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Overview

1. Optimal transport & Laguerre diagrams

2. First application: non-imaging optics

3. Second application: enforcing incompressibility
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1. Optimal transport & Laguerre diagrams
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Optimal transport

Data: ρ = prob density on X ν probability meas. on Y

Y
X
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Optimal transport

Data: ρ = prob density on X ν probability meas. on Y

Y
X

Think of ρ, ν as describing piles of sand, made of many grains.

Assume that moving a grain with mass dm from x to y costs c(x, y)dm.

Optimal transport problem: what is the cheapest way of moving ρ to ν ?
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Optimal transport

Data: ρ = prob density on X ν probability meas. on Y

T : X → Y Y
T−1(B)X

T is a transport map (written T#ρ = ν) if for all B ⊆ Y, ρ(T−1(B)) = ν(B)

B
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Optimal transport

Data: ρ = prob density on X ν probability meas. on Y

T : X → Y Y
T−1(B)X

T is a transport map (written T#ρ = ν) if for all B ⊆ Y, ρ(T−1(B)) = ν(B)

B

Optimal transport problem: minimize
∫
X
c(x, T (x)) d ρ(x) where T#ρ = ν
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Optimal transport

Data: ρ = prob density on X ν probability meas. on Y

T : X → Y Y
T−1(B)X

T is a transport map (written T#ρ = ν) if for all B ⊆ Y, ρ(T−1(B)) = ν(B)

B

Optimal transport problem: minimize
∫
X
c(x, T (x)) d ρ(x) where T#ρ = ν

Many applications:

computer graphics, machine learning, inverse problems, etc.

PDEs, functional inequalities, probabilities,

# articles containing ”OT”
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Computational optimal transport

Hungarian algorithm

linear programming

Discrete source and targetαi βj

Sinkhorn/IPFP



5

Computational optimal transport

Hungarian algorithm

linear programming

Discrete source and targetαi βj

Source and target with density:

dynamic (Benamou-Brenier) formulation

finite-differences for Monge-Ampère

Sinkhorn/IPFP
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Computational optimal transport

Hungarian algorithm

linear programming

Discrete source and targetαi βj

Source with density, discrete target:

Source and target with density:

dynamic (Benamou-Brenier) formulation

finite-differences for Monge-Ampère

Minkowski, Alexandrov, etc.

Sinkhorn/IPFP
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Computational optimal transport

Hungarian algorithm

linear programming

Discrete source and targetαi βj

Source with density, discrete target:

Source and target with density:

dynamic (Benamou-Brenier) formulation

finite-differences for Monge-Ampère

Flexibility for the cost function but computationally expensive

Computationally efficient but restricted to ”geometric” cost functions.

Minkowski, Alexandrov, etc.

Sinkhorn/IPFP
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Computational optimal transport

Hungarian algorithm

linear programming

Discrete source and targetαi βj

Source with density, discrete target:

Source and target with density:

dynamic (Benamou-Brenier) formulation

finite-differences for Monge-Ampère

Minkowski, Alexandrov, etc.

”semi-discrete optimal transport”

Sinkhorn/IPFP
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Semi-discrete optimal transport

Data: ρ = prob density on X ν =
∑
y∈Y νyδy prob. on finite Y

Y

X
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Semi-discrete optimal transport

Data: ρ = prob density on X ν =
∑
y∈Y νyδy prob. on finite Y

y

T : X → Y

Y

T−1(y)X

T is a transport map if for every y ∈ Y, ρ(T−1({y})) = νy (capacity constraint)
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Semi-discrete optimal transport

Data: ρ = prob density on X ν =
∑
y∈Y νyδy prob. on finite Y

y

T : X → Y

Y

T−1(y)X

T is a transport map if for every y ∈ Y, ρ(T−1({y})) = νy (capacity constraint)

The set of transport maps is huge (⊆ measurable partitions of X) . . .
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Semi-discrete optimal transport

Data: ρ = prob density on X ν =
∑
y∈Y νyδy prob. on finite Y

y

T : X → Y

Y

T−1(y)X

T is a transport map if for every y ∈ Y, ρ(T−1({y})) = νy (capacity constraint)

The set of transport maps is huge (⊆ measurable partitions of X) . . .

