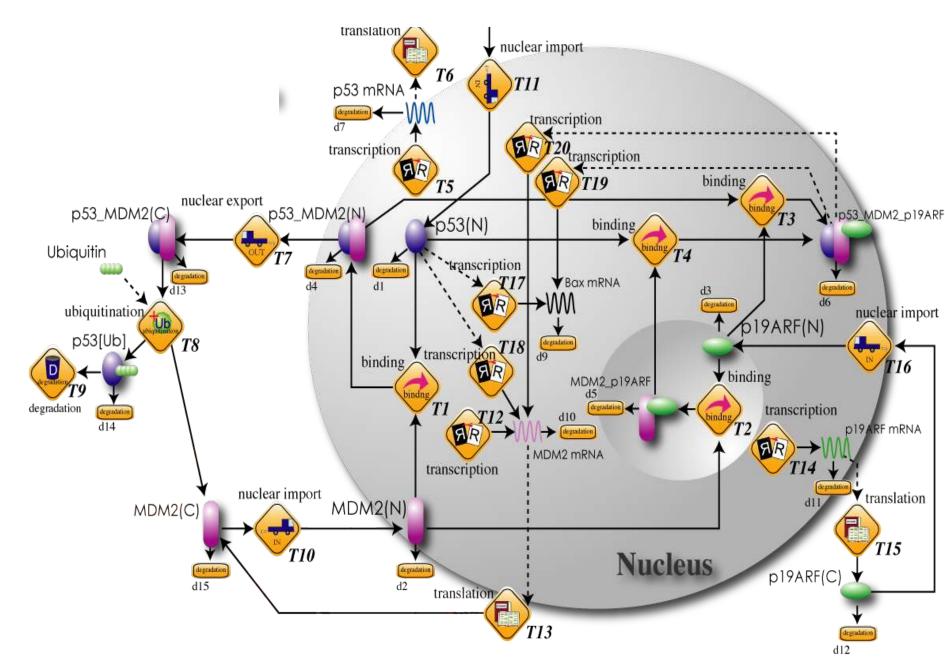
for sustainability keep out of equilibrium

by injecting free energy

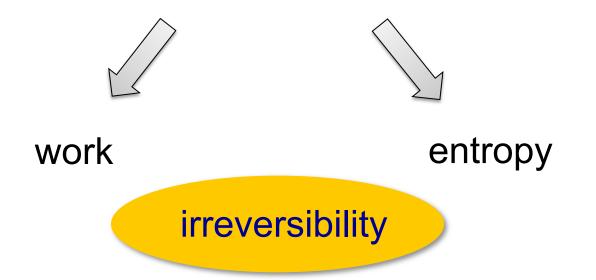


classical algorithm

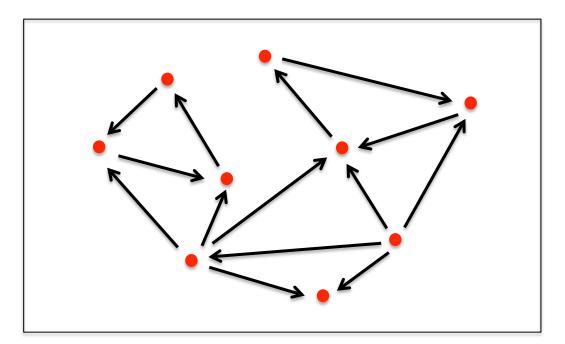




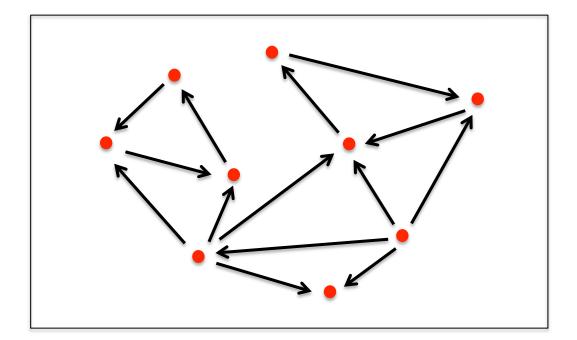
matter / free energy



signals driving fields carbon sources environmental fluctuations



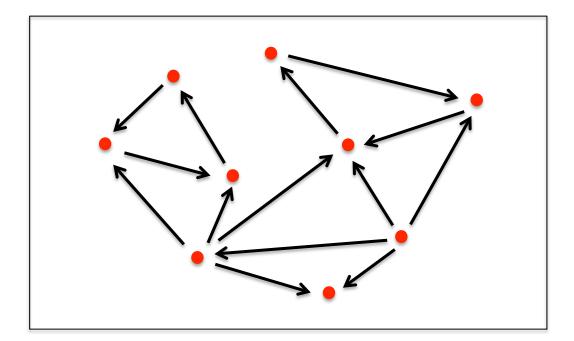
Influence Systems



Each node is an agent; at any time, it is in a state and:

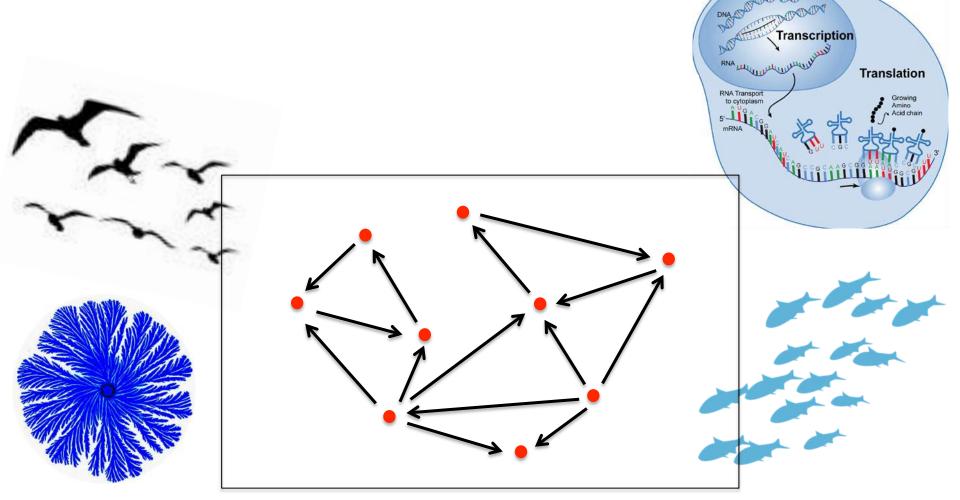
- *it picks its in-edges*
- *it updates its new state*

these rules form the agent's *type*

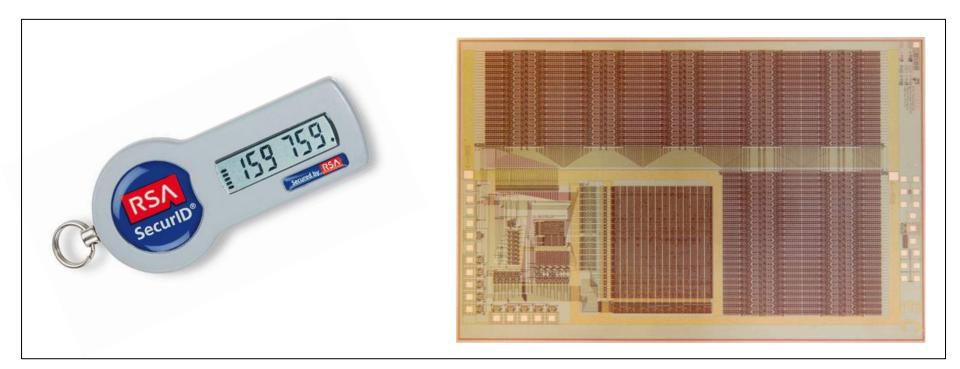


Each node is an agent; at any time, it is in a state and:

