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e Data often come as (sampling of ) metric spaces or sets/spaces endowed with
a similarity measure with, possibly complex, topological /geometric structure.

e Data carrying geometric information are becoming high dimensional.

e Topological Data Analysis (TDA):
- infer relevant topological and geometric features of these spaces.
- take advantage of topol./geom. information for further processing of data
(classification, recognition, learning, clustering, parametrization...).



Challenges and goals

Problem(s):
- how to visualize the topological

structure of data?

how to compare topological
properties (invariants) of close

shapes/data sets?

e Challenges and goals:

— no direct access to topological /geometric information: need of intermediate

constructions (simplicial complexes);

from noise;

— topological information may be multiscale;

signal

— distinguish topological

s
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— statistical analysis of topological information.
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Why is topology interesting for data analysis?
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e Coordinate invariance: topological features/invariants do not rely on any
coordinate system. =- no need to have data with coordinate or to embed
data in spaces with coordinates... But the metric (distance/similarity between
data points) is important.

e Deformation invariance: topological features are invariant under homeomor-
phism.

e Compressed representation: Topology offer a set of tools to summarize and
represent the data in compact ways while preserving its global topological
structure.



The TDA pipeline

Persistence diagram
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Build a geometric filtered simplicial complex on top of X,, — multiscale topol.
structure.

Compute the persistent homology of the complex — multiscale topol. signature.
Compare the signatures of “close” data sets — robustness and stability results.

Statistical properties of signatures (connections with stability properties); use of
topological information for further processing (e.g. Machine Learning).



A filtered simplicial complex S built on top of a set X is a family (Se | @ € R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. Sqo C Sy
for any a < b.



A filtered simplicial complex S built on top of a set X is a family (Se | @ € R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. Sqo C Sy
for any a < b.

Examples: Let (X, dx) be a metric space.

e The Vietoris-Rips filtration is the filtered simplicial complexe defined by: for
a € R,

[xo,x1, - ,xk] € Rips(X,a) & dx(xi, ;) < a, forallz,j.

o Cech complex: Cech(X, a) is the complex with vertex set X s.t.

(xo, 21, -+ ,x1] € Cech(X, a) < Ni_oB(zi,a) # 0



Filtrations of simplicial complexes
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A filtered simplicial complex S built on top of a set X is a family (Se | @ € R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. Sqo C Sy
for any a < b.

Examples:
Let S be a simplicial complex with vertex set X and let f : X — R.

For 0 = |vo, - ,vk]| €S, define f(o) = max{f(v;):4=0,---,k}.

The sublevel set filtration of f is the family of subcomplexes

Se = {0 €S: f(o) <a},a eR.



Persistent homology

X topological space

f: X—R

- T

Filtrations

persistence -

Persistence diagram

e A general mathematical framework to encode the evolution of the topology
(homology) of families of nested spaces (filtered complex, sublevel sets,...).

e Formalized by H. Edelsbrunner (2002) et al and G. Carlsson et al (2005) - wide
development during the last decade. ldeas tracing back to M. Morse (1940)!

e Multiscale topological information.

e Barcodes/persistence diagrams can be efficiently computed (e.g. Gudhi library!).

e Stability properties



Persistent homology for functions
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Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function



Persistent homology for functions

Tracking and encoding the evolution of the connected components (0O-dimensional
homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology: an algebraic way to rigorously formalize the notion of k-dimensional
cycles through a vector space (or a group), the homology group whose dimension is
the number of "independent” cycles (the Betti number).



Stability properties

What if f is slightly perturbed?

<Y



Stability properties

What if f is slightly perturbed?

>
X

Theorem (Stability):
For any tame functions f,g: X = R, dg(Df,D,) < ||f — 9|lco-

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG
09], [C., de Silva, Glisse, Oudot 12]



Comparing persistence diagrams
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The bottleneck distance between two diagrams D and D5 is

dp(D1, D) = WirélfF Sup o — () ||oc
D 1

where I' is the set of all the bijections between D1 and D5 and ||p — ¢l =

max(|zp — Zql, [Yp — Yal)-

— Persistence diagrams provide easy to compare topological signatures.



Some examples of applications

- Persistence-based clustering [C. Guibas, Oudot,Skraba - J. ACM 2013]
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- Pattern analysis in fluid dynamics




Some examples of applications

- Hand gesture recognition
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- Persistence-based pooling for shape recognition
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Persistent homology for point cloud data
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e Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

e Persistent homology: encode the evo-
lution of the topology across the scales
— multi-scale topological signatures.



Persistent homology for point cloud data
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e Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

e Persistent homology: encode the evo-
lution of the topology across the scales
— multi-scale topological signatures.