. . . but fortunately optimal maps form a much smaller (finite-dimensional) set.
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Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, y) := ‖x− y‖2 cost of walking from x to y
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Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, y) := ‖x− y‖2 cost of walking from x to y

Vor(y) = {x ∈ X;∀z ∈ Y, c(x, y) ≤ c(x, z)}

I If the price of bread is uniform, people go the closest bakery:
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Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, y) := ‖x− y‖2 cost of walking from x to y

y0

Vor(y) = {x ∈ X;∀z ∈ Y, c(x, y) ≤ c(x, z)}

I If the price of bread is uniform, people go the closest bakery:

Minimizes total distance walked . . . but might exceed the capacity of bakery y0!
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Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, y) := ‖x− y‖2 cost of walking from x to y

I If prices are given by ψ : Y → R, people make a compromise:

Lagψ(y) = {x ∈ X;∀z ∈ Y, c(x, y) + ψ(y) ≤ c(x, z) + ψ(z)}

Y

X
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Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, y) := ‖x− y‖2 cost of walking from x to y

I If prices are given by ψ : Y → R, people make a compromise:

Lagψ(y) = {x ∈ X;∀z ∈ Y, c(x, y) + ψ(y) ≤ c(x, z) + ψ(z)}

Y

X

Solving optimal transport between ρ and
∑
y νyδy ⇐⇒ Finding ψ

Lemma: The Laguerre diagram induces an optimal transport between ρ and

νψ :=
∑
y∈Y ρ(Lagy(ψ))δy

x
Tψ(x)



8

Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =
∑
Y νyδy

⇐⇒ finding prices ψ on Y such that νψ = ν [Gangbo McCann ’96]
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Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =
∑
Y νyδy

⇐⇒ finding prices ψ on Y such that νψ = ν

I Coordinate-wise increments O(N
3

ε log(N)). [Oliker–Prussner ’99]

[Gangbo McCann ’96]
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Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =
∑
Y νyδy

⇐⇒ finding prices ψ on Y such that νψ = ν

⇐⇒ maximizing the concave function Φ [Aurenhammer, Hoffman, Aronov ’98]

Φ(ψ) :=
∑
y

∫
Lagy(ψ)

[c(x, y) + ψ(y)] d ρ(x)−
∑
y ψ(y)νy

I Coordinate-wise increments O(N
3

ε log(N)). [Oliker–Prussner ’99]

[Gangbo McCann ’96]
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Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =
∑
Y νyδy

⇐⇒ finding prices ψ on Y such that νψ = ν

⇐⇒ maximizing the concave function Φ [Aurenhammer, Hoffman, Aronov ’98]

Φ(ψ) :=
∑
y

∫
Lagy(ψ)

[c(x, y) + ψ(y)] d ρ(x)−
∑
y ψ(y)νy

I First variational approaches, without convergence analysis

I Coordinate-wise increments O(N
3

ε log(N)). [Oliker–Prussner ’99]

[Gangbo McCann ’96]

[M. 11], [de Goes et al 12], [Lévy 15]
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Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =
∑
Y νyδy

⇐⇒ finding prices ψ on Y such that νψ = ν

⇐⇒ maximizing the concave function Φ [Aurenhammer, Hoffman, Aronov ’98]

Φ(ψ) :=
∑
y

∫
Lagy(ψ)

[c(x, y) + ψ(y)] d ρ(x)−
∑
y ψ(y)νy

I First variational approaches, without convergence analysis

I Coordinate-wise increments O(N
3

ε log(N)). [Oliker–Prussner ’99]

[Gangbo McCann ’96]

under (rather) general assumptions on ρ and c. [Kitagawa, M., Thibert 16]

I Damped Newton’s algorithm, with global linear convergence,

[M. 11], [de Goes et al 12], [Lévy 15]
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Numerical example 1

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1
N

∑
1≤i≤N δyi with yi uniform i.i.d. in [0, 1]2

ε0 ' 0.05

Voronoi diagram
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Numerical example 1

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1
N

∑
1≤i≤N δyi with yi uniform i.i.d. in [0, 1]2

too much mass
too little mass

ε0 ' 0.05

Voronoi diagram

Where εk :=
∑
i |ρ(Lagi(ψk))− 1

N | is the amount of misallocated mass.



