Computational geometry, optimal transport and applications

Quentin Mérigot / Université Paris-Sud

Joint works with Thomas Gallouët, Jun Kitagawa, Pedro Machado, Jocelyn Meyron, Jean-Marie Mirebeau, Boris Thibert

Geometric Understand in Higher Dimension / 8 Juin 2017 / Collège de France

Optimal transport & Laguerre diagrams
 First application: non-imaging optics
 Second application: enforcing incompressibility

1. Optimal transport & Laguerre diagrams

Data: ρ = prob density on *X*

u probability meas. on Y

Think of ρ , ν as describing piles of sand, made of many grains. Assume that moving a grain with mass dm from x to y costs c(x, y)dm.

Optimal transport problem: what is the cheapest way of moving ρ to ν ?

Data: ρ = prob density on *X*

u probability meas. on Y

T is a transport map (written $T_{\#}\rho = \nu$) if for all $B \subseteq Y$, $\rho(T^{-1}(B)) = \nu(B)$

Data: ρ = prob density on *X*

u probability meas. on Y

T is a transport map (written $T_{\#}\rho = \nu$) if for all $B \subseteq Y$, $\rho(T^{-1}(B)) = \nu(B)$

Optimal transport problem: minimize $\int_X c(x, T(x)) d\rho(x)$ where $T_{\#}\rho = \nu$

Data: ρ = prob density on *X*

u probability meas. on Y

T is a transport map (written $T_{\#}\rho = \nu$) if for all $B \subseteq Y$, $\rho(T^{-1}(B)) = \nu(B)$

Optimal transport problem: minimize $\int_X c(x, T(x)) d\rho(x)$ where $T_{\#}\rho = \nu$

Many applications:

PDEs, functional inequalities, probabilities, computer graphics, machine learning, inverse problems, etc.

Discrete source and target linear programming Hungarian algorithm Sinkhorn/IPFP

Discrete source and target linear programming Hungarian algorithm Sinkhorn/IPFP

Source and target with density: dynamic (Benamou-Brenier) formulation finite-differences for Monge-Ampère

Discrete source and target linear programming Hungarian algorithm Sinkhorn/IPFP

Source and target with density: dynamic (Benamou-Brenier) formulation finite-differences for Monge-Ampère

Source with density, discrete target: Minkowski, Alexandrov, etc.

Flexibility for the cost function **but** computationally expensive

Computationally efficient **but** restricted to "geometric" cost functions.

Discrete source and target linear programming Hungarian algorithm Sinkhorn/IPFP

Source and target with density: dynamic (Benamou-Brenier) formulation finite-differences for Monge-Ampère

Source with density, discrete target: Minkowski, Alexandrov, etc.

"semi-discrete optimal transport"

Data: ρ = prob density on *X*

 $u = \sum_{y \in Y}
u_y \delta_y$ prob. on finite Y

Data: ρ = prob density on X

 $u = \sum_{y \in Y} \nu_y \delta_y$ prob. on finite Y

T is a transport map if for every $y \in Y$, $\rho(T^{-1}(\{y\})) = \nu_y$ (capacity constraint)

Data: ρ = prob density on X

 $u = \sum_{y \in Y} \nu_y \delta_y$ prob. on finite Y

T is a transport map if for every $y \in Y$, $\rho(T^{-1}(\{y\})) = \nu_y$ (capacity constraint)

The set of transport maps is **huge** (\subseteq measurable partitions of X) ...

Data: ρ = prob density on X

 $u = \sum_{y \in Y} \nu_y \delta_y$ prob. on finite Y

T is a transport map if for every $y \in Y$, $\rho(T^{-1}(\{y\})) = \nu_y$ (capacity constraint)

The set of transport maps is **huge** (\subseteq measurable partitions of X) ...

but fortunately optimal maps form a much smaller (finite-dimensional) set.

► If the price of bread is uniform, people go the closest bakery:

$$Vor(y) = \{ x \in X; \forall z \in Y, \ c(x, y) \le c(x, z) \}$$

If the price of bread is uniform, people go the closest bakery:

$$Vor(y) = \{ x \in X; \forall z \in Y, \ c(x,y) \le c(x,z) \}$$

Minimizes total distance walked ... but might exceed the capacity of bakery $y_0!$

▶ If prices are given by $\psi: Y \to \mathbb{R}$, people make a compromise:

$$\operatorname{Lag}_{\psi}(y) = \{ x \in X; \forall z \in Y, \ c(x, y) + \psi(y) \le c(x, z) + \psi(z) \}$$

▶ If prices are given by $\psi: Y \to \mathbb{R}$, people make a compromise:

$$\operatorname{Lag}_{\psi}(y) = \{ x \in X; \forall z \in Y, \ c(x, y) + \psi(y) \le c(x, z) + \psi(z) \}$$

