Computational geometry, optimal transport and applications

Quentin Mérigot / Université Paris-Sud

Joint works with Thomas Gallouët, Jun Kitagawa, Pedro Machado, Jocelyn Meyron, Jean-Marie Mirebeau, Boris Thibert

Geometric Understand in Higher Dimension / 8 Juin 2017 / Collège de France

Overview

1. Optimal transport \& Laguerre diagrams
2. First application: non-imaging optics
3. Second application: enforcing incompressibility

1. Optimal transport \& Laguerre diagrams

Optimal transport

Data: $\rho=$ prob density on X
ν probability meas. on Y

Optimal transport

Data: $\rho=$ prob density on X

ν probability meas. on Y

Think of ρ, ν as describing piles of sand, made of many grains. Assume that moving a grain with mass $d m$ from x to y costs $c(x, y) d m$.

Optimal transport problem: what is the cheapest way of moving ρ to ν ?

Optimal transport

Data: $\rho=$ prob density on X
ν probability meas. on Y

T is a transport map (written $\left.T_{\#} \rho=\nu\right)$ if for all $B \subseteq Y, \rho\left(T^{-1}(B)\right)=\nu(B)$

Optimal transport

Data: $\rho=$ prob density on X
ν probability meas. on Y

T is a transport map (written $\left.T_{\#} \rho=\nu\right)$ if for all $B \subseteq Y, \rho\left(T^{-1}(B)\right)=\nu(B)$
Optimal transport problem: minimize $\int_{X} c(x, T(x)) \mathrm{d} \rho(x)$ where $T_{\#} \rho=\nu$

Optimal transport

Data: $\rho=$ prob density on X
ν probability meas. on Y

T is a transport map (written $T_{\#} \rho=\nu$) if for all $B \subseteq Y, \rho\left(T^{-1}(B)\right)=\nu(B)$
Optimal transport problem: minimize $\int_{X} c(x, T(x)) \mathrm{d} \rho(x)$ where $T_{\#} \rho=\nu$

Many applications:

PDEs, functional inequalities, probabilities, computer graphics, machine learning, inverse problems, etc.

Computational optimal transport

Discrete source and target
linear programming
Hungarian algorithm
Sinkhorn/IPFP

Computational optimal transport

Discrete source and target linear programming
Hungarian algorithm
Sinkhorn/IPFP

Source and target with density:
dynamic (Benamou-Brenier) formulation
finite-differences for Monge-Ampère

Computational optimal transport

Discrete source and target linear programming Hungarian algorithm
Sinkhorn/IPFP

Source and target with density:
dynamic (Benamou-Brenier) formulation finite-differences for Monge-Ampère

Source with density, discrete target: Minkowski, Alexandrov, etc.

Computational optimal transport

Flexibility for the cost function but computationally expensive

Computational optimal transport

Discrete source and target linear programming Hungarian algorithm
Sinkhorn/IPFP

Source and target with density:
dynamic (Benamou-Brenier) formulation
finite-differences for Monge-Ampère

Source with density, discrete target: Minkowski, Alexandrov, etc.
"semi-discrete optimal transport"

Semi-discrete optimal transport

Data: $\rho=$ prob density on X
$\nu=\sum_{y \in Y} \nu_{y} \delta_{y}$ prob. on finite Y

Semi-discrete optimal transport

Data: $\rho=$ prob density on $X \quad \nu=\sum_{y \in Y} \nu_{y} \delta_{y}$ prob. on finite Y

T is a transport map if for every $y \in Y, \rho\left(T^{-1}(\{y\})\right)=\nu_{y}$ (capacity constraint)

Semi-discrete optimal transport

Data: $\rho=$ prob density on $X \quad \nu=\sum_{y \in Y} \nu_{y} \delta_{y}$ prob. on finite Y

T is a transport map if for every $y \in Y, \rho\left(T^{-1}(\{y\})\right)=\nu_{y}$ (capacity constraint)

The set of transport maps is huge (\subseteq measurable partitions of X) ...

Semi-discrete optimal transport

Data: $\rho=$ prob density on $X \quad \nu=\sum_{y \in Y} \nu_{y} \delta_{y}$ prob. on finite Y

T is a transport map if for every $y \in Y, \rho\left(T^{-1}(\{y\})\right)=\nu_{y}$ (capacity constraint)

The set of transport maps is huge (\subseteq measurable partitions of X) ...
... but fortunately optimal maps form a much smaller (finite-dimensional) set.

Semi-discrete OT and Laguerre diagrams

$\rho: X \rightarrow \mathbb{R}$ density of population $\quad c(x, y):=\|x-y\|^{2}$ cost of walking from x to y
$Y=$ location of bakeries

Semi-discrete OT and Laguerre diagrams

$\rho: X \rightarrow \mathbb{R}$ density of population $\quad c(x, y):=\|x-y\|^{2}$ cost of walking from x to y
$Y=$ location of bakeries

- If the price of bread is uniform, people go the closest bakery:

$$
\operatorname{Vor}(y)=\{x \in X ; \forall z \in Y, c(x, y) \leq c(x, z)\}
$$

Semi-discrete OT and Laguerre diagrams

$\rho: X \rightarrow \mathbb{R}$ density of population $\quad c(x, y):=\|x-y\|^{2}$ cost of walking from x to y
$Y=$ location of bakeries

- If the price of bread is uniform, people go the closest bakery:

$$
\operatorname{Vor}(y)=\{x \in X ; \forall z \in Y, c(x, y) \leq c(x, z)\}
$$

Minimizes total distance walked ... but might exceed the capacity of bakery y_{0} !

Semi-discrete OT and Laguerre diagrams

$\rho: X \rightarrow \mathbb{R}$ density of population $\quad c(x, y):=\|x-y\|^{2}$ cost of walking from x to y
$Y=$ location of bakeries

- If prices are given by $\psi: Y \rightarrow \mathbb{R}$, people make a compromise:

$$
\operatorname{Lag}_{\psi}(y)=\{x \in X ; \forall z \in Y, c(x, y)+\psi(y) \leq c(x, z)+\psi(z)\}
$$

Semi-discrete OT and Laguerre diagrams

$\rho: X \rightarrow \mathbb{R}$ density of population $\quad c(x, y):=\|x-y\|^{2}$ cost of walking from x to y
$Y=$ location of bakeries

- If prices are given by $\psi: Y \rightarrow \mathbb{R}$, people make a compromise:

$$
\operatorname{Lag}_{\psi}(y)=\{x \in X ; \forall z \in Y, c(x, y)+\psi(y) \leq c(x, z)+\psi(z)\}
$$

Lemma: The Laguerre diagram induces an optimal transport between ρ and

$$
\nu_{\psi}:=\sum_{y \in Y} \rho\left(\operatorname{Lag}_{y}(\psi)\right) \delta_{y}
$$

Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and $\nu=\sum_{Y} \nu_{y} \delta_{y}$
\Longleftrightarrow finding prices ψ on Y such that $\nu_{\psi}=\nu$
[Gangbo McCann '96]

Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and $\nu=\sum_{Y} \nu_{y} \delta_{y}$
\Longleftrightarrow finding prices ψ on Y such that $\nu_{\psi}=\nu$
[Gangbo McCann '96]

- Coordinate-wise increments $\mathrm{O}\left(\frac{N^{3}}{\varepsilon} \log (N)\right)$.

Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and $\nu=\sum_{Y} \nu_{y} \delta_{y}$
\Longleftrightarrow finding prices ψ on Y such that $\nu_{\psi}=\nu$
[Gangbo McCann '96]
\Longleftrightarrow maximizing the concave function $\Phi \quad$ [Aurenhammer, Hoffman, Aronov '98]

$$
\Phi(\psi):=\sum_{y} \int_{\operatorname{Lag}_{y}(\psi)}[c(x, y)+\psi(y)] \mathrm{d} \rho(x)-\sum_{y} \psi(y) \nu_{y}
$$

- Coordinate-wise increments $\mathrm{O}\left(\frac{N^{3}}{\varepsilon} \log (N)\right)$.

Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and $\nu=\sum_{Y} \nu_{y} \delta_{y}$
\Longleftrightarrow finding prices ψ on Y such that $\nu_{\psi}=\nu$
[Gangbo McCann '96]
\Longleftrightarrow maximizing the concave function $\Phi \quad$ [Aurenhammer, Hoffman, Aronov '98]

$$
\Phi(\psi):=\sum_{y} \int_{\operatorname{Lag}_{y}(\psi)}[c(x, y)+\psi(y)] \mathrm{d} \rho(x)-\sum_{y} \psi(y) \nu_{y}
$$

- Coordinate-wise increments $\mathrm{O}\left(\frac{N^{3}}{\varepsilon} \log (N)\right)$.
[Oliker-Prussner '99]
- First variational approaches, without convergence analysis
[M. 11], [de Goes et al 12], [Lévy 15]

Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and $\nu=\sum_{Y} \nu_{y} \delta_{y}$
\Longleftrightarrow finding prices ψ on Y such that $\nu_{\psi}=\nu$
[Gangbo McCann '96]
\Longleftrightarrow maximizing the concave function $\Phi \quad$ [Aurenhammer, Hoffman, Aronov '98]

$$
\Phi(\psi):=\sum_{y} \int_{\operatorname{Lag}_{y}(\psi)}[c(x, y)+\psi(y)] \mathrm{d} \rho(x)-\sum_{y} \psi(y) \nu_{y}
$$

- Coordinate-wise increments $\mathrm{O}\left(\frac{N^{3}}{\varepsilon} \log (N)\right)$.
[Oliker-Prussner '99]
- First variational approaches, without convergence analysis
[M. 11], [de Goes et al 12], [Lévy 15]
- Damped Newton's algorithm, with global linear convergence, under (rather) general assumptions on ρ and c.
[Kitagawa, M., Thibert 16]

Numerical example 1

Source: $\rho=$ uniform on $[0,1]^{2}$,
Target: $\nu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with y_{i} uniform i.i.d. in $[0,1]^{2}$

Voronoi diagram

Numerical example 1

Source: $\rho=$ uniform on $[0,1]^{2}$,
Target: $\nu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with y_{i} uniform i.i.d. in $[0,1]^{2}$

Voronoi diagram

Where $\varepsilon_{k}:=\sum_{i}\left|\rho\left(\operatorname{Lag}_{i}\left(\psi_{k}\right)\right)-\frac{1}{N}\right|$ is the amount of misallocated mass.

Numerical example 1

Source: $\rho=$ uniform on $[0,1]^{2}$,
Cost: $c(x, y)=\|x-y\|^{2}$
Target: $\nu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with y_{i} uniform i.i.d. in $[0,1]^{2}$

Laguerre diagram

$$
\begin{gathered}
\psi_{1}=\operatorname{Newt}\left(\psi_{0}\right) \\
\varepsilon_{1} \simeq 0.007
\end{gathered}
$$

Where $\varepsilon_{k}:=\sum_{i}\left|\rho\left(\operatorname{Lag}_{i}\left(\psi_{k}\right)\right)-\frac{1}{N}\right|$ is the amount of misallocated mass.

Numerical example 1

Source: $\rho=$ uniform on $[0,1]^{2}$,
Cost: $c(x, y)=\|x-y\|^{2}$
Target: $\nu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with y_{i} uniform i.i.d. in $[0,1]^{2}$

Laguerre diagram

$$
\begin{gathered}
\psi_{1}=\operatorname{Newt}\left(\psi_{0}\right) \\
\varepsilon_{1} \simeq 0.007
\end{gathered}
$$

Laguerre diagram

$$
\begin{gathered}
\psi_{2}=\operatorname{Newt}\left(\psi_{1}\right) \\
\varepsilon_{2} \simeq 10^{-9}
\end{gathered}
$$

Where $\varepsilon_{k}:=\sum_{i}\left|\rho\left(\operatorname{Lag}_{i}\left(\psi_{k}\right)\right)-\frac{1}{N}\right|$ is the amount of misallocated mass.

Numerical example 2

Source: $\rho=$ uniform on $[0,1]^{2}$,
Cost: $c(x, y)=\|x-y\|^{2}$
Target: $\nu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with y_{i} uniform i.i.d. in $\left[0, \frac{1}{3}\right]^{2}$

Voronoi diagram

Numerical example 2

Source: $\rho=$ uniform on $[0,1]^{2}$,
Cost: $c(x, y)=\|x-y\|^{2}$
Target: $\nu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with y_{i} uniform i.i.d. in $\left[0, \frac{1}{3}\right]^{2}$

Numerical example 2

Source: $\rho=$ uniform on $[0,1]^{2}$,
Cost: $c(x, y)=\|x-y\|^{2}$
Target: $\nu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with y_{i} uniform i.i.d. in $\left[0, \frac{1}{3}\right]^{2}$

Voronoi diagram

$\psi_{0}=0$
$\varepsilon_{0} \simeq 0.48$

$\psi_{1}=\operatorname{Newt}\left(\psi_{0}\right)$
$\varepsilon_{1} \simeq 0.024$

$$
\varepsilon_{1} \simeq 0.024
$$

$$
\begin{gathered}
\psi_{2}=\operatorname{Newt}\left(\psi_{1}\right) \\
\varepsilon_{2} \simeq 10^{-6}
\end{gathered}
$$

NB: The points do not move.