9

Numerical example 1

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1
N

∑
1≤i≤N δyi with yi uniform i.i.d. in [0, 1]2

ε0 ' 0.05

Voronoi diagram Laguerre diagram

Cost: c(x, y) = ‖x− y‖2

ψ1 = Newt(ψ0)

Where εk :=
∑
i |ρ(Lagi(ψk))− 1

N | is the amount of misallocated mass.

ε1 ' 0.007
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Numerical example 1

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1
N

∑
1≤i≤N δyi with yi uniform i.i.d. in [0, 1]2

ε0 ' 0.05

Voronoi diagram Laguerre diagram

Cost: c(x, y) = ‖x− y‖2

ψ1 = Newt(ψ0) ψ2 = Newt(ψ1)

Laguerre diagram

Where εk :=
∑
i |ρ(Lagi(ψk))− 1

N | is the amount of misallocated mass.

ε1 ' 0.007 ε2 ' 10−9
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Numerical example 2

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1
N

∑
1≤i≤N δyi with yi uniform i.i.d. in [0, 13 ]2

ε0 ' 0.48

Voronoi diagram

Cost: c(x, y) = ‖x− y‖2
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Numerical example 2

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1
N

∑
1≤i≤N δyi with yi uniform i.i.d. in [0, 13 ]2

ε0 ' 0.48

Voronoi diagram Laguerre diagram

Cost: c(x, y) = ‖x− y‖2

ψ1 = Newt(ψ0)

ε1 ' 0.024

NB: The points do not move.
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Numerical example 2

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1
N

∑
1≤i≤N δyi with yi uniform i.i.d. in [0, 13 ]2

ε0 ' 0.48

Voronoi diagram Laguerre diagram

Cost: c(x, y) = ‖x− y‖2

ψ1 = Newt(ψ0) ψ2 = Newt(ψ1)

Laguerre diagram

ε1 ' 0.024 ε2 ' 10−6

NB: The points do not move.
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Numerical example 2

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1
N

∑
1≤i≤N δyi with yi uniform i.i.d. in [0, 13 ]2

ε0 ' 0.48

Voronoi diagram Laguerre diagram

Cost: c(x, y) = ‖x− y‖2

ψ1 = Newt(ψ0) ψ2 = Newt(ψ1)

Laguerre diagram

ε1 ' 0.024 ε2 ' 10−6

Laguerre diagrams are able to encode an actual transport of mass (large movement).

NB: The points do not move.
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2. First application: non-imaging optics
Joint works with J. Kitawaga, P. Machado, J. Meyron and B. Thibert
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(Point source) Inverse Reflector Problem

point light source := ρ ∈ Probac(S20 )

light distribution after reflection : TS#ρ ∈ Prob(S2∞)

Forward problem:

surface S

raytracing

Input

Output

0

S20

S

TS(x) ∈ S2
∞

x
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(Point source) Inverse Reflector Problem

point light source := ρ ∈ Probac(S20 )

light distribution after reflection : TS#ρ ∈ Prob(S2∞)

Inverse problem:

Forward problem:

surface S

raytracing

source: ρ ∈ Probac(S20 )

target: ν ∈ Prob(S2∞)
surface S s.t. TS#ρ = ν

Input

Output

Output
Input

??

0

S20

S

TS(x) ∈ S2
∞

x
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(Point source) Inverse Reflector Problem

point light source := ρ ∈ Probac(S20 )

light distribution after reflection : TS#ρ ∈ Prob(S2∞)

Inverse problem:

Forward problem:

surface S

raytracing

source: ρ ∈ Probac(S20 )

target: ν ∈ Prob(S2∞)
surface S s.t. TS#ρ = ν

Input

Output

Output
Input

??

−→ Optical components for car beams, public lighting, hydroponic agriculture

0

S20

S

TS(x) ∈ S2
∞

x
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(Point source) Inverse Reflector Problem

point light source := ρ ∈ Probac(S20 )

light distribution after reflection : TS#ρ ∈ Prob(S2∞)

Inverse problem:

Forward problem:

surface S

raytracing

source: ρ ∈ Probac(S20 )

target: ν ∈ Prob(S2∞)
surface S s.t. TS#ρ = ν

Input

Output

Output
Input

??