Lemma: The Laguerre diagram induces an **optimal transport** between ρ and $\nu_{\psi} := \sum_{y \in Y} \rho(\operatorname{Lag}_{y}(\psi)) \delta_{y}$

Theorem: Finding an **optimal transport** between ρ and $\nu = \sum_{Y} \nu_y \delta_y$

 \iff finding **prices** ψ on Y such that $\nu_{\psi} = \nu$

[Gangbo McCann '96]

Theorem: Finding an **optimal transport** between ρ and $\nu = \sum_{Y} \nu_y \delta_y$

 \iff finding **prices** ψ on Y such that $\nu_{\psi} = \nu$

[Gangbo McCann '96]

• Coordinate-wise increments $O(\frac{N^3}{\varepsilon} \log(N))$.

[Oliker–Prussner '99]

Theorem: Finding an **optimal transport** between ρ and $\nu = \sum_{Y} \nu_y \delta_y$

 \iff finding **prices** ψ on Y such that $\nu_{\psi} = \nu$ [Gangbo McCann '96]

 \iff maximizing the **concave** function Φ [Aurenhammer, Hoffman, Aronov '98]

 $\Phi(\psi) := \sum_{y} \int_{\operatorname{Lag}_{y}(\psi)} [c(x, y) + \psi(y)] \, \mathrm{d} \, \rho(x) - \sum_{y} \psi(y) \nu_{y}$

• Coordinate-wise increments $O(\frac{N^3}{\varepsilon} \log(N))$.

[Oliker–Prussner '99]

Theorem: Finding an **optimal transport** between ρ and $\nu = \sum_{Y} \nu_y \delta_y$

 \iff finding **prices** ψ on Y such that $\nu_{\psi} = \nu$ [Gangbo McCann '96]

 \iff maximizing the **concave** function Φ [Aurenhammer, Hoffman, Aronov '98]

 $\Phi(\psi) := \sum_{y} \int_{\operatorname{Lag}_{y}(\psi)} [c(x, y) + \psi(y)] d\rho(x) - \sum_{y} \psi(y)\nu_{y}$

• Coordinate-wise increments $O(\frac{N^3}{\varepsilon} \log(N))$. [Oliker–Prussner '99]

First variational approaches, without convergence analysis
[M 11] [de Goes

[M. 11], [de Goes *et al* 12], [Lévy 15]

Theorem: Finding an **optimal transport** between ρ and $\nu = \sum_{Y} \nu_y \delta_y$

 \iff finding **prices** ψ on Y such that $\nu_{\psi} = \nu$ [Gangbo McCann '96]

 \iff maximizing the **concave** function Φ [Aurenhammer, Hoffman, Aronov '98]

 $\Phi(\psi) := \sum_{y} \int_{\operatorname{Lag}_{y}(\psi)} [c(x, y) + \psi(y)] d\rho(x) - \sum_{y} \psi(y)\nu_{y}$

• Coordinate-wise increments $O(\frac{N^3}{\varepsilon} \log(N))$. [Oliker–Prussner '99]

First variational approaches, without convergence analysis [M. 11], [de Goes *et al* 12], [Lévy 15]

Damped Newton's algorithm, with global linear convergence, under (rather) general assumptions on ρ and c. [Kitagawa, M., Thibert 16]

Source: $\rho = \text{uniform on } [0,1]^2$,

Target: $\nu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0, 1]^2$

Voronoi diagram

 $\psi_0 = 0$ $\varepsilon_0 \simeq 0.05$

Source: $\rho =$ uniform on $[0, 1]^2$,

Target: $\nu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0, 1]^2$

Voronoi diagram

 $\psi_0 = 0$ $\varepsilon_0 \simeq 0.05$

Where $\varepsilon_k := \sum_i |\rho(\text{Lag}_i(\psi_k)) - \frac{1}{N}|$ is the amount of misallocated mass.

Source: $\rho =$ uniform on $[0, 1]^2$, **Cost:** $c(x, y) = ||x - y||^2$ **Target:** $\nu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0, 1]^2$

Voronoi diagram

Laguerre diagram

 $\psi_0 = 0$ $\varepsilon_0 \simeq 0.05$

Where $\varepsilon_k := \sum_i |\rho(\text{Lag}_i(\psi_k)) - \frac{1}{N}|$ is the amount of misallocated mass.

Source: $\rho = \text{uniform on } [0,1]^2$, Target: $\nu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0,1]^2$

Voronoi diagram

Laguerre diagram

Laguerre diagram

 $\psi_0 = 0$ $\varepsilon_0 \simeq 0.05$

 $\psi_1 = \operatorname{Newt}(\psi_0)$ $\varepsilon_1 \simeq 0.007$

 $\psi_2 = \operatorname{Newt}(\psi_1)$ $\varepsilon_2 \simeq 10^{-9}$

Where $\varepsilon_k := \sum_i |\rho(\text{Lag}_i(\psi_k)) - \frac{1}{N}|$ is the amount of misallocated mass.

