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Iterated learning  



Kalish & Griffiths (2005) 

Chinese teacher 



 P[h | data]  P[h | data]

 prior  P[h]

Gibbs sampling: mixes to prior Kalish & Griffiths (2005) 

 likelihood  P[data | h]

hchinese teacher



 P[h | data]  P[h | data]

 prior  P[h]

Lengthen learning sessions with  C. Wang  (2016) 

 likelihood  P[data | h]

m1 bits m2 bits m3 bits

 m1 < m2 < m3 <!

hchinese teacher



For any learner, with prob >          , 

total variation between              and random  

from posterior is at most  δ .

1− ε

hteacher

(ε ,δ )− sustainability

h



mt =
1
δ 2 ln t

ε



Kalish, Griffiths, Lewandowsky (2007) 
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Kalish, Griffiths, Lewandowsky (2007) 



Kalish, Griffiths, Lewandowsky (2007) 



Kalish, Griffiths, Lewandowsky (2007) 



LINEAR REGRESSION IN 

 y = h
T x + N (0,σ 2 )

 !
d



  prior  P[h] ~ N (µ,σ 2Id )

  teacher  P[h] ~ N (µ0,σ 2Id )

  likelihood  P[y | X,h] ~ N (Xh,σ 2 ) y = Xh + noise



  prior  P[h] ~ N (µ,σ 2Id )

  teacher  P[h] ~ N (µ0,σ 2Id )

  likelihood  P[y | X,h] ~ N (Xh,σ 2 ) y = Xh + noise

 
mt ≈
‖µ0 − µ‖2

δ
(σ
σ

)2 t1+c +d log t +1
ε



Sustained iterated learning requires  

keeping system out of equilibrium 



Markov chain 

always reaches equilibrium 



for sustainability 
keep out of equilibrium 

by injecting free energy 

Markov chain 



natural algorithm 



classical algorithm 



natural algorithm 



natural algorithm 



matter / free energy 

entropy work 

natural algorithm 

irreversibility 



                                                   
                                                               signals 
                                                      driving fields 
                                                 carbon sources 
                                environmental fluctuations 

matter / free energy 



Influence Systems 



} these rules form 
the agent’s type 

Each node is an agent; at any time, it is in a state and:    

it picks its in-edges 

it updates its new state 



Each node is an agent; at any time, it is in a state and:    

it picks its in-edges 

it updates its new state 



Why theory ? The Big Data pipe dream 



Semantic renormalization 

coarse-graining 
dimension reduction 

hierarchical graph clustering 
abstraction 





Clustering is path dependent 



Markov chain 

classify all orbits  

Closed system 



Closed system Markov chain decomposition 



Open system dynamics of dynamic network 

deep renormalization 
hierarchy 

Track flow of information 
to parse network sequence 



 …

coarse-grained network 

Network sequences are sentences in 
a language with a grammar 



Theorem  Under some conditions, 
almost all orbits are limit cycles.  



Mixed timescales and archival mechanisms 

  ratios  >  1015



Emergence of memory  





Vicsek-Cucker-Smale model 



radius R 







at time  t 



at time  t 



at time  t+1 



Graph eventually settles 

[ C 2009 ] 



fragmentation 



merge phase 



steady state 
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~ log # birds

Worst case convergence time 

It is optimal ! 



Hegselmann-Krause systems 



libertarian 

authoritarian 

left right 









Each agent moves to mass center of neighbors 





20,000 agents 









Hegselmann-Krause in 1D 

Ni (t) ={ j : | xi (t)− x j (t) |≤ R}

xi (t +1) = 1
| Ni (t) |

x j
j∈Ni (t )
∑ (t)

with  Bhattacharyya, Braverman, Nguyen (2013)  
Wedin-Hegarty (2015) Ω(n2 )

O(n3)

i

Charron-Bost, Függer, Nowak (2015) – on circle 



2R-Conjecture 

Random initial configuration 

Ni (t) ={ j : | xi (t)− x j (t) |≤ R}

xi (t +1) = 1
| Ni (t) |

x j
j∈Ni (t )
∑ (t)

Blondel, Hendrickx, Tsitsiklis (2007) 



Final clusters are 2R away 

~ 2R



Simulation: final clusters are ~ 2.3R away 

~ 2.3R



SDE :  

Phase transition 

σ

order parameter 
                                        graph density 

R



Clustering vs. diffusion 



Fokker-Planck PDE 

Take thermodynamic limit 

J. Garnier, G. Papanicolaou, T-W. Yang (2015) 



Fokker-Planck PDE 

with  Q. Jiu, Q. Li, C. Wang   (2015) Well-posed  



~ 2.29R

with  Q. Li, Weinan, E., C. Wang   (2015) 



Perturbation Method 

dp
dt

= 2pRfγ (s)

fγ (s) = sin s
s

− cos s −γ s2

s = 2πkR; γ =σ 2 / 4R2

ρ(x,t) = 1+ p(t)e2πikx

df0 (s)
ds

= 02πR
s

Intercluster distance ,  where  

Ansatz 



follows a much more general result 



~ 2.29R



dyn. sys. 

natural algorithms 

low-dim          mid-dim          high-dim 

stat. mech. 

calculus universality 

dynamic graphs 



Merci ! 