- *it picks its in-edges*
- *it updates its new state*

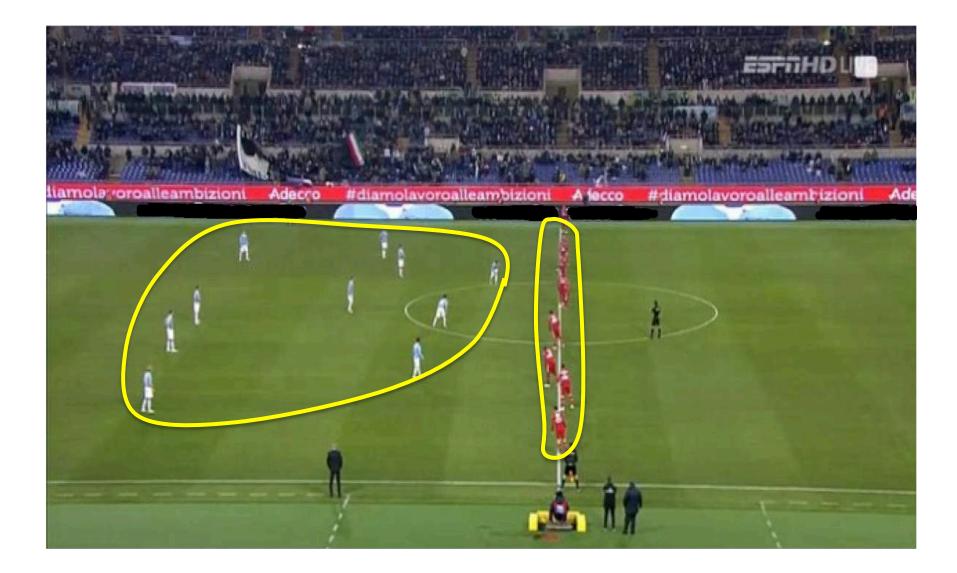


The Big Data pipe dream

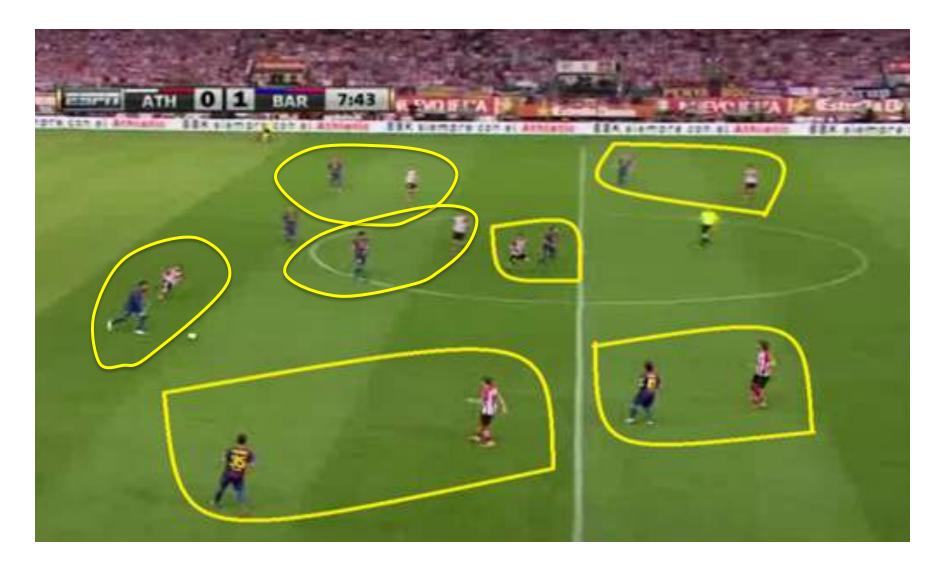


Semantic renormalization

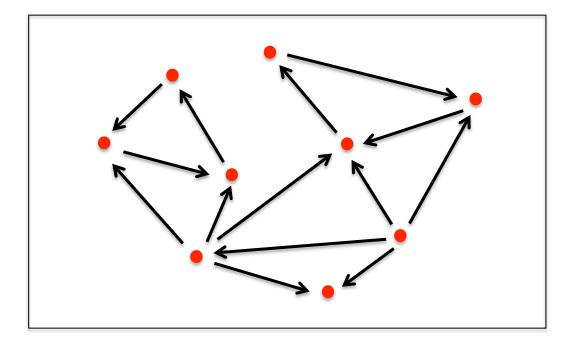
coarse-graining dimension reduction hierarchical graph clustering abstraction



Clustering is path dependent

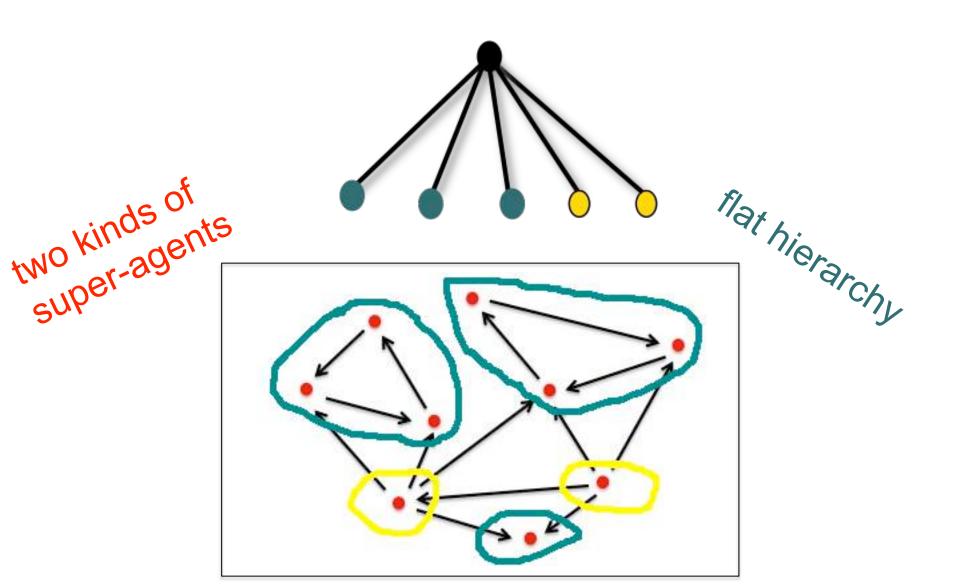


Markov chain



Closed system Mar

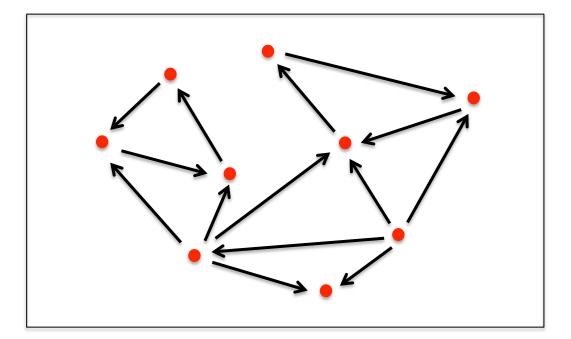
Markov chain decomposition

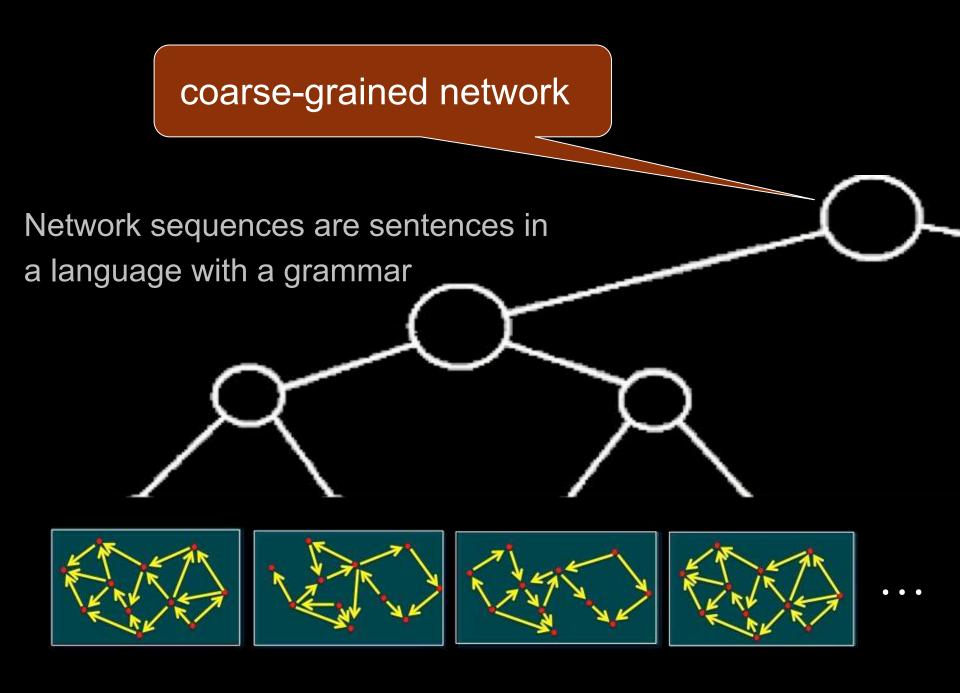


Open system

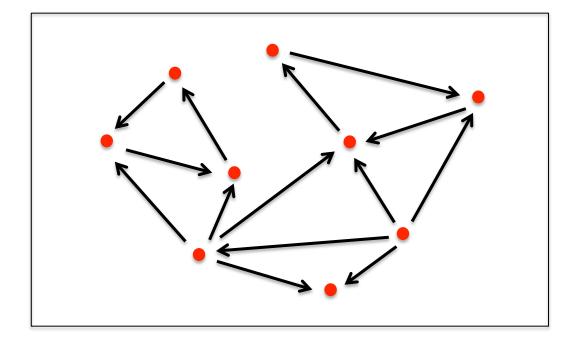
dynamics of dynamic network

 Track flow of information deep renormalization to parse network sequence hierarchy



