Triangulating manifolds

Ramsay Dyer
MSP and INRIA
2017.06.08

Collaborators

- Torsten Möller, Hao Zhang
- Jean-Daniel Boissonnat, Arijit Ghosh, Mathijs Wintraecken
- Gert Vegter, Nikolay Martynchuk

Triangulating manifolds

We want
(1) homeomorphic simplicial representation
(2) algorithmically realizable
(3) geometric fidelity
(1) sampling criteria

Foundational work for 1

- Cairns (1934), Whitehead (1940)
- Whitney (1957)

The Delaunay triangulation

 and the Voronoi diagram

Degenerate configurations

- $P \subset \mathbb{R}^{m}$ is degenerate if there are more than $m+1$ points on the boundary of an empty ball.
- If P is not degenerate, the Delaunay complex is a triangulation (Delaunay 1934).

Delaunay's triangulation proof

Three spheres intersect nicely

- If an ($m-1$)-simplex is on the boundary of three spheres, one of them is contained by the other two.
- Exactly two cofaces to an ($m-1$)-simplex.

Extension to surfaces

Pseudodisks (Boissonnat and Oudot 2005)

Pseudodisks
Boundaries intersect
transversely twice:

tangentially once:

or not at all.

Pseudo-disks suffice

If three circles contain p and q, one is contained in the other two.

Geodesic pseudoballs

(D., Möller, Zhang 2008)

X-radius: maximum radius of \ldots

- sampling radius, $r(x)$: empty disk centered at x
- convexity radius, $\operatorname{cr}(x)$: convex disk centered at x
- injectivity radius, $\iota(x)$: disk with nonintersecting radial geodesics

Theorem (Sampling density criterion)
If $r(x)<\min \left\{\operatorname{cr}(x), \frac{1}{2} \iota(x)\right\}$, then the Delaunay complex triangulates the surface.

Problems in higher dimension

An obstruction

(Boissonnat, D., Ghosh, Martynchuk 2016)

A smooth and almost Euclidean metric

$$
g(q)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1+f(y(q))
\end{array}\right), \quad \text { where } y(q) \text { is the } y \text {-coordinate of } q
$$

- f a bump function; does not require compact support
- presents an obstruction to Delaunay triangulation at all scales

Protection

In Euclidean space

Definition (protected)

A simplex σ is protected if it has a Delaunay ball B whose boundary contains no other points from P. We say σ is δ-protected if $d_{\mathbb{R}^{m}}(q, \partial B)>\delta$ for all $q \in P \backslash \sigma$.

Protection

Quantifying genericity

δ-protected point set

A point set $P \subset \mathbb{R}^{m}$ is δ-generic if the Delaunay m-simplices are all δ-protected.

- t_{0} : lower bound on thickness
- μ_{0} : shortest edge length / largest diameter

Delaunay stability (Boissonnat, D., Ghosh 2013)

- Delaunay complex doesn't change with small perturbation of the points or of the metric $\left(\sim \mu_{0} t_{0} \delta\right)$
- in the presence of a sampling radius ϵ : lower bound on quality of the Delaunay simplices $\left(\sim(\delta / \epsilon)^{2} / m\right)$

Simplex quality

Altitude

The altitude of q in σ is its distance to the affine hull of σ_{q}, the opposite face:

$$
a(q, \sigma)=d_{\mathbb{R}^{m}}\left(\operatorname{aff}\left(q, \sigma_{q}\right)\right)
$$

Thickness
The thickness of a j-simplex σ with diameter $L(\sigma)$ is

$$
t(\sigma)= \begin{cases}1 & \text { if } j=0 \\ \min _{p \in \sigma} \frac{a(p, \sigma)}{j L(\sigma)} & \text { otherwise }\end{cases}
$$

Protection

Algorithmically attainable

Algorithms designed to improve simplex quality in Delaunay triangulations can be adapted to provide protection.