Source: $\rho = \text{uniform on } [0,1]^2$, Target: $\nu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0,\frac{1}{3}]^2$

Voronoi diagram

$$\psi_0 = 0$$
$$\varepsilon_0 \simeq 0.48$$

Source: $\rho = \text{uniform on } [0,1]^2$, Target: $\nu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0,\frac{1}{3}]^2$

Laguerre diagram

 $\psi_0 = 0$ $\varepsilon_0 \simeq 0.48$

 $\varepsilon_1 \simeq 0.024$

 $\psi_1 = \operatorname{Newt}(\psi_0)$

NB: The points do **not** move.

Source: $\rho = \text{uniform on } [0,1]^2$, Target: $\nu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0,\frac{1}{3}]^2$

Voronoi diagram

 $\psi_0 = 0$ $\varepsilon_0 \simeq 0.48$

Laguerre diagram

 $\psi_1 = \operatorname{Newt}(\psi_0)$

 $\varepsilon_1 \simeq 0.024$

NB: The points do **not** move.

Laguerre diagram

 $\psi_2 = \operatorname{Newt}(\psi_1)$ $\varepsilon_2 \simeq 10^{-6}$

Source: $\rho =$ uniform on $[0,1]^2$, Target: $\nu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{y_i}$ with y_i uniform i.i.d. in $[0,\frac{1}{3}]^2$

Laguerre diagrams are able to encode an actual *transport* of mass (large movement).

2. First application: non-imaging optics

Joint works with J. Kitawaga, P. Machado, J. Meyron and B. Thibert

Forward problem:

 \rightarrow Optical components for car beams, public lighting, hydroponic agriculture

 \longrightarrow Zoology of similar optics problems: collimated source, lenses, near field targed...

Assume $\nu := \sum_{y \in Y} \nu_y \delta_y$, and let $P_y(\kappa_y) :=$ solid paraboloid of revolution with focal 0, direction y and focal distance κ_y

Assume $\nu := \sum_{y \in Y} \nu_y \delta_y$, and let $P_y(\kappa_y) :=$ solid paraboloid of revolution with focal 0, direction y and focal distance κ_y

$$S := \text{surface} = \partial \left(\cap_y P_y(\kappa_y) \right)$$

Assume $\nu := \sum_{y \in Y} \nu_y \delta_y$, and let $P_y(\kappa_y) :=$ solid paraboloid of revolution with focal 0, direction y and focal distance κ_y

$$S := \operatorname{surface} = \partial \left(\cap_y P_y(\kappa_y) \right)$$

 $\rho(V_y(\kappa)) =$ amount of light reflected towards $y \in S^2_{\infty}$.

Assume $\nu := \sum_{y \in Y} \nu_y \delta_y$, and let $P_y(\kappa_y) :=$ solid paraboloid of revolution with focal 0, direction y and focal distance κ_y

$$S := \mathsf{surface} = \partial \left(\cap_y P_y(\kappa_y) \right)$$

 $\rho(V_y(\kappa)) = \text{amount of light reflected towards } y \in S^2_{\infty}.$ \longrightarrow Can be adjusted by playing with focal distance κ_y

Assume $\nu := \sum_{y \in Y} \nu_y \delta_y$, and let $P_y(\kappa_y) :=$ solid paraboloid of revolution with focal 0, direction y and focal distance κ_y

$$S := \mathsf{surface} = \partial \left(\cap_y P_y(\kappa_y) \right)$$

 $\rho(V_y(\kappa)) = \text{amount of light reflected towards } y \in S_{\infty}^2$. \longrightarrow Can be adjusted by playing with focal distance κ_y \longrightarrow Focal distance \simeq prices in the economic example

Assume $\nu := \sum_{y \in Y} \nu_y \delta_y$, and let $P_y(\kappa_y) :=$ solid paraboloid of revolution with focal 0, direction y and focal distance κ_y

$$S := \mathsf{surface} = \partial \left(\cap_y P_y(\kappa_y) \right)$$

$$\begin{split} \rho(V_y(\kappa)) &= \text{amount of light reflected towards } y \in \mathcal{S}_\infty^2. \\ & \longrightarrow \text{Can be adjusted by playing with focal distance } \kappa_y \\ & \longrightarrow \text{Focal distance} \simeq \text{prices in the economic example} \\ & \text{and, indeed, } V_y(\kappa) \text{ is a Laguerre cell } ! \end{split}$$

$$\begin{split} V_y(\kappa) &= \mathrm{Lag}_y(\psi) \text{ for } \psi(y) = \log(\kappa_y) \\ & \text{ and } c(x,y) = -\log(1 - \langle x | y \rangle) \end{split}$$