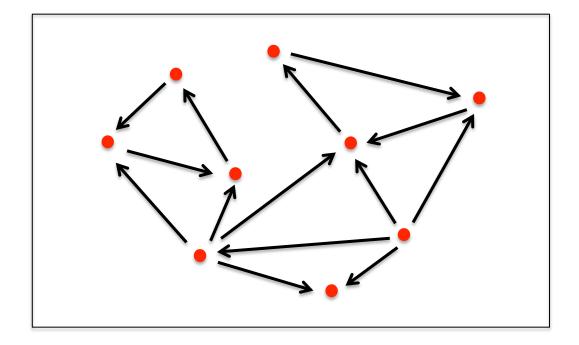


Theorem Under some conditions, almost all orbits are limit cycles.

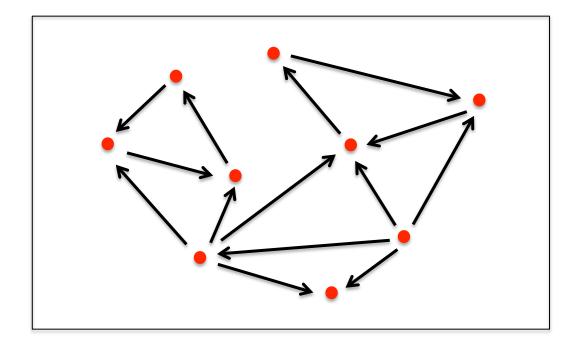


Mixed timescales and archival mechanisms

ratios >
$$10^{15}$$



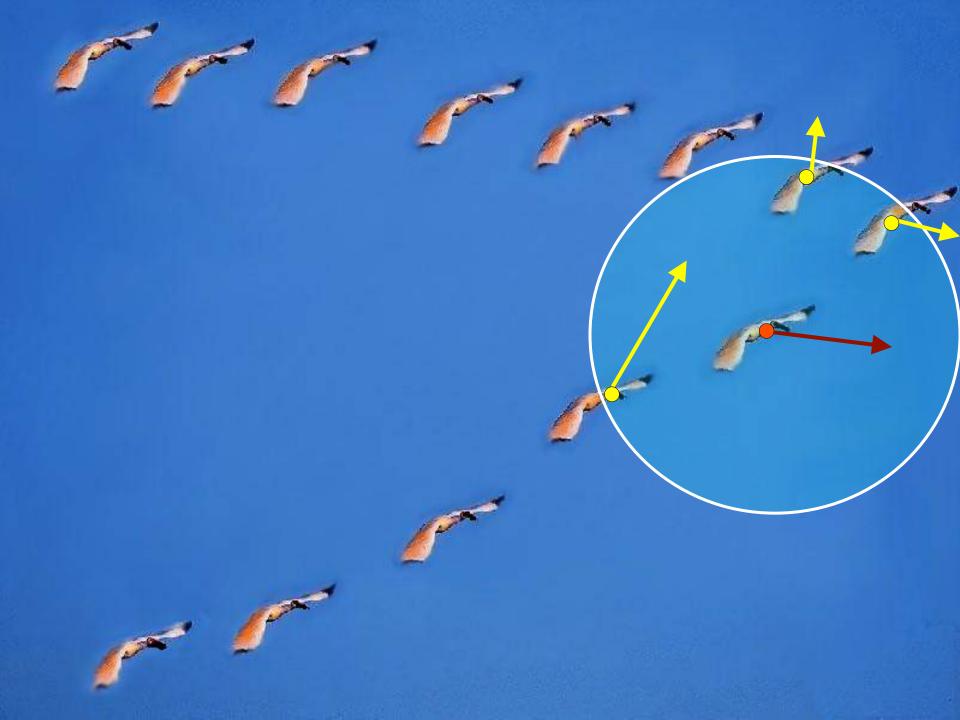