Persistent homology for point cloud data
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e Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

e Persistent homology: encode the evo-
lution of the topology across the scales
— multi-scale topological signatures.



Persistent homology for point cloud data
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e Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

e Persistent homology: encode the evo-
lution of the topology across the scales
— multi-scale topological signatures.



Persistent homology for point cloud data
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Persistence barcode
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e Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

e Persistent homology: encode the evo-
lution of the topology across the scales
— multi-scale topological signatures.

Persistence diagram
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Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

dp, (dgm(Filt(X)), dgm(Filt(Y))) < deu (X,Y).

4 A _

Gromov-Hausdorff distance

dau(X,Y) := , ivfllfm da (711 (X), v2(X))

Here F'ilt can be RipS, Cech, etc... 7, metric space, Y1 : X — 7, and Y2 Y — 7,
Isometric embeddings.

Bottleneck distance




Application: non rigid shape classification
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e Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

e Compare diagrams of sampled shapes instead of shapes themselves.



The theory of persistence

Theory of persistence has been subject to intense research activities:

- from the mathematical perspective:

e general algebraic framework (persistence modules) and general stability re-
sults.

e extensions and generalizations of persistence (zig-zag persistence, multi-
persistence, etc...)

e Statistical analysis of persistence.

- from the algorithmic and computational perspective:
e efficient algorithms to compute persistence and some of its variants.

o efficient software libraries (in particular, Gudhi: https://project.inria.fr/gudhi/ ).

A whole machinery at the crossing of mathematics and computer science!



Some drawbacks and problems

If X and Y are pre-compact metric spaces, then

dp (dgm(Rips(X)),dgm(Rips(Y))) < deu (X, Y).

— Vietoris-Rips (or Cech,...) filtrations quickly become prohibitively large as the
size of the data increases ( O(|X|?%) ), making the computation of persistence of
large data sets a real challenge.

— Persistence diagrams of Rips-Vietoris (and Cé&ch, witness,..) filtrations and
Gromov-Hausdorff distance are very sensitive to noise and outliers.

— The space of persistence diagrams endowed with the bottleneck distance is highly
non linear, processing persistence information for further data analysis and learning
tasks is a challenge.

These issues have raised an intense research activity during the last few years!



Statistical setting

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
- Filt(Xm) = Rips, (Xim)
. - Filt(Xpm) = Cecha (X))
Sample m points -~
» P - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. e
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dgm(Filt(X

Questions:
e Statistical properties of dgm(Filt(X,»)) ? dgm(Filt(X.n)) —7? as m — +00?



Statistical setting

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
_ Filt(Xom) = Rips,, (Xm)
Sample m points - Filt(Xm) = Cecha (Xim)
. - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. oo

AN

dgm(Filt(X

Questions:
e Statistical properties of dgm(Filt(X,»)) ? dgm(Filt(X.n)) —7? as m — +00?

e Can we do more statistics with persistence diagrams? What can be said about
distributions of diagrams?



Statistical setting

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
_ Filt(Xom) = Rips,, (Xm)
Sample m points - Filt(Xm) = Cecha (Xim)
. - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. oo

AN
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Stability thm: dp,(dgm(Filt(X,)), dgm(Filt(X,))) < 2dan (X, Xom)

So, for any € > 0,

P (db (dgm(Filt(XM)),dgm(Filt(Xm))) > s) <P (daH(Xme) > %)



Deviation inequality and rate of convergence

For a,b > 0, u satisfies the (a, b)-standard assumption if for any x € X,, and any
r > 0, we have u(B(z,7)) > min(ar®, 1).



Deviation inequality and rate of convergence

For a,b > 0, u satisfies the (a, b)-standard assumption if for any x € X,, and any
r > 0, we have u(B(z,7)) > min(ar®, 1).

Theorem: If y satisfies the (a, b)-standard assumption, then for any € > 0:

P (db (dgm(Filt(Xu)), dgm(Filt(Xm))) > s) < min(j—; exp(—mae®), 1).



Deviation inequality and rate of convergence

For a,b > 0, u satisfies the (a, b)-standard assumption if for any x € X,, and any
r > 0, we have u(B(z,7)) > min(ar®, 1).

Theorem: If y satisfies the (a, b)-standard assumption, then for any € > 0:

P (db (dgm(Filt(Xu)), dgm(Filt(Xm))) > 8) < min(j—; exp(—mae®), 1).

Corollary: Let P(a, b, M) be the set of (a, b)-standard proba measures on M. Then:

P [db(dgm(Fﬂt(Xu)),dgm(Fﬂt(Xm)))} <C (m_m>1/ ’

neP (a,b,M) m

where the constant C only depends on a and b (not on M!). Moreover, the upper
bound is tight (in a minimax sense)!