Assume $\nu := \sum_{y \in Y} \nu_y \delta_y$, and let $P_y(\kappa_y) :=$ solid paraboloid of revolution with focal 0, direction y and focal distance κ_y

Theorem: Semidiscrete Inverse Reflector Problem

 \iff semidiscrete OT problem on \mathcal{S}^2 for $c(x,y) = -\log(1 - \langle x|y \rangle)$

 \simeq [Glimm-Oliker '03] [Wang '04]

 $u = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ = discretization of a picture of G. Monge. [Machado, M., Thibert '14] $\rho =$ uniform measure on half-sphere $X := S_+^2$ N = 1000

drawing of $(Lag_{\psi}(y_i))$ on \mathcal{S}^2_+ for $\psi = 0$

 $u = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ = discretization of a picture of G. Monge. [Machado, M., Thibert '14] $\rho =$ uniform measure on half-sphere $X := S_+^2$ N = 1000

drawing of $(Lag_{\psi}(y_i))$ on \mathcal{S}^2_+ for ψ_{sol}

 $u = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ = discretization of a picture of G. Monge. [Machado, M., Thibert '14] $\rho =$ uniform measure on half-sphere $X := S_+^2$ N = 1000

reflected image (using LuxRender)

 $u = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ = discretization of a picture of G. Monge. [Machado, M., Thibert '14] $\rho =$ uniform measure on half-sphere $X := S_+^2$ N = 1000

 $u = \sum_{i=1}^{N} \nu_i \delta_{y_i} = \text{discretization of a picture of G. Monge.}$ [Machado, M., Thibert '14] $\rho = \text{uniform measure on half-sphere } X := S_+^2 \qquad N = 15000$

drawing of $(Lag_{\psi}(y_i))$ on \mathcal{S}^2_+ for ψ_{sol}

 $u = \sum_{i=1}^{N} \nu_i \delta_{y_i} = \text{discretization of a picture of G. Monge.}$ [Machado, M., Thibert '14] $\rho = \text{uniform measure on half-sphere } X := S_+^2 \qquad N = 15000$

reflected image (using LuxRender)

 $u = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ = discretization of the "Cameraman" picture [Meyron, M., Thibert '17] $\rho =$ non-uniform measure on half-sphere $X := S_+^2$ N = 250k

Desired target ν

 $u = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ = discretization of the "Cameraman" picture [Meyron, M., Thibert '17] $\rho =$ non-uniform measure on half-sphere $X := S_+^2$ N = 250k

Constructed reflector color = mean curvature

 $u = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ = discretization of the "Cameraman" picture [Meyron, M., Thibert '17] $\rho =$ non-uniform measure on half-sphere $X := S_+^2$ N = 250k

Constructed reflector color = mean curvature

Resimulated image

Recall: $G: \psi \in \mathbb{R}^Y \mapsto (\rho(\operatorname{Lag}_y(\psi)))_{y \in Y} \mathbb{R}^Y.$

Admissible domain: $E_{\varepsilon} := \{ \psi \in \mathbb{R}^Y \mid \forall y \in Y, G_y(\psi) \ge \varepsilon \}$

 $\rho(\operatorname{Lag}_{\psi}(y)) \geq \varepsilon -$

Recall: $G: \psi \in \mathbb{R}^Y \mapsto (\rho(\operatorname{Lag}_y(\psi)))_{y \in Y} \mathbb{R}^Y.$

Admissible domain: $E_{\varepsilon} := \{ \psi \in \mathbb{R}^Y \mid \forall y \in Y, G_y(\psi) \ge \varepsilon \}$

 $\rho(\operatorname{Lag}_{\psi}(y)) \geq \varepsilon -$

Damped Newton algorithm: for solving $G(\psi) = \nu$

Input: $\psi_0 \in Y^{\mathbb{R}}$ s.t. $\varepsilon := \frac{1}{2} \min_{y \in Y} \min(G_y(\psi_0), \nu_y) > 0$

Recall: $G: \psi \in \mathbb{R}^Y \mapsto (\rho(\operatorname{Lag}_y(\psi)))_{y \in Y} \mathbb{R}^Y.$

Admissible domain: $E_{\varepsilon} := \{ \psi \in \mathbb{R}^Y \mid \forall y \in Y, G_y(\psi) \ge \varepsilon \}$

 $\rho(\operatorname{Lag}_{\psi}(y)) \geq \varepsilon -$

Damped Newton algorithm: for solving $G(\psi) = \nu$

Input: $\psi_0 \in Y^{\mathbb{R}}$ s.t. $\varepsilon := \frac{1}{2} \min_{y \in Y} \min(G_y(\psi_0), \nu_y) > 0$

Loop: \longrightarrow Compute Newton point: $-DG(\psi_k)^{-1}(G(\psi_k) - \nu)$

 \longrightarrow Backtrack so that $\psi_{k+1} \in E_{\varepsilon}$ + sufficient decrease cond.