Emergence of memory

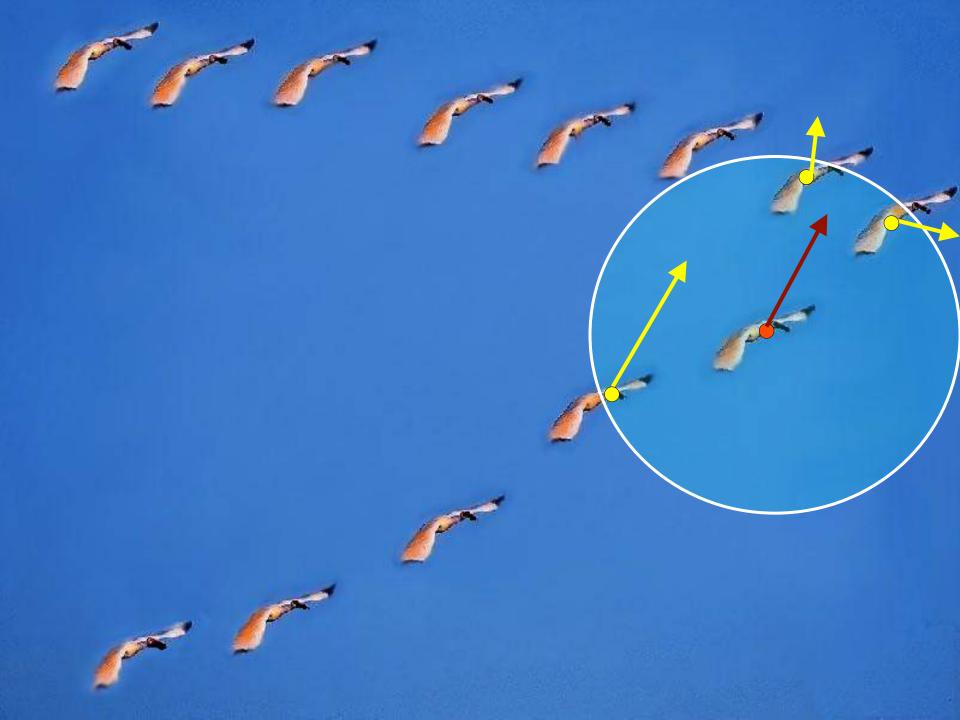


Vicsek-Cucker-Smale model

(A C

1. Sal

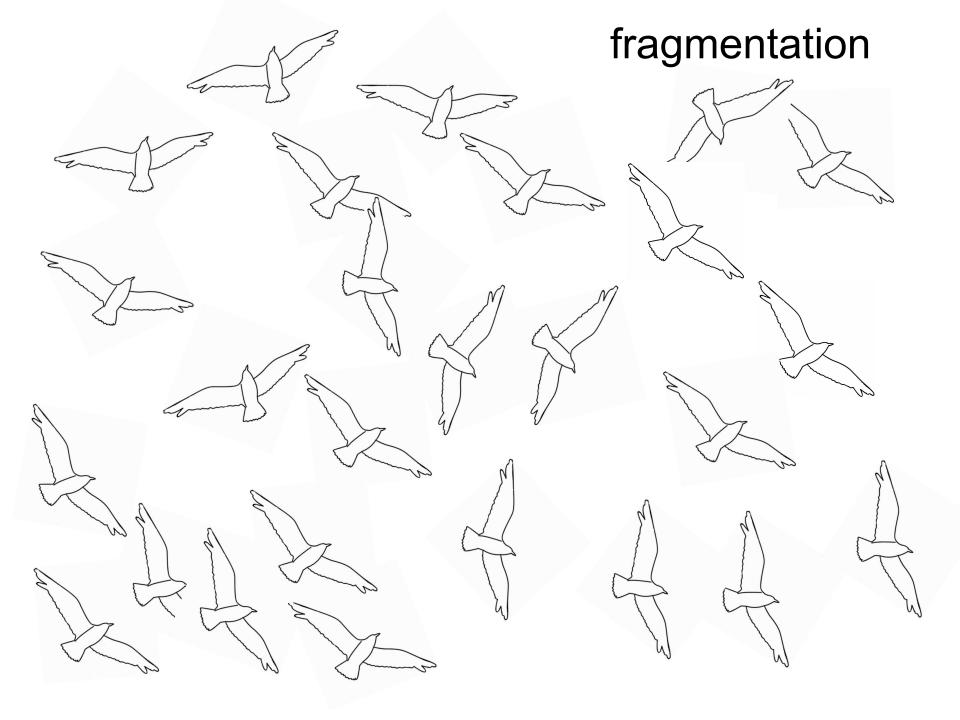


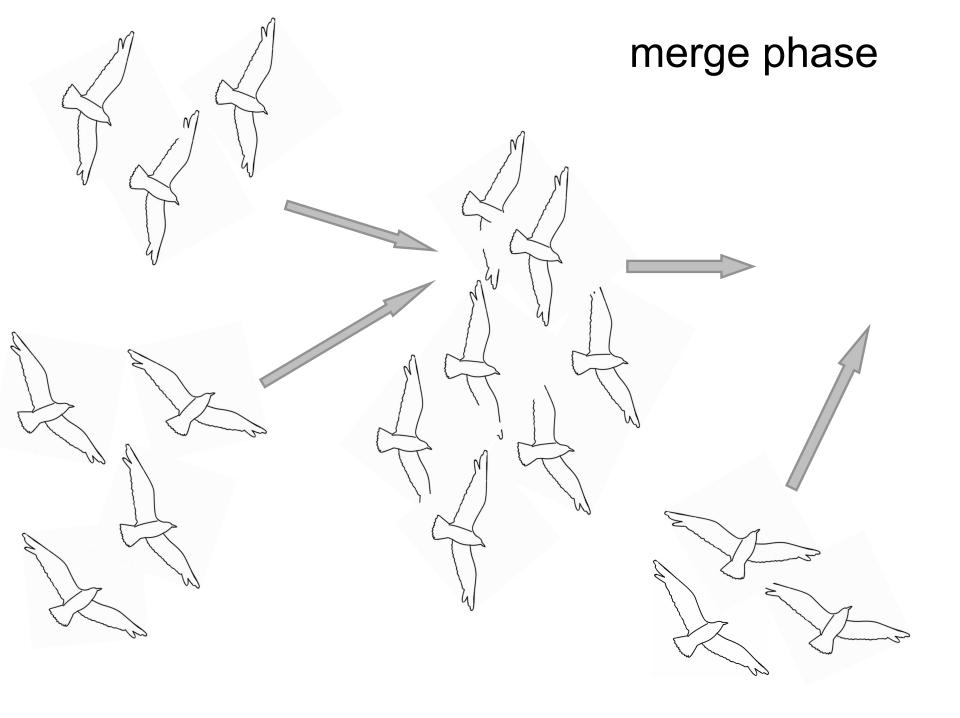


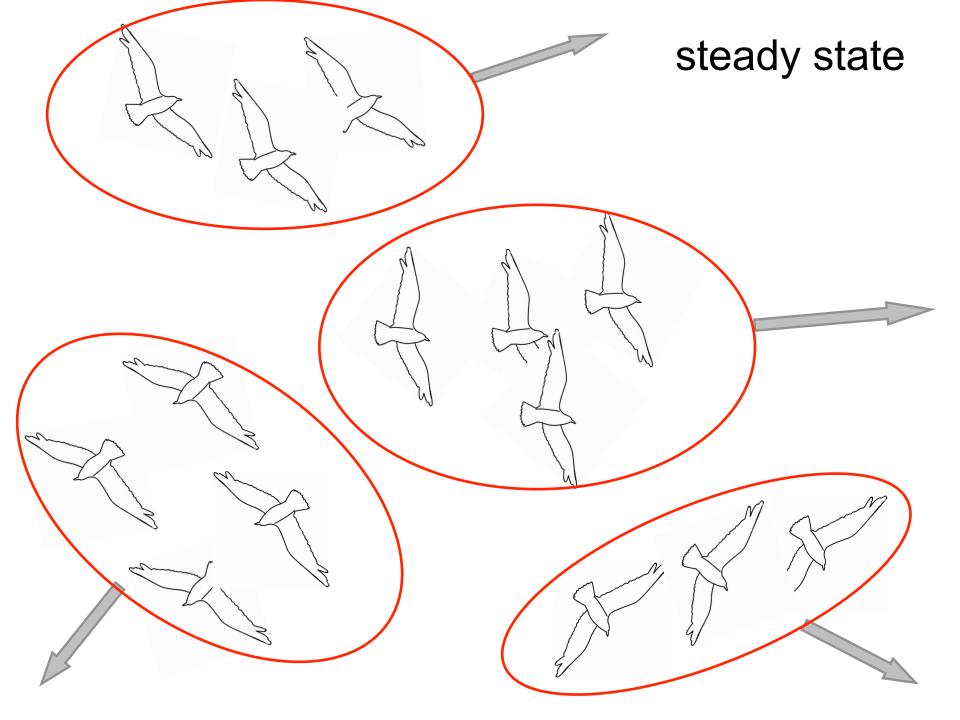
at time t+1

[C 2009]