−→ Optical components for car beams, public lighting, hydroponic agriculture

0

S20

S

TS(x) ∈ S2
∞

x

−→ Zoology of similar optics problems: collimated source, lenses, near field targed...
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Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=
∑
y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

towards y ∈ S2
∞
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Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=
∑
y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

S

S := surface = ∂ (∩yPy(κy))

towards y ∈ S2
∞
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Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=
∑
y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

S

ρ(Vy(κ)) = amount of light reflected towards y ∈ S2∞.

S := surface = ∂ (∩yPy(κy))

towards y ∈ S2
∞
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Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=
∑
y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

S

ρ(Vy(κ)) = amount of light reflected towards y ∈ S2∞.

−→ Can be adjusted by playing with focal distance κy

S := surface = ∂ (∩yPy(κy))

towards y ∈ S2
∞
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Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=
∑
y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

S

ρ(Vy(κ)) = amount of light reflected towards y ∈ S2∞.

−→ Can be adjusted by playing with focal distance κy

−→ Focal distance ' prices in the economic example

S := surface = ∂ (∩yPy(κy))

towards y ∈ S2
∞
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Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=
∑
y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

S

ρ(Vy(κ)) = amount of light reflected towards y ∈ S2∞.

−→ Can be adjusted by playing with focal distance κy

−→ Focal distance ' prices in the economic example

and, indeed, Vy(κ) is a Laguerre cell !

and c(x, y) = − log(1− 〈x|y〉)
Vy(κ) = Lagy(ψ) for ψ(y) = log(κy)

S := surface = ∂ (∩yPy(κy))

towards y ∈ S2
∞
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Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=
∑
y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

S

ρ(Vy(κ)) = amount of light reflected towards y ∈ S2∞.

Theorem: Semidiscrete Inverse Reflector Problem

⇐⇒ semidiscrete OT problem on S2 for c(x, y) = − log(1− 〈x|y〉)

−→ Can be adjusted by playing with focal distance κy

−→ Focal distance ' prices in the economic example

and, indeed, Vy(κ) is a Laguerre cell !

and c(x, y) = − log(1− 〈x|y〉)
Vy(κ) = Lagy(ψ) for ψ(y) = log(κy)

S := surface = ∂ (∩yPy(κy))

towards y ∈ S2
∞

' [Glimm-Oliker ’03] [Wang ’04]
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Numerics 1

ν =
∑N
i=1 νiδyi = discretization of a picture of G. Monge.

ρ = uniform measure on half-sphere X := S2
+ N = 1000

drawing of (Lagψ(yi)) on S2
+ for ψ = 0

[Machado, M., Thibert ’14]
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Numerics 1

ν =
∑N
i=1 νiδyi = discretization of a picture of G. Monge.

ρ = uniform measure on half-sphere X := S2
+ N = 1000

drawing of (Lagψ(yi)) on S2
+ for ψsol

[Machado, M., Thibert ’14]
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Numerics 1

ν =
∑N
i=1 νiδyi = discretization of a picture of G. Monge.

ρ = uniform measure on half-sphere X := S2
+ N = 1000

reflected image (using LuxRender)

[Machado, M., Thibert ’14]



14

Numerics 1

ν =
∑N
i=1 νiδyi = discretization of a picture of G. Monge.

ρ = uniform measure on half-sphere X := S2
+ N = 1000

constructed reflector

[Machado, M., Thibert ’14]
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Numerics 2

drawing of (Lagψ(yi)) on S2
+ for ψsol

ν =
∑N
i=1 νiδyi = discretization of a picture of G. Monge.

ρ = uniform measure on half-sphere X := S2
+ N = 15000

[Machado, M., Thibert ’14]
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Numerics 2

reflected image (using LuxRender)

ν =
∑N
i=1 νiδyi = discretization of a picture of G. Monge.