Recall: $G: \psi \in \mathbb{R}^Y \mapsto (\rho(\operatorname{Lag}_y(\psi)))_{y \in Y} \mathbb{R}^Y.$

Admissible domain: $E_{\varepsilon} := \{ \psi \in \mathbb{R}^Y \mid \forall y \in Y, G_y(\psi) \ge \varepsilon \}$

 $\rho(\operatorname{Lag}_{\psi}(y)) \geq \varepsilon -$

Damped Newton algorithm: for solving $G(\psi) = \nu$ **Input:** $\psi_0 \in Y^{\mathbb{R}}$ s.t. $\varepsilon := \frac{1}{2} \min_{y \in Y} \min(G_y(\psi_0), \nu_y) > 0$ **Loop:** \longrightarrow Compute Newton point: $-DG(\psi_k)^{-1}(G(\psi_k) - \nu)$ \longrightarrow Backtrack so that $\psi_{k+1} \in E_{\varepsilon}$ + sufficient decrease cond.

Proposition: The algorithm converges **globally** with linear rate provided: (Strong monotonicity): for all $\psi \in E_{\varepsilon}$, DG is negative definite on $\{cst\}^{\perp}$

Recall: $G: \psi \in \mathbb{R}^Y \mapsto (\rho(\operatorname{Lag}_y(\psi)))_{y \in Y} \mathbb{R}^Y.$

Admissible domain: $E_{\varepsilon} := \{ \psi \in \mathbb{R}^Y \mid \forall y \in Y, G_y(\psi) \ge \varepsilon \}$

 $\rho(\operatorname{Lag}_{\psi}(y)) \geq \varepsilon -$

Damped Newton algorithm: for solving $G(\psi) = \nu$ **Input:** $\psi_0 \in Y^{\mathbb{R}}$ s.t. $\varepsilon := \frac{1}{2} \min_{y \in Y} \min(G_y(\psi_0), \nu_y) > 0$ **Loop:** \longrightarrow Compute Newton point: $-DG(\psi_k)^{-1}(G(\psi_k) - \nu)$ \longrightarrow Backtrack so that $\psi_{k+1} \in E_{\varepsilon}$ + sufficient decrease cond.

Proposition: The algorithm converges **globally** with linear rate provided: (Strong monotonicity): for all $\psi \in E_{\varepsilon}$, DG is negative definite on $\{cst\}^{\perp}$ (Smoothness): G is C^1 on E_{ε}

Theorem: Let X be an hemisphere of S^2 . Assume that $Y \subset S^2 \setminus X$ and that $\rho \in C^{\alpha}(X)$ and $\{\rho > 0\}$ is connected

Then, the damped Newton algorithm for SD-OT converges **globally** with linear rate and locally with rate $(1 + \alpha)$. special case of [Kitagawa, M., Thibert '15]

Theorem: Let X be an hemisphere of S^2 . Assume that $Y \subset S^2 \setminus X$ and that $\rho \in C^{\alpha}(X)$ and $\{\rho > 0\}$ is connected Then, the damped Newton algorithm for SD-OT converges **globally** with linear rate

special case of [Kitagawa, M., Thibert '15]

(Strong monotonicity of G): ... re

and locally with rate $(1 + \alpha)$.

... recall that $G_y(\psi) = \rho(\operatorname{Lag}_y(\psi))$...

• Consider the matrix $(L_{yz}) := \left(\frac{\partial G_y}{\partial \mathbf{1}_z}(\psi)\right)$ and the graph H: $(y, z) \in H \iff L_{zy} > 0$

Theorem: Let X be an hemisphere of S^2 . Assume that $Y \subset S^2 \setminus X$ and that $\rho \in C^{\alpha}(X)$ and $\{\rho > 0\}$ is connected Then, the damped Newton algorithm for SD-OT converges **globally** with linear rate

special case of [Kitagawa, M., Thibert '15]

(Strong monotonicity of G):

and locally with rate $(1 + \alpha)$.

... recall that $G_y(\psi) = \rho(\operatorname{Lag}_y(\psi)) \ldots$

- Consider the matrix $(L_{yz}) := \left(\frac{\partial G_y}{\partial \mathbf{1}_z}(\psi)\right)$ and the graph H: $(y, z) \in H \iff L_{zy} > 0$
- ▶ H = 1-skeleton of $(Lag_y(\psi) \cap \{\rho > 0\})_{y \in Y}$

Theorem: Let X be an hemisphere of S^2 . Assume that $Y \subset S^2 \setminus X$ and that $\rho \in C^{\alpha}(X)$ and $\{\rho > 0\}$ is connected Then, the damped Newton algorithm for SD-OT converges **globally** with linear rate

special case of [Kitagawa, M., Thibert '15]

(Strong monotonicity of G): .

and locally with rate $(1 + \alpha)$.