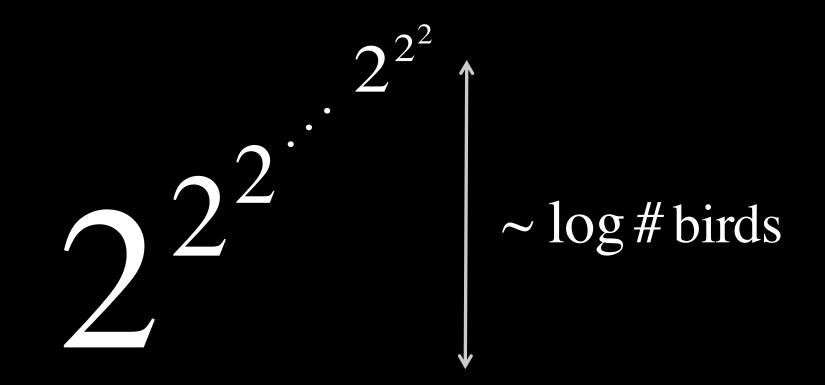
Graph eventually settles





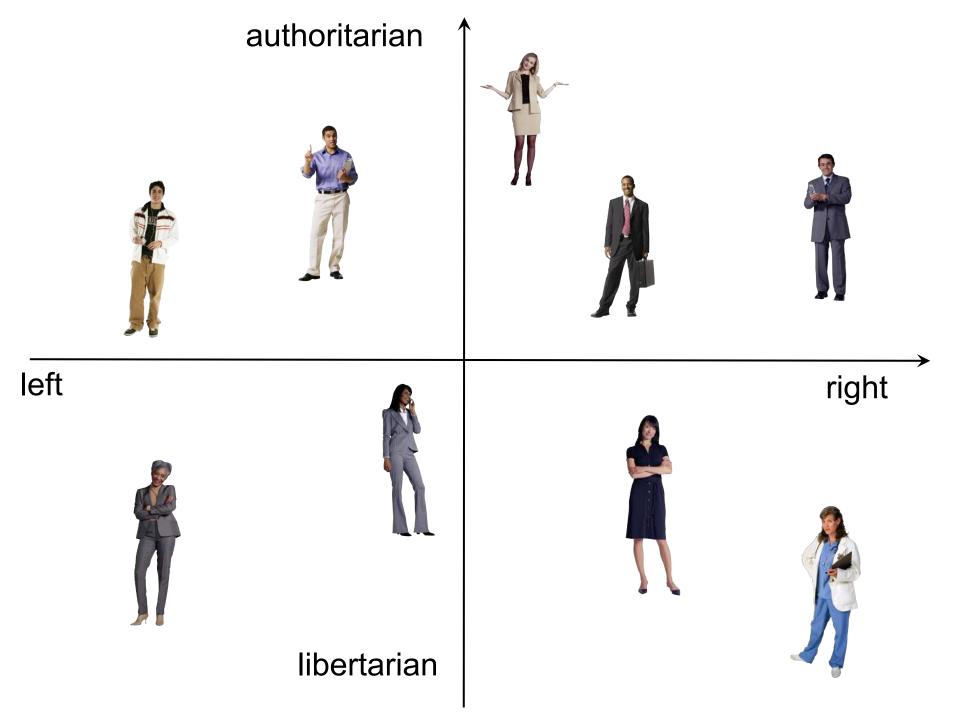


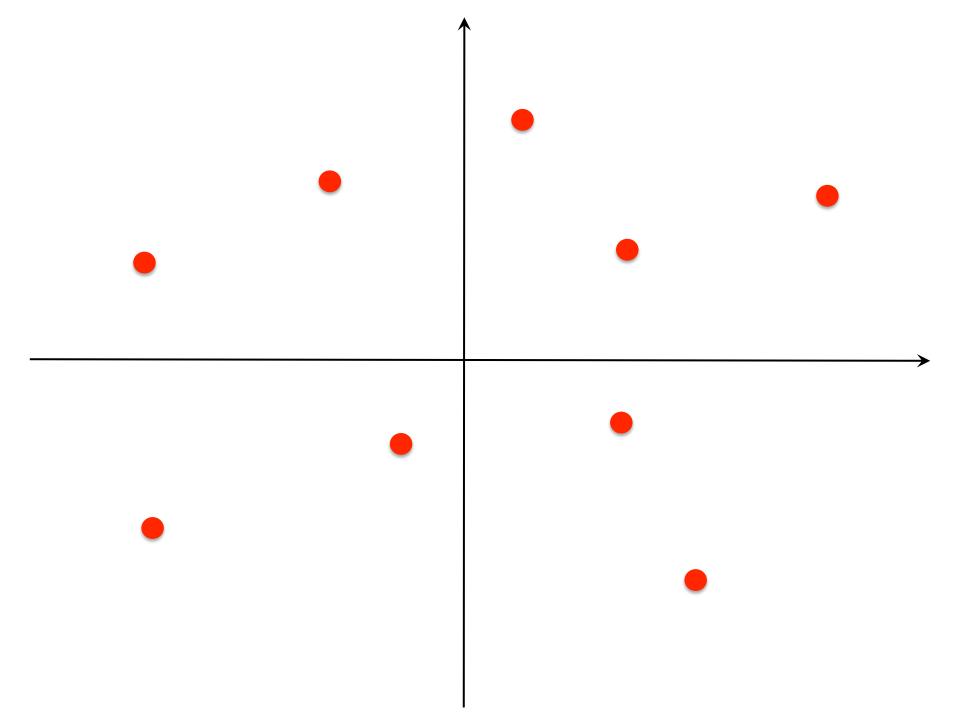
Worst case convergence time

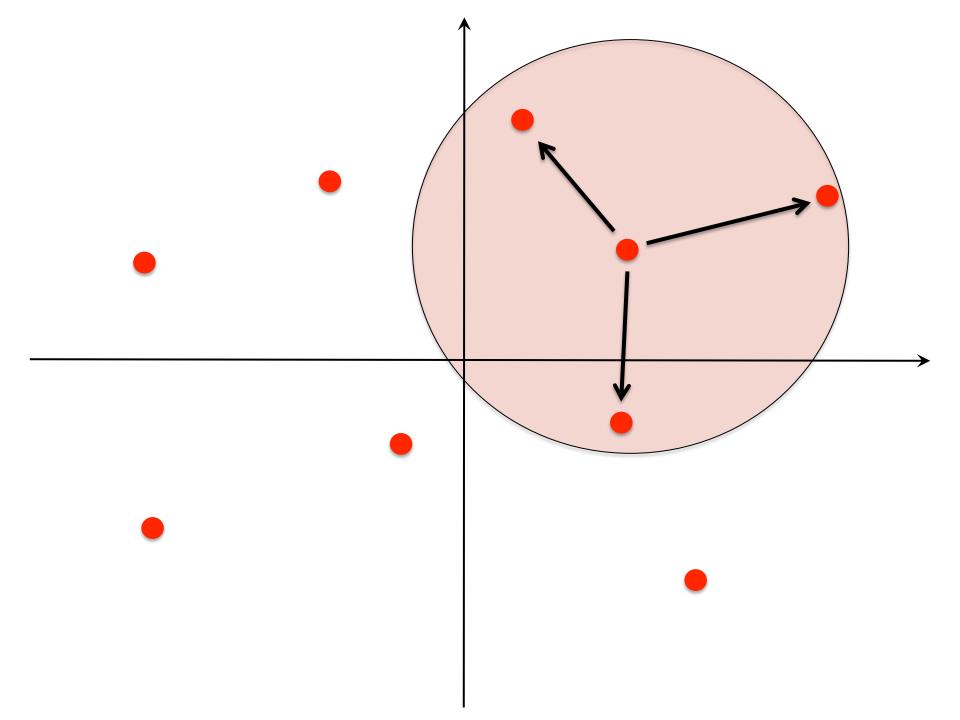


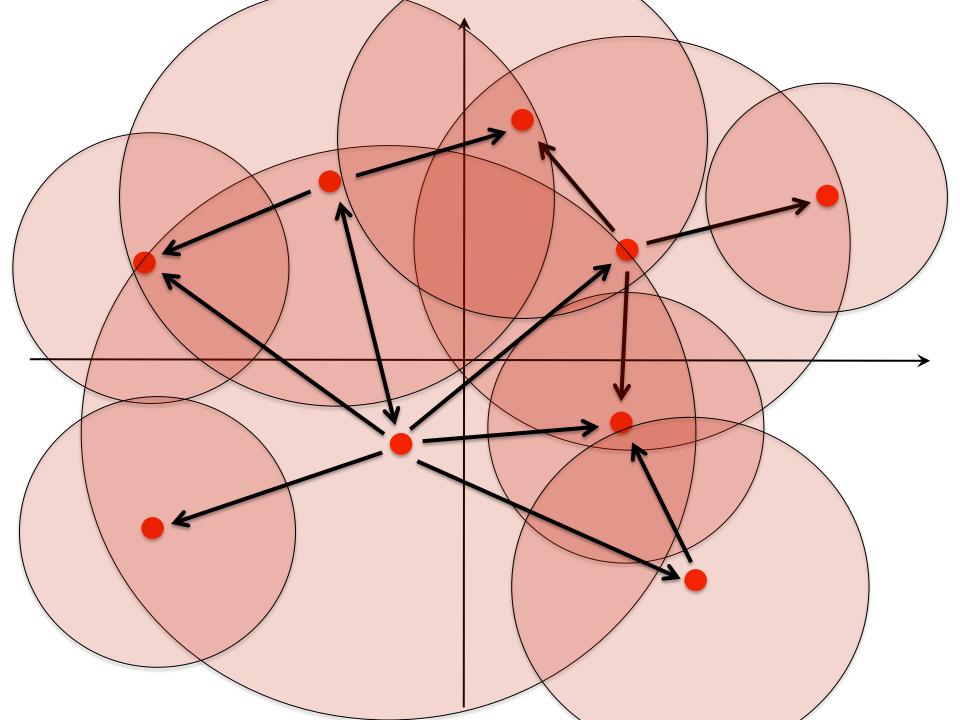
It is optimal !