- weighting
- refinement
- perturbation
- The Moser-Tardos algorithm (algorithmic Lovász local lemma) considerably simplifies the analysis, and improves the provided protection $\left(\sim\left(\mu_{0} / 2\right)^{m^{2}}\right)$ (Boissonnat, D., Ghosh 2015)

Delaunay triangulation of manifolds

Local approach

- obtain protection in local coordinate charts
- use the local Euclidean metric
- the metric is close to that on the manifold
- in fact, only transition functions are used

Delaunay triangulation of manifolds

Inconsistent configurations

Manifold Delaunay complex

(Boissonnat, D., Ghosh 2017)
$F:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is a ξ-distortion map if

$$
\left|d_{Y}(F(x), F(y))-d_{X}(x, y)\right| \leq \xi d_{X}(x, y)
$$

Definition $\left(\left(\mu_{0}, \epsilon\right)\right.$-net $)$

- ϵ a sampling radius (for each $x \in M, d_{M}(x, P)<\epsilon$)
- for each $p, q \in P, d_{M}(p, q) \geq \mu_{0} \epsilon$

Theorem (manifold Delaunay complex via perturbation)

- $P \subset M a\left(\mu_{0}, \epsilon\right)$ net in each coordinate chart
- ϵ a local sampling radius
- each ϕ_{p} is a ξ-distortion map, $\xi \sim\left(\mu_{0} / 2\right)^{m^{3}} \rho_{0}^{m}$,
- $\rho_{0}=\rho / \epsilon<\mu_{0} / 4$ bounds the magnitude of the perturbation ρ

Then the perturbation algorithm produces a manifold Delaunay complex $\operatorname{Del}\left(P^{\prime}\right)$ for M.

Homeomorphism problem

- What is a good map from the complex to the manifold?
- How do we show that this map is a homeomorphism?

Riemannian simplices

via the barycentric coordinate map

- M an n-dimensional Riemannian manifold
- $B \subset M$ a convex set (restricts size)
- $\sigma^{j}=\left\{p_{0}, \ldots, p_{j}\right\} \subset B$ a finite set of vertices
- Δ^{j} the standard Euclidean j-simplex

The Barycentric coordinate map

$$
\mathcal{B}_{\sigma^{j}}: \Delta^{j} \rightarrow M
$$

The Riemannian simplex $\boldsymbol{\sigma}_{M}^{j}$ is the image of this map.

The barycentric coordinate map, \mathcal{B}_{σ}

Riemannian centre of mass
Energy function

$$
\mathcal{E}_{\lambda}(x)=\frac{1}{2} \sum_{i} \lambda_{i} d_{M}\left(x, p_{i}\right)^{2}
$$

$$
\begin{aligned}
\mathcal{B}_{\sigma^{j}}: & \Delta^{j} \\
& \rightarrow M \\
& \mapsto \underset{x \in \bar{B}_{r}}{\operatorname{argmin}} \mathcal{E}_{\lambda}(x)
\end{aligned}
$$

barycentric coordinates: $\lambda_{i} \geq 0 ; \sum_{i=0}^{j} \lambda_{i}=1$
Theorem (Karcher 1977)
If $\left\{p_{0}, \ldots, p_{j}\right\} \subset B_{r} \subset M$, and B_{r} is an open ball of radius r with

- ι_{M} : injectivity radius
- Λ_{+}: upper bound on sectonal curvatures

$$
r<\min \left\{\frac{\iota_{M}}{2}, \frac{\pi}{4 \sqrt{\Lambda_{+}}}\right\}
$$

then \mathcal{E}_{λ} is convex and has a unique minimum in B_{r}.

Nondegenerate Riemannian simplices

(D., Vegter, Wintraecken 2015)

Definition
A Riemannian simplex $\boldsymbol{\sigma}_{M}$ is nondegenerate if the barycentric coordinate map $\mathcal{B}_{\sigma^{j}} \rightarrow M$ is an embedding.

Notation

$$
v_{i}(x)=\exp _{x}^{-1}\left(p_{i}\right) \quad \text { and } \quad \sigma(x)=\left\{v_{0}(x), \ldots, v_{j}(x)\right\} \subset T_{x} M
$$

Proposition

A Riemannian simplex $\boldsymbol{\sigma}_{M} \subset M$ is nondegenerate if and only if $\sigma(x) \subset T_{x} M$ is nondegenerate for every $x \in \boldsymbol{\sigma}_{M}$.

Nondegenerate Riemannian simplices

(D., Vegter, Wintraecken 2015)

Theorem (Nondegeneracy criteria)
If

- sectional curvatures K bounded by $|K| \leq \Lambda$
- $\boldsymbol{\sigma}_{M} \subset B_{r} \subset M$
- B_{r} is an open geodesic ball of radius r with

$$
r<r_{0}=\min \left\{\frac{\iota_{M}}{2}, \frac{\pi}{4 \sqrt{\Lambda}}\right\}
$$

Then $\boldsymbol{\sigma}_{M}$ is nondegenerate if

$$
t\left(\boldsymbol{\sigma}_{\mathbb{E}}\right)>3 \sqrt{\Lambda} L\left(\boldsymbol{\sigma}_{\mathbb{E}}\right),
$$

where $\boldsymbol{\sigma}_{\mathbb{E}}$ is the Euclidean simplex with the same edge lengths as $\boldsymbol{\sigma}_{M}$ (geodesic distances).