Numerical example 2

Source: $\rho=$ uniform on $[0,1]^{2}$,
Cost: $c(x, y)=\|x-y\|^{2}$
Target: $\nu=\frac{1}{N} \sum_{1 \leq i \leq N} \delta_{y_{i}}$ with y_{i} uniform i.i.d. in $\left[0, \frac{1}{3}\right]^{2}$

Laguerre diagrams are able to encode an actual transport of mass (large movement).

2. First application: non-imaging optics

Joint works with J. Kitawaga, P. Machado, J. Meyron and B. Thibert

(Point source) Inverse Reflector Problem

Forward problem:

(Point source) Inverse Reflector Problem

Forward problem:

Inverse problem:
InPuT target: $\nu \in \operatorname{Prob}\left(\mathcal{S}_{\infty}^{2}\right)$

$$
\begin{gathered}
\text { surface } S \text { s.t. } T_{S \#} \rho=\nu \\
\text { OUTPUT }
\end{gathered}
$$

(Point source) Inverse Reflector Problem

Forward problem:

Inverse problem:
InPUT target: $\nu \in \operatorname{Prob}\left(\mathcal{S}_{\infty}^{2}\right)$

\longrightarrow Optical components for car beams, public lighting, hydroponic agriculture

(Point source) Inverse Reflector Problem

Forward problem:

Output

Inverse problem:

\longrightarrow Optical components for car beams, public lighting, hydroponic agriculture
\longrightarrow Zoology of similar optics problems: collimated source, lenses, near field targed...

Semidiscrete Inverse Reflector Problem

Assume $\nu:=\sum_{y \in Y} \nu_{y} \delta_{y}$, and let $P_{y}\left(\kappa_{y}\right):=$ solid paraboloid of revolution with focal 0 , direction y and focal distance κ_{y}

Semidiscrete Inverse Reflector Problem

Assume $\nu:=\sum_{y \in Y} \nu_{y} \delta_{y}$, and let $P_{y}\left(\kappa_{y}\right):=$ solid paraboloid of revolution with focal 0 , direction y and focal distance κ_{y}

$$
S:=\text { surface }=\partial\left(\cap_{y} P_{y}\left(\kappa_{y}\right)\right)
$$

Semidiscrete Inverse Reflector Problem

Assume $\nu:=\sum_{y \in Y} \nu_{y} \delta_{y}$, and let $P_{y}\left(\kappa_{y}\right):=$ solid paraboloid of revolution with focal 0 , direction y and focal distance κ_{y}

Semidiscrete Inverse Reflector Problem

Assume $\nu:=\sum_{y \in Y} \nu_{y} \delta_{y}$, and let $P_{y}\left(\kappa_{y}\right):=$ solid paraboloid of revolution with focal 0 , direction y and focal distance κ_{y}

$$
S:=\text { surface }=\partial\left(\cap_{y} P_{y}\left(\kappa_{y}\right)\right)
$$

$\rho\left(V_{y}(\kappa)\right)=$ amount of light reflected towards $y \in \mathcal{S}_{\infty}^{2}$.
Can be adjusted by playing with focal distance κ_{y}

Semidiscrete Inverse Reflector Problem

Assume $\nu:=\sum_{y \in Y} \nu_{y} \delta_{y}$, and let $P_{y}\left(\kappa_{y}\right):=$ solid paraboloid of revolution with focal 0 , direction y and focal distance κ_{y}

$$
S:=\text { surface }=\partial\left(\cap_{y} P_{y}\left(\kappa_{y}\right)\right)
$$

$\rho\left(V_{y}(\kappa)\right)=$ amount of light reflected towards $y \in \mathcal{S}_{\infty}^{2}$. Can be adjusted by playing with focal distance κ_{y}
\longrightarrow Focal distance \simeq prices in the economic example

Semidiscrete Inverse Reflector Problem

Assume $\nu:=\sum_{y \in Y} \nu_{y} \delta_{y}$, and let $P_{y}\left(\kappa_{y}\right):=$ solid paraboloid of revolution with focal 0 , direction y and focal distance κ_{y}

$$
S:=\text { surface }=\partial\left(\cap_{y} P_{y}\left(\kappa_{y}\right)\right)
$$

$\rho\left(V_{y}(\kappa)\right)=$ amount of light reflected towards $y \in \mathcal{S}_{\infty}^{2}$. \longrightarrow Can be adjusted by playing with focal distance κ_{y}
\longrightarrow Focal distance \simeq prices in the economic example and, indeed, $V_{y}(\kappa)$ is a Laguerre cell!

$$
\begin{aligned}
& V_{y}(\kappa)=\operatorname{Lag}_{y}(\psi) \text { for } \psi(y)=\log \left(\kappa_{y}\right) \\
& \quad \text { and } c(x, y)=-\log (1-\langle x \mid y\rangle)
\end{aligned}
$$

Semidiscrete Inverse Reflector Problem

Assume $\nu:=\sum_{y \in Y} \nu_{y} \delta_{y}$, and let $P_{y}\left(\kappa_{y}\right):=$ solid paraboloid of revolution with focal 0 , direction y and focal distance κ_{y}

$$
S:=\text { surface }=\partial\left(\cap_{y} P_{y}\left(\kappa_{y}\right)\right)
$$

$\rho\left(V_{y}(\kappa)\right)=$ amount of light reflected towards $y \in \mathcal{S}_{\infty}^{2}$.
\longrightarrow Can be adjusted by playing with focal distance κ_{y}
\longrightarrow Focal distance \simeq prices in the economic example and, indeed, $V_{y}(\kappa)$ is a Laguerre cell !

$$
\begin{aligned}
& V_{y}(\kappa)=\operatorname{Lag}_{y}(\psi) \text { for } \psi(y)=\log \left(\kappa_{y}\right) \\
& \quad \text { and } c(x, y)=-\log (1-\langle x \mid y\rangle)
\end{aligned}
$$

Theorem: Semidiscrete Inverse Reflector Problem
\Longleftrightarrow semidiscrete OT problem on \mathcal{S}^{2} for $c(x, y)=-\log (1-\langle x \mid y\rangle)$

Numerics 1

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{y_{i}}=$ discretization of a picture of G . Monge.
$\rho=$ uniform measure on half-sphere $X:=\mathcal{S}_{+}^{2} \quad N=1000$

drawing of $\left(\operatorname{Lag}_{\psi}\left(y_{i}\right)\right)$ on \mathcal{S}_{+}^{2} for $\psi=0$

Numerics 1

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{y_{i}}=$ discretization of a picture of G . Monge.
$\rho=$ uniform measure on half-sphere $X:=\mathcal{S}_{+}^{2} \quad N=1000$

drawing of $\left(\operatorname{Lag}_{\psi}\left(y_{i}\right)\right)$ on \mathcal{S}_{+}^{2} for $\psi_{\text {sol }}$

Numerics 1

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{y_{i}}=$ discretization of a picture of G . Monge.
$\rho=$ uniform measure on half-sphere $X:=\mathcal{S}_{+}^{2} \quad N=1000$

reflected image (using LuxRender)