... recall that $G_y(\psi) = \rho(\operatorname{Lag}_y(\psi))$...

- Consider the matrix $(L_{yz}) := \left(\frac{\partial G_y}{\partial \mathbf{1}_z}(\psi)\right)$ and the graph H: $(y, z) \in H \iff L_{zy} > 0$
- ▶ H = 1-skeleton of $(Lag_y(\psi) \cap \{\rho > 0\})_{y \in Y}$

▶ If $\{\rho > 0\}$ is connected and $\psi \in E_{\varepsilon}$, then H is connected

Theorem: Let X be an hemisphere of S^2 . Assume that $Y \subset S^2 \setminus X$ and that $\rho \in C^{\alpha}(X)$ and $\{\rho > 0\}$ is connected Then, the damped Newton algorithm for SD-OT converges **globally** with linear rate

special case of [Kitagawa, M., Thibert '15]

(Strong monotonicity of G): ... recall that $G_y(\psi) = \rho(\text{Lag}_y(\psi)) \ldots$

and locally with rate $(1 + \alpha)$.

- Consider the matrix $(L_{yz}) := \left(\frac{\partial G_y}{\partial \mathbf{1}_z}(\psi)\right)$ and the graph H: $(y, z) \in H \iff L_{zy} > 0$
- ► H = 1-skeleton of $(Lag_y(\psi) \cap \{\rho > 0\})_{y \in Y}$

▶ If $\{\rho > 0\}$ is connected and $\psi \in E_{\varepsilon}$, then H is connected

▶ L is the Laplacian of a connected graph \implies Ker $L = \mathbb{R} \cdot \operatorname{cst}$

Theorem: Let X be an hemisphere of S^2 . Assume that $Y \subset S^2 \setminus X$ and that $\rho \in C^{\alpha}(X)$ and $\{\rho > 0\}$ is connected Then, the damped Newton algorithm for SD-OT converges **globally** with linear rate

special case of [Kitagawa, M., Thibert '15]

(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:

and locally with rate $(1 + \alpha)$.

Theorem: Let X be an hemisphere of S^2 . Assume that $Y \subset S^2 \setminus X$ and that $\rho \in C^{\alpha}(X)$ and $\{\rho > 0\}$ is connected Then, the damped Newton algorithm for SD-OT converges **globally** with linear rate

special case of [Kitagawa, M., Thibert '15]

(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:

and locally with rate $(1 + \alpha)$.

Theorem: Let X be an hemisphere of \mathcal{S}^2 . Assume that $Y \subset \mathcal{S}^2 \setminus X$ and that $\rho \in \mathcal{C}^{\alpha}(X)$ and $\{\rho > 0\}$ is connected Then, the damped Newton algorithm for SD-OT converges **globally** with linear rate and locally with rate $(1 + \alpha)$.

special case of [Kitagawa, M., Thibert '15]

(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:

 \rightarrow Restrictive condition, which fortunately is satisfied for the reflector problem.

Theorem: Let X be an hemisphere of S^2 . Assume that $Y \subset S^2 \setminus X$ and that $\rho \in C^{\alpha}(X)$ and $\{\rho > 0\}$ is connected Then, the damped Newton algorithm for SD-OT converges **globally** with linear rate

special case of [Kitagawa, M., Thibert '15]

(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:

and locally with rate $(1 + \alpha)$.

 \rightarrow Restrictive condition, which fortunately is satisfied for the reflector problem.

 \longrightarrow Loeper's condition originates from regularity theory for OT...

3. Second application: enforcing incompressibility

Joint work with J.M. Mirebeau

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $SDiff = \{$ **volume-preserving** diffeo. from X to $X\} \subseteq E := L^2(X, \mathbb{R}^d)$

[Arnold '66]
Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $SDiff = \{$ **volume-preserving** diffeo. from X to $X\} \subseteq E := L^2(X, \mathbb{R}^d)$

[Arnold '66]

What about the **minimizing geodesics** between $s_*, s^* \in SDiff$?

$$\inf\left\{\int_0^1 \|s'(t)\|_E^2 \,\mathrm{d}\,t \mid s: [0,1] \to \mathbb{SDiff}, \ s_0 = s_*, s_1 = s^*\right\}$$

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $SDiff = \{$ **volume-preserving** diffeo. from X to $X\} \subseteq E := L^2(X, \mathbb{R}^d)$

[Arnold '66]

What about the **minimizing geodesics** between $s_*, s^* \in SDiff$?

$$\inf\left\{\int_0^1 \|s'(t)\|_E^2 \,\mathrm{d}\,t \mid s: [0,1] \to \mathbb{SDiff}, \ s_0 = s_*, s_1 = s^*\right\}$$

 \longrightarrow theory of generalized geodesics

[Brenier '93]

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $SDiff = \{$ **volume-preserving** diffeo. from X to $X\} \subseteq E := L^2(X, \mathbb{R}^d)$

[Arnold '66]

What about the **minimizing geodesics** between $s_*, s^* \in SDiff$?

$$\inf\left\{\int_0^1 \|s'(t)\|_E^2 \,\mathrm{d}\,t \mid s: [0,1] \to \mathbb{SDiff}, \ s_0 = s_*, s_1 = s^*\right\}$$

 \longrightarrow theory of generalized geodesics

[Brenier '93]

 \longrightarrow non-deterministic behavior of fluid particles.