Riemannian Delaunay triangulation (D., V., W., 2015); (B., D., G. 2017)

Theorem (Riemannian DT)

If $P \subset M$ is $a\left(\mu_{0}, \epsilon\right)$-net with

$$
\epsilon \leq \min \left\{\frac{1}{4} \iota_{M}, \sim \Lambda^{-\frac{1}{2}}\left(\mu_{0} / 2\right)^{m^{3}} \rho_{0}^{m}\right\}
$$

then

- $\operatorname{Del}\left(P^{\prime}\right)$ is a Delaunay triangulation
- it admits a piecwise flat metric defined by geodesic edge lengths
- the barycentric coordinate map $H:\left|\operatorname{Del}\left(P^{\prime}\right)\right| \rightarrow M$ is a ξ-distortion map with $\xi \sim\left(\mu_{0} / 2\right)^{m^{3}} \rho_{0}^{m} \Lambda \epsilon^{2}$ (they're Gromov-Hausdorff close)

Local metric criteria for triangulation

Problem

Given a compact manifold M, a simplicial complex \mathcal{A}, and a map $H:|\mathcal{A}| \rightarrow M$, show that H is a homeomorphism.

Approach

- work locally in a compatible coordinate chart for both M and \mathcal{A}
- use only the local Euclidean metric
- no differentiablility assumption (but strong bi-Lipschitz constraint)

Two steps
Working in the local Euclidean domain

- show that H is a local homeomorphism, and thus a covering map
- establish injectivity

Local metric criteria for triangulation

The setting

Compatible atlases

(1) P vertices of \mathcal{A}, and $\left\{\left(U_{p}, \phi_{p}\right)\right\}_{p \in P}$ coordinate atlas for M
(2) $\left\{\left(\widetilde{\mathcal{C}}_{p}, \widehat{\Phi}_{p}\right)\right\}_{p \in P}$ a PL-coordinate atlas for \mathcal{A}, where $H\left(\widetilde{\mathcal{C}_{p}}\right) \subset U_{p}$, and $\widehat{\Phi}_{p}$ is the secant map of $\phi_{p} \circ H$

Our focus is on the map $F_{p}=\phi_{p} \circ H \circ \widehat{\Phi}_{p}^{-1}:\left|\mathcal{C}_{p}\right| \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$.

$$
\begin{aligned}
F_{p}:|\underline{\mathrm{St}}(\hat{p})| & \rightarrow \phi_{p} \circ H(|\underline{\mathrm{St}}(p)|) \\
\hat{x} & =\widehat{\Phi}_{p}(x)
\end{aligned}
$$

Local metric criteria for triangulation

Local homeomorphism

Definition

$F:|\mathcal{C}| \rightarrow \mathbb{R}^{m}$ is simplexwise positive if its restriction to each simplex is an orientation preserving embedding. (defined via degree theory)

Lemma (Whitney)

- $F:|\mathcal{C}| \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ simplexwise positive
- $V \subset|\mathcal{C}|$ open, connected, and $F(V) \cap F(|\partial \mathcal{C}|)=\emptyset$

If there is a $y \in F(V) \backslash F\left(\left|\mathcal{C}^{m-1}\right|\right)$ such that $F^{-1}(y)$ is a single point, then $\left.F\right|_{V}$ is an embedding.

- $\mathcal{C}_{p}=\underline{\mathrm{St}}(\hat{p})$
- $V_{p}=\left\{x \in \underline{\operatorname{St}}(\hat{p}) \left\lvert\, \lambda_{\hat{p}, \boldsymbol{\sigma}}(x)>\frac{1}{(m+1)}-\delta\right.\right\}$
- $\left\{\widehat{\Phi}_{p}^{-1}\left(V_{p}\right)\right\}$ is a cover of $|\mathcal{A}|$.