Numerics 1

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{y_{i}}=$ discretization of a picture of G . Monge.
$\rho=$ uniform measure on half-sphere $X:=\mathcal{S}_{+}^{2}$

$$
N=1000
$$

Numerics 2

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{y_{i}}=$ discretization of a picture of G. Monge.
[Machado, M., Thibert '14]
$\rho=$ uniform measure on half-sphere $X:=\mathcal{S}_{+}^{2} \quad N=15000$

drawing of $\left(\operatorname{Lag}_{\psi}\left(y_{i}\right)\right)$ on \mathcal{S}_{+}^{2} for $\psi_{\text {sol }}$

Numerics 2

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{y_{i}}=$ discretization of a picture of G. Monge. [Machado, M., Thibert '14] $\rho=$ uniform measure on half-sphere $X:=\mathcal{S}_{+}^{2}$

$$
N=15000
$$

reflected image (using LuxRender)

Numerics 3

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{y_{i}}=$ discretization of the "Cameraman" picture [Meyron, M., Thibert '17] $\rho=$ non-uniform measure on half-sphere $X:=\mathcal{S}_{+}^{2} \quad N=250 k$

Desired target ν

Numerics 3

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{y_{i}}=$ discretization of the "Cameraman" picture [Meyron, M., Thibert '17] $\rho=$ non-uniform measure on half-sphere $X:=\mathcal{S}_{+}^{2} \quad N=250 k$

Constructed reflector color $=$ mean curvature

Numerics 3

$\nu=\sum_{i=1}^{N} \nu_{i} \delta_{y_{i}}=$ discretization of the "Cameraman" picture [Meyron, M., Thibert '17] $\rho=$ non-uniform measure on half-sphere $X:=\mathcal{S}_{+}^{2} \quad N=250 k$

Constructed reflector color $=$ mean curvature

Resimulated image

Damped Newton's Algorithm

Recall: $G: \psi \in \mathbb{R}^{Y} \mapsto\left(\rho\left(\operatorname{Lag}_{y}(\psi)\right)\right)_{y \in Y} \mathbb{R}^{Y}$.
Admissible domain: $E_{\varepsilon}:=\left\{\psi \in \mathbb{R}^{Y} \mid \forall y \in Y, G_{y}(\psi) \geq \varepsilon\right\}$

Damped Newton's Algorithm

Recall: $G: \psi \in \mathbb{R}^{Y} \mapsto\left(\rho\left(\operatorname{Lag}_{y}(\psi)\right)\right)_{y \in Y} \mathbb{R}^{Y}$.
Admissible domain: $E_{\varepsilon}:=\left\{\psi \in \mathbb{R}^{Y} \mid \forall y \in Y, G_{y}(\psi) \geq \varepsilon\right\}$

Damped Newton algorithm: for solving $G(\psi)=\nu$ Input: $\psi_{0} \in Y^{\mathbb{R}}$ s.t. $\varepsilon:=\frac{1}{2} \min _{y \in Y} \min \left(G_{y}\left(\psi_{0}\right), \nu_{y}\right)>0$

Damped Newton's Algorithm

Recall: $G: \psi \in \mathbb{R}^{Y} \mapsto\left(\rho\left(\operatorname{Lag}_{y}(\psi)\right)\right)_{y \in Y} \mathbb{R}^{Y}$.
Admissible domain: $E_{\varepsilon}:=\left\{\psi \in \mathbb{R}^{Y} \mid \forall y \in Y, G_{y}(\psi) \geq \varepsilon\right\}$

Damped Newton algorithm: for solving $G(\psi)=\nu$ Input: $\psi_{0} \in Y^{\mathbb{R}}$ s.t. $\varepsilon:=\frac{1}{2} \min _{y \in Y} \min \left(G_{y}\left(\psi_{0}\right), \nu_{y}\right)>0$

Loop: \longrightarrow Compute Newton point: $-\mathrm{D} G\left(\psi_{k}\right)^{-1}\left(G\left(\psi_{k}\right)-\nu\right)$

\longrightarrow Backtrack so that $\psi_{k+1} \in E_{\varepsilon}+$ sufficient decrease cond.

Damped Newton's Algorithm

Recall: $G: \psi \in \mathbb{R}^{Y} \mapsto\left(\rho\left(\operatorname{Lag}_{y}(\psi)\right)\right)_{y \in Y} \mathbb{R}^{Y}$.
Admissible domain: $E_{\varepsilon}:=\left\{\psi \in \mathbb{R}^{Y} \mid \forall y \in Y, G_{y}(\psi) \geq \varepsilon\right\}$

Damped Newton algorithm: for solving $G(\psi)=\nu$ Input: $\psi_{0} \in Y^{\mathbb{R}}$ s.t. $\varepsilon:=\frac{1}{2} \min _{y \in Y} \min \left(G_{y}\left(\psi_{0}\right), \nu_{y}\right)>0$

Loop: \longrightarrow Compute Newton point: $-\mathrm{D} G\left(\psi_{k}\right)^{-1}\left(G\left(\psi_{k}\right)-\nu\right)$
\longrightarrow Backtrack so that $\psi_{k+1} \in E_{\varepsilon}+$ sufficient decrease cond.

Proposition: The algorithm converges globally with linear rate provided:
(Strong monotonicity): for all $\psi \in E_{\varepsilon}, \quad \mathrm{D} G$ is negative definite on $\{c s t\}^{\perp}$

Damped Newton's Algorithm

Recall: $G: \psi \in \mathbb{R}^{Y} \mapsto\left(\rho\left(\operatorname{Lag}_{y}(\psi)\right)\right)_{y \in Y} \mathbb{R}^{Y}$.
Admissible domain: $E_{\varepsilon}:=\left\{\psi \in \mathbb{R}^{Y} \mid \forall y \in Y, G_{y}(\psi) \geq \varepsilon\right\}$

Damped Newton algorithm: for solving $G(\psi)=\nu$ Input: $\psi_{0} \in Y^{\mathbb{R}}$ s.t. $\varepsilon:=\frac{1}{2} \min _{y \in Y} \min \left(G_{y}\left(\psi_{0}\right), \nu_{y}\right)>0$

Loop: \longrightarrow Compute Newton point: $-\mathrm{D} G\left(\psi_{k}\right)^{-1}\left(G\left(\psi_{k}\right)-\nu\right)$
\longrightarrow Backtrack so that $\psi_{k+1} \in E_{\varepsilon}+$ sufficient decrease cond.