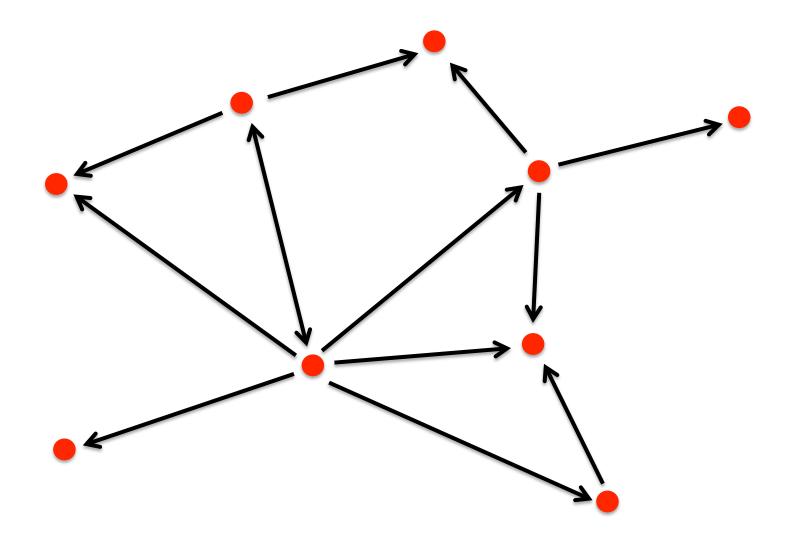
Hegselmann-Krause systems



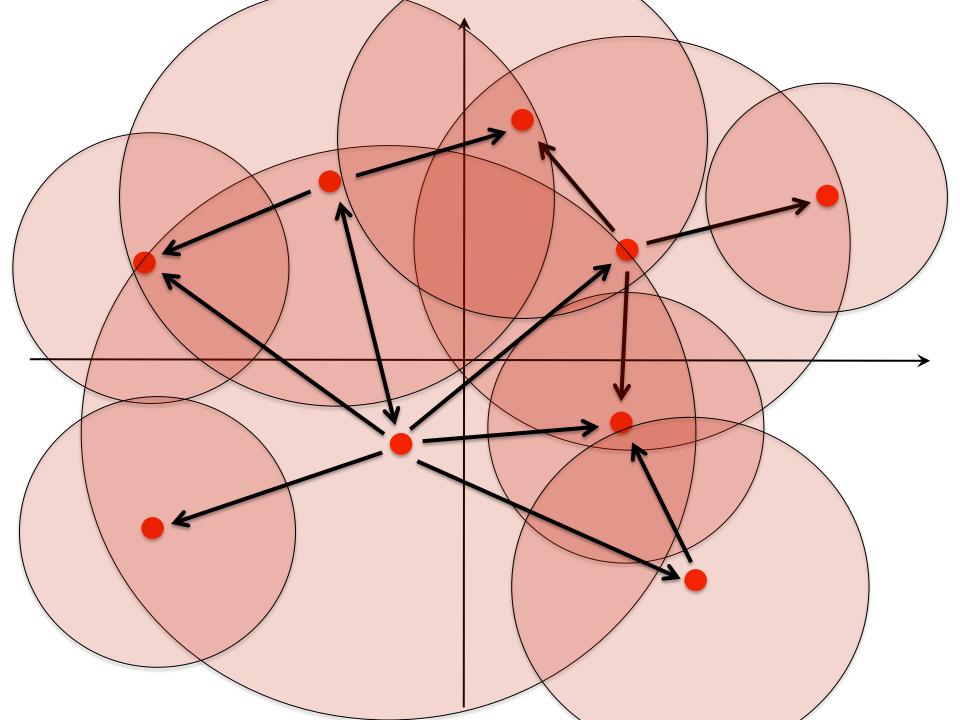




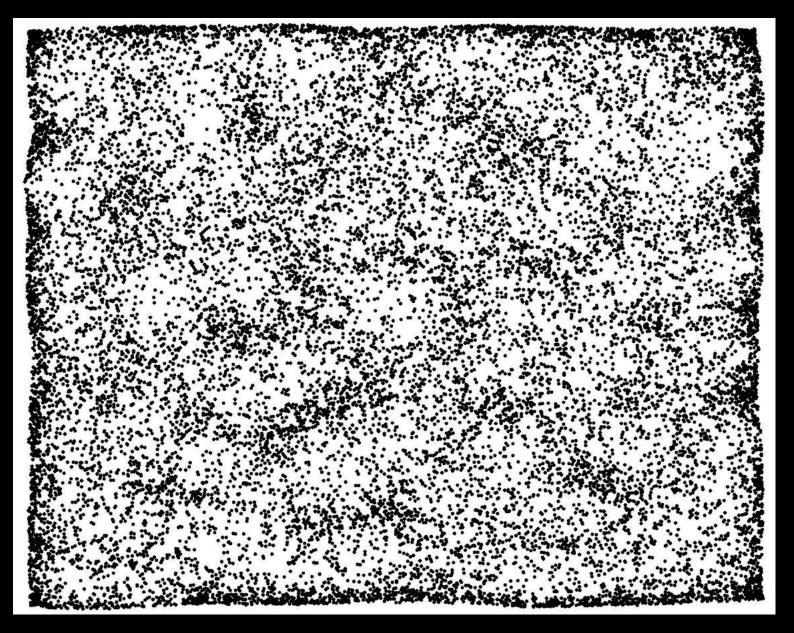


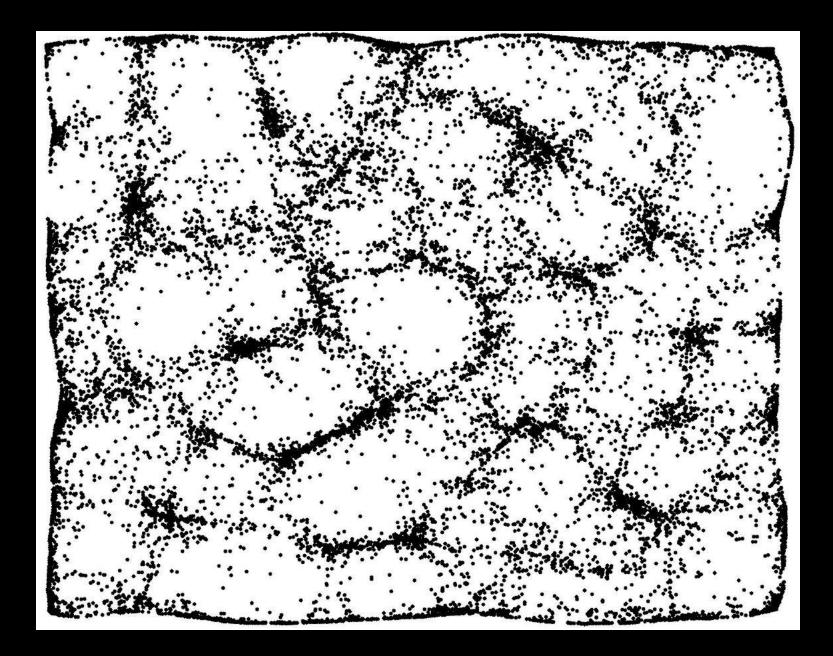


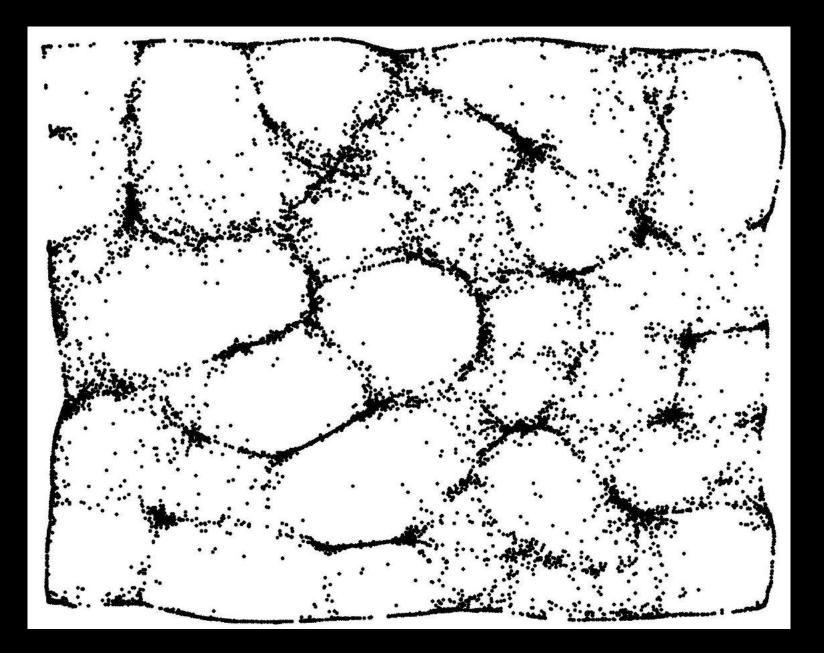
Each agent moves to mass center of neighbors