[Shnirelman '94]

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $SDiff = \{$ **volume-preserving** diffeo. from X to $X\} \subseteq E := L^2(X, \mathbb{R}^d)$

[Arnold '66]

What about the **minimizing geodesics** between $s_*, s^* \in SDiff$?

$$\inf\left\{\int_0^1 \|s'(t)\|_E^2 \,\mathrm{d}\,t \mid s: [0,1] \to \mathbb{SDiff}, \ s_0 = s_*, s_1 = s^*\right\}$$

 \longrightarrow theory of generalized geodesics

 \longrightarrow non-deterministic behavior of fluid particles.

[Brenier '93]

[Shnirelman '94]

Discretization: N = number of particles, T = number of timesteps

At time *i*, the particles are at positions $m_i := (M_i^1, \ldots, M_i^N) \in \mathbb{R}^{Nd}$.

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $SDiff = \{$ **volume-preserving** diffeo. from X to $X\} \subseteq E := L^2(X, \mathbb{R}^d)$

[Arnold '66]

[Brenier '93]

[Shnirelman '94]

What about the **minimizing geodesics** between $s_*, s^* \in SDiff$?

$$\inf\left\{\int_0^1 \|s'(t)\|_E^2 \,\mathrm{d}\,t \mid s: [0,1] \to \mathbb{SDiff}, \ s_0 = s_*, s_1 = s^*\right\}$$

 \longrightarrow theory of generalized geodesics

 \longrightarrow non-deterministic behavior of fluid particles.

• **Discretization:** N = number of particles, T = number of timesteps

At time *i*, the particles are at positions $m_i := (M_i^1, \ldots, M_i^N) \in \mathbb{R}^{Nd}$.

$$\min_{m_0,...,m_T \in \mathbb{R}^{Nd}} \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|_2^2 + \lambda \left(\|m_0 - s_*\|_2^2 + \|m_T - s^*\|_2^2 + ?? \right)$$
action boundary conditions incompressibility

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in $SDiff = \{$ **volume-preserving** diffeo. from X to $X\} \subseteq E := L^2(X, \mathbb{R}^d)$

[Arnold '66]

[Brenier '93]

[Shnirelman '94]

What about the **minimizing geodesics** between $s_*, s^* \in SDiff$?

$$\inf\left\{\int_0^1 \|s'(t)\|_E^2 \,\mathrm{d}\,t \mid s: [0,1] \to \mathbb{SDiff}, \ s_0 = s_*, s_1 = s^*\right\}$$

 \longrightarrow theory of generalized geodesics

 \longrightarrow non-deterministic behavior of fluid particles.

• **Discretization:** N = number of particles, T = number of timesteps

At time *i*, the particles are at positions $m_i := (M_i^1, \ldots, M_i^N) \in \mathbb{R}^{Nd}$.

$$\min_{m_0,...,m_T \in \mathbb{R}^{Nd}} \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|_2^2 + \lambda \left(\|m_0 - s_*\|_2^2 + \|m_T - s^*\|_2^2 + ??? \right)$$
action boundary conditions incompressibility

A point cloud cannot be exactly incompressible \implies penalization using optimal transport.

Definition: Given $m = (M^1, \ldots, M^N) \in \mathbb{R}^{Nd}$, we define $d_{\mathbb{S}}^2(m) = \text{ min. transport cost between } \rho \text{ and } \nu = \frac{1}{N} \sum_{k=1}^N \delta_{M^k}$ where ρ is uniform on X and $c(x, y) = ||x - y||^2$.

Definition: Given
$$m = (M^1, \ldots, M^N) \in \mathbb{R}^{Nd}$$
, we define
 $d_{\mathbb{S}}^2(m) = \text{ min. transport cost between } \rho \text{ and } \nu = \frac{1}{N} \sum_{k=1}^N \delta_{M^k}$
where ρ is uniform on X and $c(x, y) = ||x - y||^2$.

Definition: Given
$$m = (M^1, \ldots, M^N) \in \mathbb{R}^{Nd}$$
, we define
 $d_{\mathbb{S}}^2(m) = \text{ min. transport cost between } \rho \text{ and } \nu = \frac{1}{N} \sum_{k=1}^N \delta_{M^k}$
where ρ is uniform on X and $c(x, y) = ||x - y||^2$.