Proposition: The algorithm converges globally with linear rate provided:
(Strong monotonicity): for all $\psi \in E_{\varepsilon}, \quad \mathrm{D} G$ is negative definite on $\{c s t\}^{\perp}$ (Smoothness): G is \mathcal{C}^{1} on E_{ε}

Convergence of Damped Newton

Theorem: Let X be an hemisphere of \mathcal{S}^{2}. Assume that $Y \subset \mathcal{S}^{2} \backslash X$ and that

$$
\rho \in \mathcal{C}^{\alpha}(X) \text { and }\{\rho>0\} \text { is connected }
$$

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with rate $(1+\alpha)$.

Convergence of Damped Newton

Theorem: Let X be an hemisphere of \mathcal{S}^{2}. Assume that $Y \subset \mathcal{S}^{2} \backslash X$ and that

$$
\rho \in \mathcal{C}^{\alpha}(X) \text { and }\{\rho>0\} \text { is connected }
$$

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with rate $(1+\alpha)$.
special case of [Kitagawa, M., Thibert '15]
(Strong monotonicity of G):
... recall that $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{y}(\psi)\right) \ldots$

- Consider the matrix $\left(L_{y z}\right):=\left(\frac{\partial G_{y}}{\partial \mathbf{1}_{z}}(\psi)\right)$ and the graph H : $(y, z) \in H \Longleftrightarrow L_{z y}>0$

Convergence of Damped Newton

Theorem: Let X be an hemisphere of \mathcal{S}^{2}. Assume that $Y \subset \mathcal{S}^{2} \backslash X$ and that

$$
\rho \in \mathcal{C}^{\alpha}(X) \text { and }\{\rho>0\} \text { is connected }
$$

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with rate $(1+\alpha)$.
special case of [Kitagawa, M., Thibert '15]
(Strong monotonicity of G):
... recall that $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{y}(\psi)\right) \ldots$

- Consider the matrix $\left(L_{y z}\right):=\left(\frac{\partial G_{y}}{\partial \mathbf{1}_{z}}(\psi)\right)$ and the graph H : $(y, z) \in H \Longleftrightarrow L_{z y}>0$
- $H=1$-skeleton of $\left(\operatorname{Lag}_{y}(\psi) \cap\{\rho>0\}\right)_{y \in Y}$

Convergence of Damped Newton

Theorem: Let X be an hemisphere of \mathcal{S}^{2}. Assume that $Y \subset \mathcal{S}^{2} \backslash X$ and that

$$
\rho \in \mathcal{C}^{\alpha}(X) \text { and }\{\rho>0\} \text { is connected }
$$

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with rate $(1+\alpha)$.
special case of [Kitagawa, M., Thibert '15]
(Strong monotonicity of G): ... recall that $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{y}(\psi)\right) \ldots$

- Consider the matrix $\left(L_{y z}\right):=\left(\frac{\partial G_{y}}{\partial \mathbf{1}_{z}}(\psi)\right)$ and the graph H : $(y, z) \in H \Longleftrightarrow L_{z y}>0$
- $H=1$-skeleton of $\left(\operatorname{Lag}_{y}(\psi) \cap\{\rho>0\}\right)_{y \in Y}$
- If $\{\rho>0\}$ is connected and $\psi \in E_{\varepsilon}$, then H is connected

Convergence of Damped Newton

Theorem: Let X be an hemisphere of \mathcal{S}^{2}. Assume that $Y \subset \mathcal{S}^{2} \backslash X$ and that

$$
\rho \in \mathcal{C}^{\alpha}(X) \text { and }\{\rho>0\} \text { is connected }
$$

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with rate $(1+\alpha)$.

(Strong monotonicity of G):
... recall that $G_{y}(\psi)=\rho\left(\operatorname{Lag}_{y}(\psi)\right) \ldots$

- Consider the matrix $\left(L_{y z}\right):=\left(\frac{\partial G_{y}}{\partial \mathbf{1}_{z}}(\psi)\right)$ and the graph H : $(y, z) \in H \Longleftrightarrow L_{z y}>0$
- $H=1$-skeleton of $\left(\operatorname{Lag}_{y}(\psi) \cap\{\rho>0\}\right)_{y \in Y}$
- If $\{\rho>0\}$ is connected and $\psi \in E_{\varepsilon}$, then H is connected
- L is the Laplacian of a connected graph $\Longrightarrow \operatorname{Ker} L=\mathbb{R} \cdot \mathrm{cst}$

Convergence of Damped Newton

Theorem: Let X be an hemisphere of \mathcal{S}^{2}. Assume that $Y \subset \mathcal{S}^{2} \backslash X$ and that

$$
\rho \in \mathcal{C}^{\alpha}(X) \text { and }\{\rho>0\} \text { is connected }
$$

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with rate $(1+\alpha)$. special case of [Kitagawa, M., Thibert '15]
(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:

Convergence of Damped Newton

Theorem: Let X be an hemisphere of \mathcal{S}^{2}. Assume that $Y \subset \mathcal{S}^{2} \backslash X$ and that

$$
\rho \in \mathcal{C}^{\alpha}(X) \text { and }\{\rho>0\} \text { is connected }
$$

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with rate $(1+\alpha)$. special case of [Kitagawa, M., Thibert '15]
(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:
Loeper's condition: there exists $\exp _{y}^{c}: \mathbb{R}^{d} \rightarrow X$ diffeo. s.t. $\forall \psi$ and y

Convergence of Damped Newton

Theorem: Let X be an hemisphere of \mathcal{S}^{2}. Assume that $Y \subset \mathcal{S}^{2} \backslash X$ and that

$$
\rho \in \mathcal{C}^{\alpha}(X) \text { and }\{\rho>0\} \text { is connected }
$$

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with rate $(1+\alpha)$. special case of [Kitagawa, M., Thibert '15]
(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:
Loeper's condition: there exists $\exp _{y}^{c}: \mathbb{R}^{d} \rightarrow X$ diffeo. s.t. $\forall \psi$ and y

\longrightarrow Restrictive condition, which fortunately is satisfied for the reflector problem.

Convergence of Damped Newton

Theorem: Let X be an hemisphere of \mathcal{S}^{2}. Assume that $Y \subset \mathcal{S}^{2} \backslash X$ and that

$$
\rho \in \mathcal{C}^{\alpha}(X) \text { and }\{\rho>0\} \text { is connected }
$$

Then, the damped Newton algorithm for SD-OT converges globally with linear rate and locally with rate $(1+\alpha)$. special case of [Kitagawa, M., Thibert '15]
(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:
Loeper's condition: there exists $\exp _{y}^{c}: \mathbb{R}^{d} \rightarrow X$ diffeo. s.t. $\forall \psi$ and y

\longrightarrow Restrictive condition, which fortunately is satisfied for the reflector problem.
\longrightarrow Loeper's condition originates from regularity theory for OT...