Persistence landscapes

d+b d=b
, 2 A 2
Ad SR
) SRR
l A
. />O<\  dtb
__ (b+d d—b
D:{(di;bijdi;‘bi)}iel For p = ( 5 9 9 ) €D,
t—>b tE[babLQd]
Ap(t) = qd—t te (X4, d]
0 otherwise.

Persistence landscape [Bubenik 2012]:

Ap(k,t) = kmax A,(t), te€R,keN,

pEdgm
where kmax is the kth largest value in the set.

Many other ways to “linearize” persistence diagrams: intensity functions, image persis-
tence, kernels,...



Persistence landscapes
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Persistence landscape [Bubenik 2012]:

Ap(k,t) = kmax A,(t), teR keN,

pedgm
Properties
e Foranyt € Randany k€N, 0 < Ap(k,t) < Ap(k+1,¢).
e Foranyt € R and any k € N, |Ap(k,t) — Ap/(k,t)| < dp(D,D") where

dg (D, D") denotes the bottleneck distWD and D’.

stability properties of persistence landscapes



Persistence landscapes
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e Persistence encoded as an element of a functional space (vector space!).

e Expectation of distribution of landscapes is well-defined and can be approximated
from average of sampled landscapes.

e process point of view: convergence results and convergence rates — confidence
Intervals can be computed using bootstrap.



To summarize
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Stability w.r.t. u?




VWasserstein distance

Let (M, p) be a metric space and let i, v be probability measures on M with finite
p-moments (p > 1).

“The" Wasserstein distance W, (i, ) quantifies the optimal cost of pushing u onto
v, the cost of moving a small mass dx from = to y being p(x,y)’dx.

Ci1/ N\------"""°° >
dl e Transport plan: II a proba measure on

. M x M such that II(A x R%) = u(A)
C; O o _?T_ijj and II(R* x B) = v(B) for any borelian
Q LY sets A, B C M.
d;

Q e PO : E e Cost of a transport plan:

O : _- _ﬁ o ;O C(II) = (/MxM px, y)" dll(z, y)) ’

o W,(u,v) = inf C(II)

K =



(Sub)sampling and stability of expected landscapes
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Theorem: Let (M, p) be a metric space and let i, v be proba measures on M with
compact supports. We have

1
[Ap,m — Avmlloo < meWy(p,v)

where W, denotes the Wasserstein distance with cost function p(x,y)?.

Remarks:
- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distribu-

tions, not for expectations) ;

- Extended to point process setting y L. Decreusefond et al;

1
- mP cannot be replaced by a constant.



(Sub)sampling and stability of expected landscapes
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Theorem: Let (M, p) be a metric space and let i, v be proba measures on M with
compact supports. We have

1
[Ap,m — Avmlloo < meWy(p,v)

where W, denotes the Wasserstein distance with cost function p(x,y)?.
Consequences:

e Subsampling: efficient and easy to parallelize algorithm to infer topol. information
from huge data sets.

e Robustness to outliers.

e R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/



(Sub)sampling and stability of expected landscapes
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I.i.d. sampled * . . P, =@, (u®™)

ding to L.
according to u Apm(t) =Ep, [A(2)]

Theorem: Let (M, p) be a metric space and let i, v be proba measures on M with
compact supports. We have

1
[Ap,m — Avmlloo < meWy(p,v)

where W, denotes the Wasserstein distance with cost function p(x,y)?.
Proof:

1
L Wy (u®™, v®™) < m Wiy (u, v)

2. Wy(Py,P,) < Wy(u®™,v®™) (stability of persistence!)
3. ||Aum — Avmlloo < Wy(P,, P,) (Jensen’s inequality)



(Sub)sampling and stability of expected landscapes

Example: Circle with one outlier.
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(Sub)sampling and stability of expected landscapes

Example: 3D shapes

Average Landscapes Dissimilarity Matrix

+ a= « camel

flam. ele. camel

lion

| l J | J ' ' camel ele. flam. lion
0.00 0.10 0.20 0.30

‘\

From n = 100 subsamples of size m = 300




(Sub)sampling and stability of expected landscapes

(Toy) Example: Accelerometer data from smartphone.
Walking Experiment with iPhone app
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- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!



Thank you for your attention!

Collaborators: T. Bonis, V. de Silva, B. Fasy, D. Cohen-Steiner, M. Glisse, L.
Guibas, C. Labruere, F. Lecci, C. Li, F. Memoli, B. Michel, S. Oudot, M. Ovsjanikov,
A. Rinaldo, P. Skraba, L. Wasserman

Software:
e The Gudhi library (C++/Python): https://project.inria.fr/gudhi/software/

e R package TDA
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