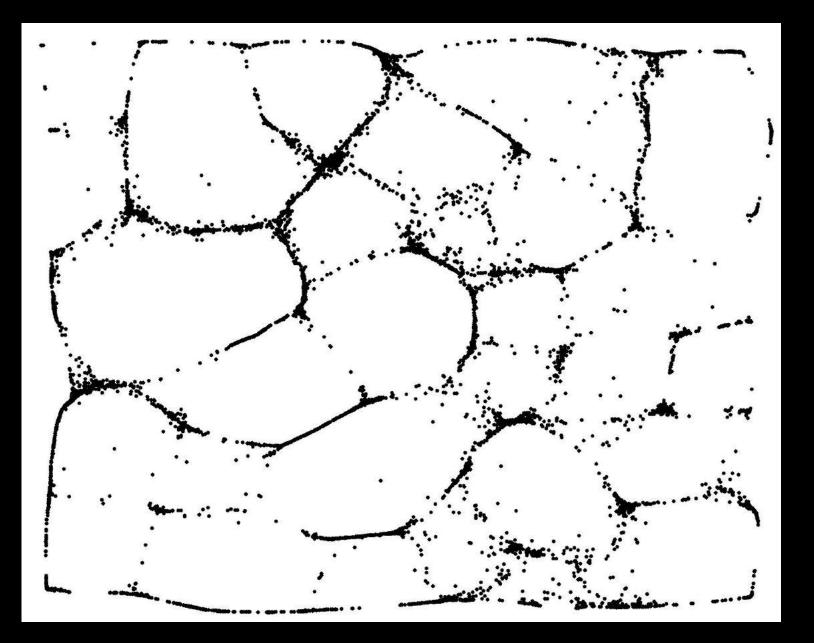


20,000 agents









Hegselmann-Krause in 1D

$$\begin{cases} N_i(t) = \left\{ j : |x_i(t) - x_j(t)| \le R \right\} \\ x_i(t+1) = \frac{1}{|N_i(t)|} \sum_{j \in N_i(t)} x_j(t) \end{cases}$$

with Bhattacharyya, Braverman, Nguyen (2013) $O(n^3)$ Wedin-Hegarty (2015) $\Omega(n^2)$

Charron-Bost, Függer, Nowak (2015) – on circle

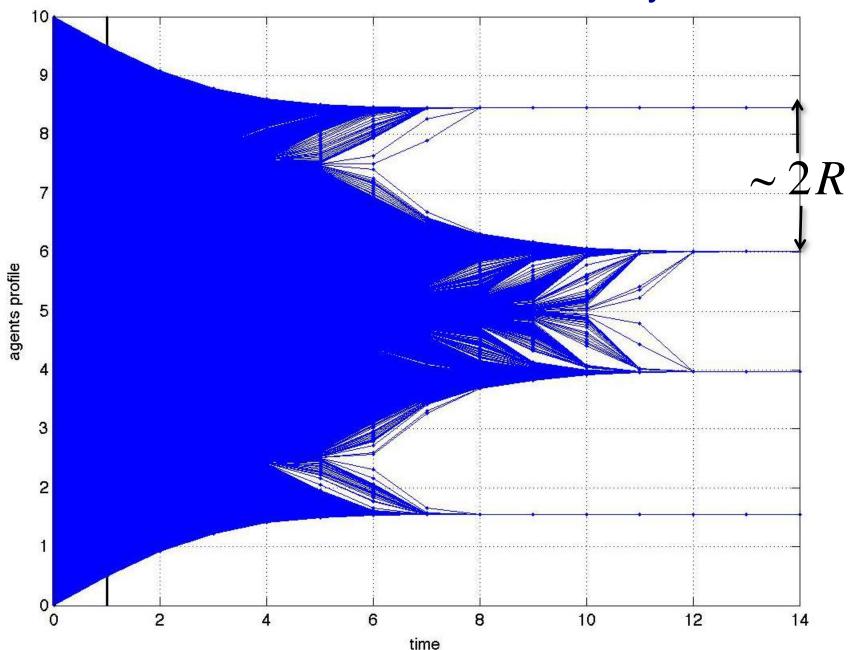
2*R*-Conjecture

Blondel, Hendrickx, Tsitsiklis (2007)

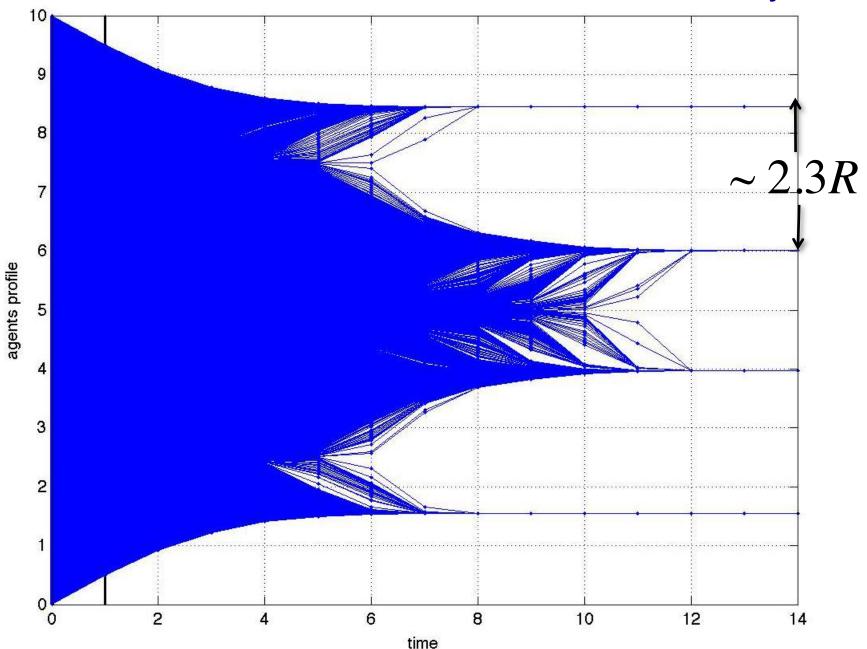
$$\begin{cases} N_{i}(t) = \left\{ j : |x_{i}(t) - x_{j}(t)| \le R \right\} \\ x_{i}(t+1) = \frac{1}{|N_{i}(t)|} \sum_{j \in N_{i}(t)} x_{j}(t) \end{cases}$$

Random initial configuration

Final clusters are 2*R* away



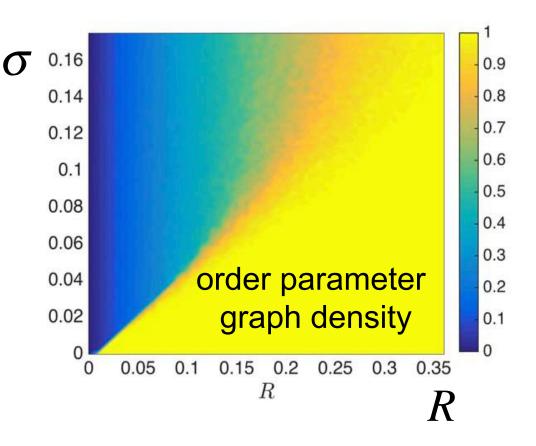
Simulation: final clusters are $\sim 2.3R$ away



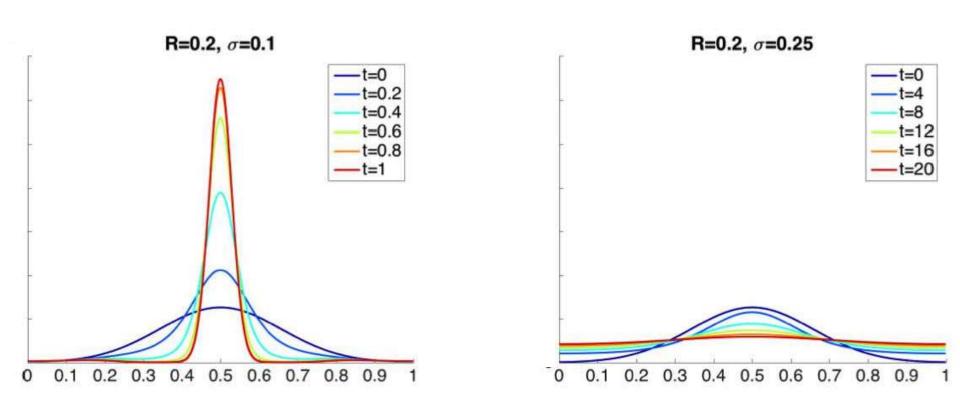
$$dx_i = -rac{1}{N} \sum_{j: |x_i - x_j| \le R} (x_i - x_j) dt + \sigma dW_t^{(i)}$$

Phase transition

SDE :