3. Second application: enforcing incompressibility

Joint work with J.M. Mirebeau

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $\mathbb{S D i f f}=\{$ volume-preserving diffeo. from X to $X\} \subseteq E:=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
[Arnold '66]

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $\mathbb{S D i f f}=\{$ volume-preserving diffeo. from X to $X\} \subseteq E:=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
[Arnold '66]

- What about the minimizing geodesics between $s_{*}, s^{*} \in \mathbb{S D i f f}$?

$$
\inf \left\{\int_{0}^{1}\left\|s^{\prime}(t)\right\|_{E}^{2} \mathrm{~d} t \mid s:[0,1] \rightarrow \text { SDiff, } s_{0}=s_{*}, s_{1}=s^{*}\right\}
$$

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $\mathbb{S D i f f}=\{$ volume-preserving diffeo. from X to $X\} \subseteq E:=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
[Arnold '66]

- What about the minimizing geodesics between $s_{*}, s^{*} \in \mathbb{S D i f f}$?

$$
\inf \left\{\int_{0}^{1}\left\|s^{\prime}(t)\right\|_{E}^{2} \mathrm{~d} t \mid s:[0,1] \rightarrow \text { SDiff, } s_{0}=s_{*}, s_{1}=s^{*}\right\}
$$

\longrightarrow theory of generalized geodesics
[Brenier '93]

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $\mathbb{S D i f f}=\{$ volume-preserving diffeo. from X to $X\} \subseteq E:=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
[Arnold '66]

- What about the minimizing geodesics between $s_{*}, s^{*} \in \mathbb{S D i f f}$?

$$
\inf \left\{\int_{0}^{1}\left\|s^{\prime}(t)\right\|_{E}^{2} \mathrm{~d} t \mid s:[0,1] \rightarrow \mathbb{S D i f f}, s_{0}=s_{*}, s_{1}=s^{*}\right\}
$$

\longrightarrow theory of generalized geodesics
[Brenier '93]
\longrightarrow non-deterministic behavior of fluid particles.

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $\mathbb{S D i f f}=\{$ volume-preserving diffeo. from X to $X\} \subseteq E:=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
[Arnold '66]

- What about the minimizing geodesics between $s_{*}, s^{*} \in \mathbb{S D i f f}$?

$$
\inf \left\{\int_{0}^{1}\left\|s^{\prime}(t)\right\|_{E}^{2} \mathrm{~d} t \mid s:[0,1] \rightarrow \mathbb{S D i f f}, s_{0}=s_{*}, s_{1}=s^{*}\right\}
$$

\longrightarrow theory of generalized geodesics
[Brenier '93]
\longrightarrow non-deterministic behavior of fluid particles.

- Discretization: $N=$ number of particles, $T=$ number of timesteps At time i, the particles are at positions $m_{i}:=\left(M_{i}^{1}, \ldots, M_{i}^{N}\right) \in \mathbb{R}^{N d}$.

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $\mathbb{S D i f f}=\{$ volume-preserving diffeo. from X to $X\} \subseteq E:=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
[Arnold '66]

- What about the minimizing geodesics between $s_{*}, s^{*} \in \mathbb{S D i f f}$?

$$
\inf \left\{\int_{0}^{1}\left\|s^{\prime}(t)\right\|_{E}^{2} \mathrm{~d} t \mid s:[0,1] \rightarrow \mathbb{S D i f f}, s_{0}=s_{*}, s_{1}=s^{*}\right\}
$$

\longrightarrow theory of generalized geodesics
[Brenier '93]
\longrightarrow non-deterministic behavior of fluid particles.

- Discretization: $N=$ number of particles, $T=$ number of timesteps At time i, the particles are at positions $m_{i}:=\left(M_{i}^{1}, \ldots, M_{i}^{N}\right) \in \mathbb{R}^{N d}$.

$$
\left.\min _{\min _{0}, \ldots, m_{T} \in \mathbb{R}^{N d}} \frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|_{2}^{2}+\lambda\left(\left\|m_{0}-s_{*}\right\|_{2}^{2}+\left\|m_{T}-s^{*}\right\|_{2}^{2}+? ? ?\right)\right] \text { boundary conditions } \quad \text { incompressibility }
$$

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $\mathbb{S D i f f}=\{$ volume-preserving diffeo. from X to $X\} \subseteq E:=\mathrm{L}^{2}\left(X, \mathbb{R}^{d}\right)$
[Arnold '66]

- What about the minimizing geodesics between $s_{*}, s^{*} \in \mathbb{S D i f f}$?

$$
\inf \left\{\int_{0}^{1}\left\|s^{\prime}(t)\right\|_{E}^{2} \mathrm{~d} t \mid s:[0,1] \rightarrow \text { SDiff, } s_{0}=s_{*}, s_{1}=s^{*}\right\}
$$

\longrightarrow theory of generalized geodesics
[Brenier '93]
\longrightarrow non-deterministic behavior of fluid particles.

- Discretization: $N=$ number of particles, $T=$ number of timesteps At time i, the particles are at positions $m_{i}:=\left(M_{i}^{1}, \ldots, M_{i}^{N}\right) \in \mathbb{R}^{N d}$.

$$
\left.\min _{m_{0}, \ldots, m_{T} \in \mathbb{R}^{N d}} \frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|_{2}^{2}+\lambda\left(\left\|m_{0}-s_{*}\right\|_{2}^{2}+\left\|m_{T}-s^{*}\right\|_{2}^{2}+? ? ?\right)\right] \text { boundary conditions incompressibility }
$$

A point cloud cannot be exactly incompressible \Longrightarrow penalization using optimal transport.

Distance to incompressible maps

Definition: Given $m=\left(M^{1}, \ldots, M^{N}\right) \in \mathbb{R}^{N d}$, we define

$$
\mathrm{d}_{\mathbb{S}}^{2}(m)=\text { min. transport cost between } \rho \text { and } \nu=\frac{1}{N} \sum_{k=1}^{N} \delta_{M^{k}}
$$

where ρ is uniform on X and $c(x, y)=\|x-y\|^{2}$.

Distance to incompressible maps

Definition: Given $m=\left(M^{1}, \ldots, M^{N}\right) \in \mathbb{R}^{N d}$, we define

$$
\mathrm{d}_{\mathbb{S}}^{2}(m)=\text { min. transport cost between } \rho \text { and } \nu=\frac{1}{N} \sum_{k=1}^{N} \delta_{M^{k}}
$$

where ρ is uniform on X and $c(x, y)=\|x-y\|^{2}$.
Example: $N=900, X=[0,1]^{2}$.