Local homeomorphism

Ingredients to apply Whitney's lemma
Require: $\left.F_{p}\right|_{\boldsymbol{\sigma}}$ a ξ-distortion map ($\boldsymbol{\sigma}$ any m-simplex)
Lemma (trilateration)
If $F: \boldsymbol{\sigma} \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is a ξ-distortion map that leaves the vertices fixed, and $\xi<1$, then

$$
|x-F(x)| \leq \frac{3 \xi L}{t}
$$

Lemma (point covered once)
If $\quad \xi \leq \frac{1}{6} \frac{m}{m+1} t_{0}^{2}, \quad$ then $F^{-1}(F(b))=\{b\}$.
Lemma (barycentric boundary separation)
$x \in \boldsymbol{\sigma} \in \underline{\mathrm{St}}(\hat{p})$; barycentric coordinate $\lambda_{\boldsymbol{\sigma}, \hat{p}}(x) \geq \alpha$.
Then

$$
d_{\mathbb{R}^{m}}(x,|\partial \underline{\operatorname{St}}(\hat{p})|) \geq \alpha a_{0}, \quad d_{\mathbb{R}^{m}}(x,|\partial \underline{\operatorname{St}}(\hat{p})|) \geq \alpha m t_{0} s_{0}
$$

Local metric criteria for triangulation

Injectivity
(1) H is a covering map
(2) \Longrightarrow injective if $\exists x \in M, H^{-1}(H(x))=\{x\}$
(3) e.g., if $q \in P, H(q) \in H(\boldsymbol{\sigma}) \Longrightarrow q$ a vertex of $\boldsymbol{\sigma}$

Sufficient requirement for injectivity
$p, q \in P, H(q) \in U_{p}:$

$$
\begin{equation*}
\phi_{p} \circ H(q) \in \widehat{\Phi}_{p}(|\underline{\operatorname{St}}(p)|) \Longrightarrow q \text { is a vertex of } \underline{\mathrm{St}}(p) \tag{*}
\end{equation*}
$$

Proof that $(*) \Rightarrow$ (3.

- suppose $x \in \boldsymbol{\sigma}, H(x)=H(q)$
- barycentric boundary separation $\Rightarrow \lambda_{\hat{p}, \hat{\boldsymbol{\sigma}}}(\hat{x})<\frac{1}{m+1}$
- but $\lambda_{\hat{p}, \hat{\boldsymbol{\sigma}}}(\hat{x})=\lambda_{p, \boldsymbol{\sigma}}(x) \quad\left(\hat{x}=\widehat{\Phi}_{p}(x)\right)$
- true for all vertices of $\boldsymbol{\sigma}$, but need $\sum_{p \in \boldsymbol{\sigma}} \lambda_{p, \boldsymbol{\sigma}}(x)=1$

Local metric criteria for triangulation

Theorem (triangulation)
$H:|\mathcal{A}| \rightarrow M$ is a homeomorphism if we have (for all $p \in P$):
(1) compatible atlases
(2) simplex quality Every simplex $\boldsymbol{\sigma} \in \underline{\mathrm{St}}(\hat{p})=\widehat{\Phi}_{p}(\underline{\mathrm{St}}(p))$ satisfies $s_{0} \leq L(\boldsymbol{\sigma}) \leq L_{0}$ and $t(\boldsymbol{\sigma}) \geq t_{0}$.
(3) distortion control $F_{p}=\phi_{p} \circ H \circ \widehat{\Phi}_{p}^{-1}:|\underline{\operatorname{St}}(\hat{p})| \rightarrow \mathbb{R}^{m}$, when restricted to any m-simplex in $\underline{\mathrm{St}}(\hat{p})$, is an orientation-preserving ξ-distortion map with

$$
\xi<\frac{s_{0} t_{0}^{2}}{12 L_{0}}=\frac{1}{12} \mu_{0} t_{0}^{2}
$$

(1) vertex sanity For all other vertices $q \in P$, if $\phi_{p} \circ H(q) \in|\underline{\operatorname{St}}(\hat{p})|$, then q is a vertex of $\underline{\mathrm{St}}(p)$.

Closing thoughts

Exploiting the differential

- suppose T a linear isometry, and $\left\|\left(\left.d F_{p}\right|_{\boldsymbol{\sigma}}\right)_{u}-T\right\|<\xi$ for all m-simplices $\boldsymbol{\sigma} \in \underline{\operatorname{St}}(\hat{p})$ and $u \in \boldsymbol{\sigma}$
- then

$$
\xi<\frac{1}{2} \mu_{0} t_{0} \quad \text { instead of } \quad \xi<\frac{1}{12} \mu_{0} t_{0}^{2}
$$

suffices for triangulation

- because we can avoid trilateration

Challenges and directions

- Actual implementation in higher dimensions
- What is the best simplex quality we can acheive?

Siargey Kachanovich; Aruni Choudhary

- Structured manifolds

Thank You.