Clustering vs. diffusion



Fokker-Planck PDE

Take thermodynamic limit

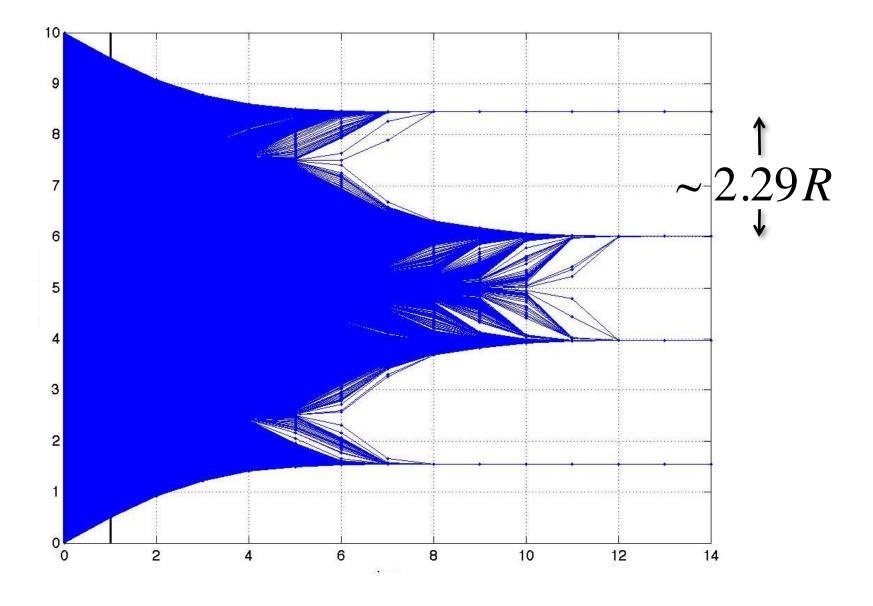
$$egin{aligned} &
ho(x,t) := \lim_{n o \infty} rac{1}{n} \sum \delta_{x_j(t)}(dx) \ &
ho_t(x,t) = \left(
ho(x,t) \int (x-y)
ho(y,t) \mathbf{1}_{|y-x| \le R}) \, dy
ight)_x \ &+ rac{\sigma^2}{2}
ho_{xx}(x,t) \end{aligned}$$

J. Garnier, G. Papanicolaou, T-W. Yang (2015)

Fokker-Planck PDE

$$egin{aligned} &
ho(x,t) := \lim_{n o \infty} rac{1}{n} \sum \delta_{x_j(t)}(dx) \ &
ho_t(x,t) = \left(
ho(x,t) \int (x-y)
ho(y,t) \mathbf{1}_{|y-x| \le R}) \, dy
ight)_x \ & + rac{\sigma^2}{2}
ho_{xx}(x,t) \end{aligned}$$

with Q. Jiu, Q. Li, C. Wang (2015) Well-posed



with Q. Li, Weinan, E., C. Wang (2015)

Perturbation Method

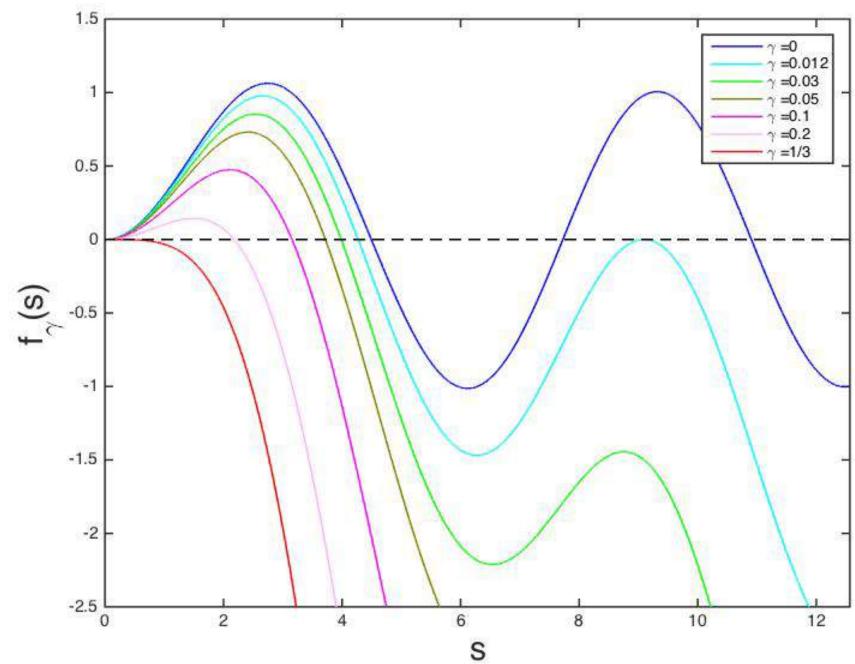
Ansatz
$$\rho(x,t) = 1 + p(t)e^{2\pi i kx}$$

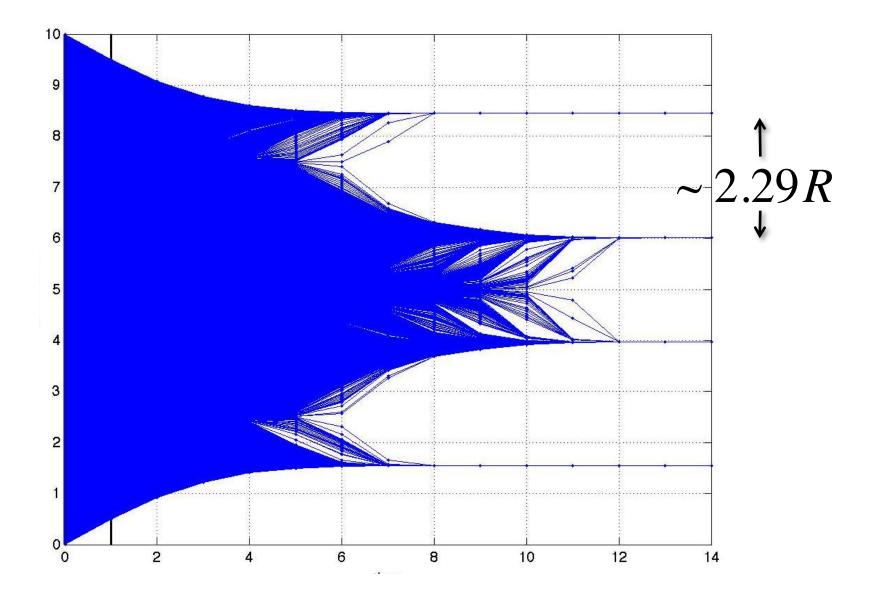
$$\frac{dp}{dt} = 2 pRf_{\gamma}(s) \checkmark$$

$$f_{\gamma}(s) = \frac{\sin s}{s} - \cos s - \gamma s^{2}$$

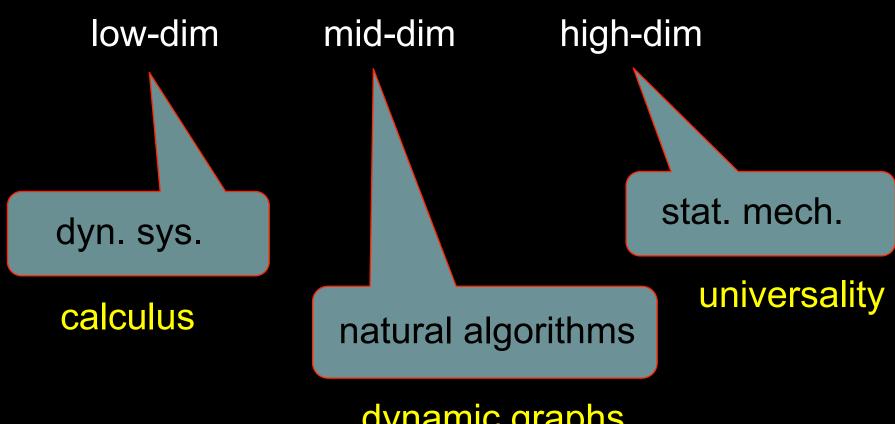
$$s = 2\pi kR; \quad \gamma = \sigma^{2} / 4R^{2}$$

Intercluster distance
$$\frac{2\pi R}{s}$$
, where $\frac{df_0(s)}{ds} = 0$





Curse of mid-dimensionality



dynamic graphs

Merci !