Distance to incompressible maps

Definition: Given $m=\left(M^{1}, \ldots, M^{N}\right) \in \mathbb{R}^{N d}$, we define

$$
\mathrm{d}_{\mathbb{S}}^{2}(m)=\text { min. transport cost between } \rho \text { and } \nu=\frac{1}{N} \sum_{k=1}^{N} \delta_{M^{k}}
$$

where ρ is uniform on X and $c(x, y)=\|x-y\|^{2}$.
Example: $N=900, X=[0,1]^{2}$.

$$
\mathrm{d}_{\mathbb{S}}(m) \simeq 0,031
$$

Distance to incompressible maps

Definition: Given $m=\left(M^{1}, \ldots, M^{N}\right) \in \mathbb{R}^{N d}$, we define

$$
\mathrm{d}_{\mathbb{S}}^{2}(m)=\text { min. transport cost between } \rho \text { and } \nu=\frac{1}{N} \sum_{k=1}^{N} \delta_{M^{k}}
$$

where ρ is uniform on X and $c(x, y)=\|x-y\|^{2}$.
Example: $N=900, X=[0,1]^{2}$.

$\mathrm{d}_{\mathbb{S}}(m) \simeq 0,031$

$-\frac{N}{2} \nabla \mathrm{~d}_{\mathbb{S}}^{2}(m)$

Distance to incompressible maps

Definition: Given $m=\left(M^{1}, \ldots, M^{N}\right) \in \mathbb{R}^{N d}$, we define

$$
\mathrm{d}_{\mathbb{S}}^{2}(m)=\text { min. transport cost between } \rho \text { and } \nu=\frac{1}{N} \sum_{k=1}^{N} \delta_{M^{k}}
$$

where ρ is uniform on X and $c(x, y)=\|x-y\|^{2}$.
Example: $N=900, X=[0,1]^{2}$

$\mathrm{d}_{\mathbb{S}}(m) \simeq 0,031$

$-\frac{N}{2} \nabla \mathrm{~d}_{\mathbb{S}}^{2}(m)$

$m-\frac{N}{2} \nabla \mathrm{~d}_{\mathbb{S}}^{2}(m)$

Distance to incompressible maps

Definition: Given $m=\left(M^{1}, \ldots, M^{N}\right) \in \mathbb{R}^{N d}$, we define

$$
\mathrm{d}_{\mathbb{S}}^{2}(m)=\text { min. transport cost between } \rho \text { and } \nu=\frac{1}{N} \sum_{k=1}^{N} \delta_{M^{k}}
$$

where ρ is uniform on X and $c(x, y)=\|x-y\|^{2}$.
Example: $N=740, X=[0,1]^{2}$.

$$
\mathrm{d}_{\mathbb{S}}(m) \simeq 0,14
$$

Distance to incompressible maps

Definition: Given $m=\left(M^{1}, \ldots, M^{N}\right) \in \mathbb{R}^{N d}$, we define

$$
\mathrm{d}_{\S}^{2}(m)=\text { min. transport cost between } \rho \text { and } \nu=\frac{1}{N} \sum_{k=1}^{N} \delta_{M^{k}}
$$

where ρ is uniform on X and $c(x, y)=\|x-y\|^{2}$.
Example: $N=740, X=[0,1]^{2}$.

$\mathrm{d}_{\mathbb{S}}(m) \simeq 0,14$

$-\frac{N}{2} \nabla \mathrm{~d}_{\mathbb{S}}^{2}(m)$

Distance to incompressible maps

Definition: Given $m=\left(M^{1}, \ldots, M^{N}\right) \in \mathbb{R}^{N d}$, we define

$$
\mathrm{d}_{\mathbb{S}}^{2}(m)=\text { min. transport cost between } \rho \text { and } \nu=\frac{1}{N} \sum_{k=1}^{N} \delta_{M^{k}}
$$

where ρ is uniform on X and $c(x, y)=\|x-y\|^{2}$.
Example: $N=740, X=[0,1]^{2}$.

$\mathrm{d}_{\mathbb{S}}(m) \simeq 0,14$

$-\frac{N}{2} \nabla \mathrm{~d}_{\mathbb{S}}^{2}(m)$

$m-\frac{N}{2} \nabla \mathrm{~d}_{\mathbb{S}}^{2}(m)$

From particles to paths

- Time-discretization of geodesic with endpoints $s_{*}, s^{*} \in \mathbb{R}^{N d}$

$$
\min _{m_{1}, \ldots, m_{T} \in \mathbb{R}^{N d}} \frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|_{2}^{2}+\lambda\left(\left\|m_{0}-s_{*}\right\|_{2}^{2}+\left\|m_{T}-s^{*}\right\|_{2}^{2}+\sum_{i=1}^{T-1} \mathrm{~d}_{\mathbb{S}}^{2}\left(m_{i}\right)\right)
$$

From particles to paths

- Time-discretization of geodesic with endpoints $s_{*}, s^{*} \in \mathbb{R}^{N d}$

$$
\min _{m_{1}, \ldots, m_{T} \in \mathbb{R}^{N d}} \frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|_{2}^{2}+\lambda\left(\left\|m_{0}-s_{*}\right\|_{2}^{2}+\left\|m_{T}-s^{*}\right\|_{2}^{2}+\sum_{i=1}^{T-1} \mathrm{~d}_{\mathbb{S}}^{2}\left(m_{i}\right)\right)
$$

action
boundary conditions incompressibility

- Given $m=\left(m_{1}, \ldots, m_{T}\right) \in \mathbb{R}^{T N d}$, let $\gamma_{k} \in \mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right)$ be PL with $\gamma_{k}\left(t_{i}\right)=M_{i}^{k}$

From particles to paths

- Time-discretization of geodesic with endpoints $s_{*}, s^{*} \in \mathbb{R}^{N d}$

$$
\min _{m_{1}, \ldots, m_{T} \in \mathbb{R}^{N d}} \frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|_{2}^{2}+\lambda\left(\left\|m_{0}-s_{*}\right\|_{2}^{2}+\left\|m_{T}-s^{*}\right\|_{2}^{2}+\sum_{i=1}^{T-1} \mathrm{~d}_{\mathbb{S}}^{2}\left(m_{i}\right)\right)
$$

action
boundary conditions incompressibility

- Given $m=\left(m_{1}, \ldots, m_{T}\right) \in \mathbb{R}^{T N d}$, let $\gamma_{k} \in \mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right)$ be PL with $\gamma_{k}\left(t_{i}\right)=M_{i}^{k}$

\longrightarrow One can associate to m a probability measure over the set of \mathcal{C}^{0} paths:

$$
\mu_{m}:=\frac{1}{N} \sum_{k=1}^{N} \delta_{\gamma_{k}} \quad \in \operatorname{Prob}\left(\mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right)\right)
$$