ρ = uniform measure on half-sphere X := S2
+ N = 15000

[Machado, M., Thibert ’14]
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Numerics 3

ν =
∑N
i=1 νiδyi = discretization of the ”Cameraman” picture

ρ = non-uniform measure on half-sphere X := S2
+ N = 250k

[Meyron, M., Thibert ’17]

Desired target ν
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Numerics 3

ν =
∑N
i=1 νiδyi = discretization of the ”Cameraman” picture

ρ = non-uniform measure on half-sphere X := S2
+ N = 250k

[Meyron, M., Thibert ’17]

Constructed reflector
color = mean curvature
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Numerics 3

ν =
∑N
i=1 νiδyi = discretization of the ”Cameraman” picture

ρ = non-uniform measure on half-sphere X := S2
+ N = 250k

[Meyron, M., Thibert ’17]

Constructed reflector
color = mean curvature

Resimulated image
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Damped Newton’s Algorithm

Recall: G : ψ ∈ RY 7→ (ρ(Lagy(ψ)))y∈Y RY .

Admissible domain: Eε := {ψ ∈ RY | ∀y ∈ Y,Gy(ψ) ≥ ε}

ρ(Lagψ(y)) ≥ ε
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Damped Newton’s Algorithm

Damped Newton algorithm: for solving G(ψ) = ν

Recall: G : ψ ∈ RY 7→ (ρ(Lagy(ψ)))y∈Y RY .

Input: ψ0 ∈ Y R s.t. ε := 1
2 miny∈Y min(Gy(ψ0), νy) > 0

Admissible domain: Eε := {ψ ∈ RY | ∀y ∈ Y,Gy(ψ) ≥ ε}

ρ(Lagψ(y)) ≥ ε
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Damped Newton’s Algorithm

Loop: −→ Compute Newton point: −DG(ψk)−1(G(ψk)− ν)

Damped Newton algorithm: for solving G(ψ) = ν

Recall: G : ψ ∈ RY 7→ (ρ(Lagy(ψ)))y∈Y RY .

−→ Backtrack so that ψk+1 ∈ Eε + sufficient decrease cond.

Input: ψ0 ∈ Y R s.t. ε := 1
2 miny∈Y min(Gy(ψ0), νy) > 0

Admissible domain: Eε := {ψ ∈ RY | ∀y ∈ Y,Gy(ψ) ≥ ε}

ρ(Lagψ(y)) ≥ ε
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Damped Newton’s Algorithm

Loop: −→ Compute Newton point: −DG(ψk)−1(G(ψk)− ν)

Damped Newton algorithm: for solving G(ψ) = ν

Proposition: The algorithm converges globally with linear rate provided:

(Strong monotonicity): for all ψ ∈ Eε, DG is negative definite on {cst}⊥

Recall: G : ψ ∈ RY 7→ (ρ(Lagy(ψ)))y∈Y RY .

−→ Backtrack so that ψk+1 ∈ Eε + sufficient decrease cond.

Input: ψ0 ∈ Y R s.t. ε := 1
2 miny∈Y min(Gy(ψ0), νy) > 0

Admissible domain: Eε := {ψ ∈ RY | ∀y ∈ Y,Gy(ψ) ≥ ε}

ρ(Lagψ(y)) ≥ ε
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Damped Newton’s Algorithm

Loop: −→ Compute Newton point: −DG(ψk)−1(G(ψk)− ν)

Damped Newton algorithm: for solving G(ψ) = ν

Proposition: The algorithm converges globally with linear rate provided:

(Strong monotonicity): for all ψ ∈ Eε, DG is negative definite on {cst}⊥

(Smoothness): G is C1 on Eε

Recall: G : ψ ∈ RY 7→ (ρ(Lagy(ψ)))y∈Y RY .

−→ Backtrack so that ψk+1 ∈ Eε + sufficient decrease cond.

Input: ψ0 ∈ Y R s.t. ε := 1
2 miny∈Y min(Gy(ψ0), νy) > 0

Admissible domain: Eε := {ψ ∈ RY | ∀y ∈ Y,Gy(ψ) ≥ ε}

ρ(Lagψ(y)) ≥ ε
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Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rate
and locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]
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Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rate
and locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

(Strong monotonicity of G):

(y, z) ∈ H ⇐⇒ Lzy > 0

I Consider the matrix (Lyz) :=
(
∂Gy

∂1z
(ψ)
)

and the graph H:

. . . recall that Gy(ψ) = ρ(Lagy(ψ)) . . .
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Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rate
and locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

(Strong monotonicity of G):

(y, z) ∈ H ⇐⇒ Lzy > 0

I Consider the matrix (Lyz) :=
(
∂Gy

∂1z
(ψ)
)

and the graph H:

