

Cluster trees, near neighbor graphs, and continuum percolation

A statistical approach to topological data analysis

Topological Graphs for Data Analysis: Structure, Stability and Statistics

Minimal geodesics along volume preserving maps, through semidiscrete optimal transport

The Materials Genome in Action

Triangulating manifolds

Zigzag persistence: New horizons in topological data analysis

Interactive visualization of high dimensional data: can we deal with curse of dimentionality and failure of intuition?

Suddenly, Professor Liebowitz realizes he has come to the seminar without his duck.

Acknowledgement

Materials Genome

- Cory Simon and Rocio Mercado (UC Berkeley
- Jihan Kim (KAIST)
- Michael W. Deem (Rice)
- Maciej Haranczyk (LBNL)
- David S. Sholl (GeorgiaTech)
- Randall Q. Snurr (Northwestern)

Similarity

- Yongjin Lee, Mohamad Moosavi, Senja Barthel, and Kathryn Hess-Bellwald (EPFL)
- Pawel Dlotko (Inria France)
- Financial Support
 - ERC-Adv, US Department of Energy, MARVEL (NCCR-SNF)

"To help businesses discover, develop, and deploy new materials twice as fast, we're launching what we call **the Materials Genome Initiative**. The invention of silicon circuits and lithium ion batteries made computers and iPods and iPads possible, but it took years to get those technologies from the drawing board to the market place. **We can do it faster**." -President Obama (6/11)

Metal Organic Frameworks

Zn₄O(1,4-benzenedicarboxylate)₃ MOF-5

- BET surface areas up to 6200 m²/g
- Density as low as 0.22 g/cm³
- Tunable pore sizes up to 5 nm
- Channels connected in 1-, 2-, or 3-D
- Internal surface can be functionalized
- BASF production on ton scale

Computation Challenge

Chemical Flexibility of MOFs

- We can change the metal: Fe, Mg, Ca, Zn, Cu, etc
- We can change the linker
- We can change the pore topology

Out of these many many millions of structures, which one is the best for a given applications?

> 3,000,000 materials

Molecular Simulations

- Molecular dynamics: solve equations of motion
- Monte Carlo: importance sampling
 - calculate thermodynamic and transport properties for a given intermolecular potential

Can we predict the performance of a material before its synthesis?

We predicted the structure of Mg₂(osalazine) and subsequent synthesis confirmed the predicted structure and adsorption properties

M. Witman, et al Chem. Sci. 7 (9), 6263 (2016) <u>http://dx.doi.org/10.1039/c6sc01477a</u>

Methane Storage

......

.....

Methane cars: the technological obstacle

Gasoline, 1 liter

0.036 MJ

34.2 MJ

Methane versus gasoline

Can we find a material with the same energy density as compressed natural gas?

Goal: maximize deliverable capacity

"For methane, an optimal enthalpy change of [16.2] kJ/mol is found."

Langmuir 2006, 22, 1688-1700

Optimum Conditions for Adsorptive Storage

Suresh K. Bhatia[†]

Division of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072 Australia

Alan L. Myers*

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadeiphia, Pennsylvania 19104

but only a limited number of materials were analyzed

In silico screening of zeolites

MFI expt'l data: Sun *et al.* (1998) *J. Phys. Chem. B.* 102(8), 1466-1473.
Zhu *et al.* (2000) *Phys. Chem. Chem. Phys.* 2(9), 1989-1995.
Force field: Dubbeldam *et al.* (2004) *Phys. Rev.* 93(8), 088302.

In silico screening of zeolites

C. Simon et al. (2014) Phys. Chem. Chem. Phys. 16 (12), 5499-5513

Can we find a material that meets the DOE target?

Screening > 100,000 materials

- zeolites
- Metal organic Frameworks, MOFs (Snurr and co-workers)
- zeolitic imidazolate frameworks, ZIFs, (Haranczyk)
- Polymer Porous Networks, PPNs (Haranczyk)

Insight from the model

C. Simon, et al Energy Environ. Sci. 8, 1190 (2015) http://dx.doi.org/10.1039/C4EE03515A

Methane storage in all silica zeolites:

- only the pore shape matters
- •similar pores should have similar performance

How to compare pores?

Simple Descriptors

Simple descriptors:

- D_i : diameter of maximum included sphere,
- D_f: diameter of maximum free sphere,
- ρ: density,
- ASA: accessible surface area,
- AV: accessible volume

SSF

		name	Di	D_{f}	ρ	ASA	AV
CD	Seed	SSF	7.59	6.15	1.64	1191	0.122
	1st	h8242590	7.87	6.16	1.62	1210	0.119
	2nd	h8239380	7.60	6.29	1.63	1156	0.120
	3rd	h8267258	7.72	6.21	1.63	1205	0.115
	4th	h8070132	7.69	6.49	1.62	1187	0.126

Persistent Homology

DON

h8331112

Sood	Deserinter	Selected Nth Similar Structure					
Seeu	Descriptor	1st	2nd	3rd	4th		
SSF	PerH						
	ConD						
IWV	PerH						
	ConD						

Seed		Descriptor	Selected Nth Similar Structure					
<image/>		PerH						
		ConD						
			name	Di	D_{f}	ρ	ASA	AV
TD	Seed		SSF	7.59	6.15	1.64	1191.97	0.122
	1st		h8328603	8.09	6.34	1.77	1167.86	0.120
	2nd		h8267258	7.72	6.21	1.63	1205.27	0.115
	3rd		h8325096	7.28	5.91	1.72	1160.44	0.114
	4th		h8267032	7.54	6.22	1.70	1171.01	0.115
CD	Seed		SSF	7.59	6.15	1.64	1191.97	0.122
	1st		h8242590	7.87	6.16	1.62	1210.05	0.119
	2nd		h8239380	7.60	6.29	1.63	1156.76	0.120
	3rd		h8267258	7.72	6.21	1.63	1205.27	0.115

180 known zeolites >10,000 MOFs

Y. Lee, et al. Nat. Commun. 8 (2017 http://dx.doi.org/10.1038/ ncomms15396

In silico screening of zeolites

C. Simon et al. (2014) Phys. Chem. Chem. Phys. 16 (12), 5499-5513

Heat of a adsorption of top performing materials

Y. Lee, et al. Nat. Commun. **8** (2017) <u>http://dx.doi.org/10.1038/</u> <u>ncomms15396</u>

Similar materials have similar performance

Y. Lee, et al. Nat. Commun. 8 (2017) http://dx.doi.org/10.1038/ncomms15396

Diversity of MOF Materials Database

Five Different Types

Diversity of Materials Databases

Coverage of each DB on the entire map : red – high number, blue – low number, gray - empty

Diversity of zeolite structures

Diversity of zeolite structures

What does not work yet…

"It's time we face reality, my friends. ... We're not exactly rocket scientists."

Solution: probe dependent fingerprint

Inside versus outside

Both have the same fingerprint, but not the same performance

Wish list

Too expensive

- we do not know how to take crystal symmetry into account
- distance matrix too expensive to compute for 1'000'000 materials
- Better description
 - difference between the inside and the outside
- No perfect understanding
 - which distance to use for which property
 - Pore volume depends on the probe

Conclusions

- Methane storage
 - Best material: as many sites as possible with the right energy
 - ARPA-e targets are too optimistic
- <u>Similarity</u>
 - We have developed the language to express similarity
 - Nanoporous materials: we can now quantity the similarity of the pore structure
 - Similar pores similar performance
- Materials Genome:
 - Intelligence versus brute force
 - Screening for best materials: what can be obtained
 - Big-data science