From particles to paths

- Time-discretization of geodesic with endpoints $s_{*}, s^{*} \in \mathbb{R}^{N d}$

$$
\min _{m_{1}, \ldots, m_{T} \in \mathbb{R}^{N d}} \frac{T}{2} \sum_{i=0}^{T-1}\left\|m_{i+1}-m_{i}\right\|_{2}^{2}+\lambda\left(\left\|m_{0}-s_{*}\right\|_{2}^{2}+\left\|m_{T}-s^{*}\right\|_{2}^{2}+\sum_{i=1}^{T-1} \mathrm{~d}_{\mathbb{S}}^{2}\left(m_{i}\right)\right)
$$

action

- Given $m=\left(m_{1}, \ldots, m_{T}\right) \in \mathbb{R}^{T N d}$, let $\gamma_{k} \in \mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right)$ be PL with $\gamma_{k}\left(t_{i}\right)=M_{i}^{k}$

\longrightarrow One can associate to m a probability measure over the set of \mathcal{C}^{0} paths:

$$
\mu_{m}:=\frac{1}{N} \sum_{k=1}^{N} \delta_{\gamma_{k}} \quad \in \operatorname{Prob}\left(\mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right)\right)
$$

\longrightarrow Under suitable hypotheses, minimizers of the discrete problem converge to a so-called generalized minimizing geodesic,

$$
\mu \in \operatorname{Prob}\left(\mathcal{C}^{0}\left([0,1], \mathbb{R}^{d}\right)\right) .
$$

Numerical result: Inversion of the Disk

$$
X=\mathrm{B}(0,1) \subseteq \mathbb{R}^{2} \quad\left(s_{*}, s^{*}\right)=(\mathrm{id},-\mathrm{id})
$$

Classical solutions: clockwise/counterclockwise rotations $\mu_{ \pm}$

Numerical result: Inversion of the Disk

$$
X=\mathrm{B}(0,1) \subseteq \mathbb{R}^{2} \quad\left(s_{*}, s^{*}\right)=(\mathrm{id},-\mathrm{id})
$$

Classical solutions: clockwise/counterclockwise rotations $\mu_{ \pm}$

Examples of generalized solutions:

linear combination $\mu_{\frac{1}{2}}$ of $\mu_{ \pm}$constructed from rotations NB: $\operatorname{dim}\left(\operatorname{spt}\left(\mu_{\frac{1}{2}}\right)\right)=2$

Numerical result: Inversion of the Disk

$$
X=\mathrm{B}(0,1) \subseteq \mathbb{R}^{2} \quad\left(s_{*}, s^{*}\right)=(\mathrm{id},-\mathrm{id})
$$

Brenier's generalized solution: $\mu \in \operatorname{Prob}(\Gamma)$:

$$
\begin{gathered}
\operatorname{spt}(\mu)=\left\{t \mapsto x \cos (\pi t)+v \sin (\pi t) \in \mathcal{C}^{0}([0,1], X)\right. \\
\left.(x, v) \in X \times \mathbb{R}^{2},\|v\|^{2}=1-\|x\|^{2}\right\}
\end{gathered}
$$

\longrightarrow non-deterministic solution, $\operatorname{dim}(\operatorname{spt}(\mu))=3$

Numerical result: Inversion of the Disk

$$
X=\mathrm{B}(0,1) \subseteq \mathbb{R}^{2}
$$

$$
\left(s_{*}, s^{*}\right)=(\mathrm{id},-\mathrm{id})
$$

Brenier's generalized solution: $\mu \in \operatorname{Prob}(\Gamma)$:

$$
\begin{gathered}
\operatorname{spt}(\mu)=\left\{t \mapsto x \cos (\pi t)+v \sin (\pi t) \in \mathcal{C}^{0}([0,1], X) ;\right. \\
\left.(x, v) \in X \times \mathbb{R}^{2},\|v\|^{2}=1-\|x\|^{2}\right\}
\end{gathered}
$$

\longrightarrow non-deterministic solution, $\operatorname{dim}(\operatorname{spt}(\mu))=3$

Computed trajectories for $N=10^{5}, T=17$

Numerical result: Beltrami Flow in Square

forward simulation

Numerical result: Beltrami Flow in Square

forward simulation

(f) $t=0.0$

(j) $t=t_{\text {max }}=0.9$

(k) $t=0.0$

(o) $t=t_{\text {max }}=1.1$

(p) $t=0.0$

(t$) t=t_{\mathrm{max}}=1.3$

(u) $t=0.0$
S_{*}

(y) $t=t_{\text {max }}=1.5$
S^{*}

Numerical result: Beltrami Flow in Square

forward simulation

(f) $t=0.0$
(g) $t=0.25 * t_{\text {max }}$
(h) $t=0.5 * t_{\max }$
(i) $t=0.75 * t_{\text {max }}$
(j) $t=t_{\text {max }}=0.9$
reconstructed generalized geodesics

(k) $t=0.0$
(1) $t=0.25 * t_{\text {max }}$

(r) $t=0.5 * t_{\text {max }}$

(m) $t=0.5 * t_{\text {max }}$
(n) $t=0.75 * t_{\text {max }}$

(s) $t=0.75 * t_{\text {max }}$

(o) $t=t_{\text {max }}=1.1$

(t$) t=t_{\mathrm{max}}=1.3$

(u) $t=0.0$

(w) $t=0.5 * t_{\text {max }}$

(y) $t=t_{\text {max }}=1.5$

Numerical result: Comparison of Trajectories

Disk inversion

Square, $t_{\max }=1.5$

Comparison of Minkowski dimensions

Estimation of $\operatorname{dim}(\operatorname{spt}(\mu))$ via $\log (N) / \log \left(1 / \delta_{N}\right)$ where $\delta_{N}=$ minimum radius required to cover $\operatorname{spt}(\mu)$ with N balls.

Square rotation, $t_{\text {max }} \in\{0.9,1.1,1.3,1.5\}$
Disk inversion

Summary

1) Laguerre diagrams provide a very suitable and efficient tool for discretizing :

Optimal transport \longrightarrow physics
Monge-Ampère type PDEs Generated jacobian equations

Summary

1) Laguerre diagrams provide a very suitable and efficient tool for discretizing :

Monge-Ampère type PDEs Generated jacobian equations

2) The discretized problems inherit many (geometric) features of the continuous ones.

Summary

1) Laguerre diagrams provide a very suitable and efficient tool for discretizing :

Optimal transport \longmapsto physics

Monge-Ampère type PDEs
Generated jacobian equations

2) The discretized problems inherit many (geometric) features of the continuous ones.
3) Geometric inference for probability measures in $\mathbb{R}^{T \times N \times d}$ (e.g. dimension estimation). could provide insight on Brenier's generalized geodesics (fractal behavior?).

Summary

1) Laguerre diagrams provide a very suitable and efficient tool for discretizing :

Monge-Ampère type PDEs
Generated jacobian equations

2) The discretized problems inherit many (geometric) features of the continuous ones.
3) Geometric inference for probability measures in $\mathbb{R}^{T \times N \times d}$ (e.g. dimension estimation). could provide insight on Brenier's generalized geodesics (fractal behavior?).

Thank you for your attention!