I H = 1-skeleton of (Lagy(ψ) ∩ {ρ > 0})y∈Y

. . . recall that Gy(ψ) = ρ(Lagy(ψ)) . . .
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Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rate
and locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

(Strong monotonicity of G):

(y, z) ∈ H ⇐⇒ Lzy > 0

I Consider the matrix (Lyz) :=
(
∂Gy

∂1z
(ψ)
)

and the graph H:

I If {ρ > 0} is connected and ψ ∈ Eε, then H is connected

I H = 1-skeleton of (Lagy(ψ) ∩ {ρ > 0})y∈Y

. . . recall that Gy(ψ) = ρ(Lagy(ψ)) . . .
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. . . recall that Gy(ψ) = ρ(Lagy(ψ)) . . .
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ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rate
and locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:

Loeper’s condition: there exists expcy : Rd → X diffeo. s.t. ∀ψ and y

Lagψ(y) ⊆ X
[expcy]−1(Lagψ(y)) ⊆ Rd

is convex
expcy

−→ Restrictive condition, which fortunately is satisfied for the reflector problem.

−→ Loeper’s condition originates from regularity theory for OT...
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3. Second application: enforcing incompressibility
Joint work with J.M. Mirebeau
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Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in

SDiff = {volume-preserving diffeo. from X to X} ⊆ E := L2(X,Rd)
[Arnold ’66]
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I Discretization: N = number of particles, T = number of timesteps

At time i, the particles are at positions mi := (M1
i , . . . ,M

N
i ) ∈ RNd.

action incompressibilityboundary conditions

min
m0,...,mT∈RNd

T

2

T−1∑
i=0

‖mi+1 −mi‖22 + λ
(
‖m0 − s∗‖22 + ‖mT − s∗‖22 + ???

)

inf

{∫ 1

0

‖s′(t)‖2E d t | s : [0, 1]→ SDiff, s0 = s∗, s1 = s∗
}

A point cloud cannot be exactly incompressible =⇒ penalization using optimal transport.

−→ theory of generalized geodesics
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Distance to incompressible maps

where ρ is uniform on X and c(x, y) = ‖x− y‖2.

Definition: Given m = (M1, . . . ,MN ) ∈ RNd, we define

d2
S(m) = min. transport cost between ρ and ν =

1

N

N∑
k=1

δMk
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From particles to paths

I Time-discretization of geodesic with endpoints s∗, s
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d2
S(mi)

)

t = 0 t = 1

γk

−→ One can associate to m a probability measure

ti = i
T

µm := 1
N

∑N
k=1 δγk ∈ Prob(C0([0, 1],Rd))

over the set of C0 paths:

−→ Under suitable hypotheses, minimizers of the
discrete problem converge to a so-called

generalized minimizing geodesic,

µ ∈ Prob(C0([0, 1],Rd)).
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Numerical result: Inversion of the Disk
X = B(0, 1) ⊆ R2 (s∗, s

∗) = (id,−id)

Classical solutions: clockwise/counterclockwise rotations µ±

linear combination µ 1
2

of µ± constructed from rotations

Examples of generalized solutions:

NB: dim(spt(µ 1
2
)) = 2
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X = B(0, 1) ⊆ R2

spt(µ) = {t 7→ x cos(πt) + v sin(πt) ∈ C0([0, 1], X);

(s∗, s
∗) = (id,−id)

Brenier’s generalized solution: µ ∈ Prob(Γ):

(x, v) ∈ X × R2, ‖v‖2 = 1− ‖x‖2}
t = 0

t = 1
2

t = 1

Computed trajectories for N = 105, T = 17

−→ non-deterministic solution, dim(spt(µ)) = 3
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Numerical result: Beltrami Flow in Square

forward
simulation

reconstructed
generalized

geodesics

s∗ s∗
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Numerical result: Comparison of Trajectories

Square, tmax = 1.5

Disk inversion
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Comparison of Minkowski dimensions

Disk inversionSquare rotation, tmax ∈ {0.9, 1.1, 1.3, 1.5}

dim = 2

dim = 3

Estimation of dim(spt(µ)) via log(N)/ log(1/δN )

where δN = minimum radius required to cover spt(µ) with N balls.
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Thank you for your attention!