Definition: Given
$$m = (M^1, \ldots, M^N) \in \mathbb{R}^{Nd}$$
, we define
 $d_{\mathbb{S}}^2(m) = \text{ min. transport cost between } \rho \text{ and } \nu = \frac{1}{N} \sum_{k=1}^N \delta_{M^k}$
where ρ is uniform on X and $c(x, y) = ||x - y||^2$.

Definition: Given
$$m = (M^1, \ldots, M^N) \in \mathbb{R}^{Nd}$$
, we define
 $d_{\mathbb{S}}^2(m) = \text{ min. transport cost between } \rho \text{ and } \nu = \frac{1}{N} \sum_{k=1}^N \delta_{M^k}$
where ρ is uniform on X and $c(x, y) = ||x - y||^2$.

Definition: Given
$$m = (M^1, \ldots, M^N) \in \mathbb{R}^{Nd}$$
, we define
 $d_{\mathbb{S}}^2(m) = \text{ min. transport cost between } \rho \text{ and } \nu = \frac{1}{N} \sum_{k=1}^N \delta_{M^k}$
where ρ is uniform on X and $c(x, y) = ||x - y||^2$.

Definition: Given
$$m = (M^1, \ldots, M^N) \in \mathbb{R}^{Nd}$$
, we define
 $d_{\mathbb{S}}^2(m) = \text{ min. transport cost between } \rho \text{ and } \nu = \frac{1}{N} \sum_{k=1}^N \delta_{M^k}$
where ρ is uniform on X and $c(x, y) = ||x - y||^2$.

Definition: Given
$$m = (M^1, \ldots, M^N) \in \mathbb{R}^{Nd}$$
, we define
 $d_{\mathbb{S}}^2(m) = \text{ min. transport cost between } \rho \text{ and } \nu = \frac{1}{N} \sum_{k=1}^N \delta_{M^k}$
where ρ is uniform on X and $c(x, y) = ||x - y||^2$.

▶ Time-discretization of geodesic with endpoints $s_*, s^* \in \mathbb{R}^{Nd}$

$$\min_{m_1,...,m_T \in \mathbb{R}^{Nd}} \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|_2^2 + \lambda \left(\|m_0 - s_*\|_2^2 + \|m_T - s^*\|_2^2 + \sum_{i=1}^{T-1} d_{\mathbb{S}}^2(m_i) \right)$$
action boundary conditions incompressibility

▶ Time-discretization of geodesic with endpoints $s_*, s^* \in \mathbb{R}^{Nd}$

$$\min_{m_1,...,m_T \in \mathbb{R}^{Nd}} \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|_2^2 + \lambda \left(\|m_0 - s_*\|_2^2 + \|m_T - s^*\|_2^2 + \sum_{i=1}^{T-1} d_{\mathbb{S}}^2(m_i) \right)$$
action boundary conditions incompressibility

• Given $m = (m_1, \ldots, m_T) \in \mathbb{R}^{TNd}$, let $\gamma_k \in \mathcal{C}^0([0, 1], \mathbb{R}^d)$ be PL with $\gamma_k(t_i) = M_i^k$

▶ Time-discretization of geodesic with endpoints $s_*, s^* \in \mathbb{R}^{Nd}$

$$\min_{m_1,\dots,m_T \in \mathbb{R}^{Nd}} \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|_2^2 + \lambda \left(\|m_0 - s_*\|_2^2 + \|m_T - s^*\|_2^2 + \sum_{i=1}^{T-1} \mathrm{d}_{\mathbb{S}}^2(m_i) \right)$$

action

boundary conditions incom

• Given $m = (m_1, \ldots, m_T) \in \mathbb{R}^{TNd}$, let $\gamma_k \in \mathcal{C}^0([0, 1], \mathbb{R}^d)$ be PL with $\gamma_k(t_i) = M_i^k$

 \longrightarrow One can associate to m a probability measure over the set of \mathcal{C}^0 paths:

 $\mu_{\boldsymbol{m}} := \frac{1}{N} \sum_{k=1}^{N} \delta_{\gamma_{k}} \quad \in \operatorname{Prob}(\mathcal{C}^{0}([0,1],\mathbb{R}^{d}))$

▶ Time-discretization of geodesic with endpoints $s_*, s^* \in \mathbb{R}^{Nd}$

$$\min_{m_1,\dots,m_T \in \mathbb{R}^{Nd}} \frac{T}{2} \sum_{i=0}^{T-1} \|m_{i+1} - m_i\|_2^2 + \lambda \left(\|m_0 - s_*\|_2^2 + \|m_T - s^*\|_2^2 + \sum_{i=1}^{T-1} \mathrm{d}_{\mathbb{S}}^2(m_i) \right)$$

action

boundary conditions ind

incompressibility

• Given $m = (m_1, \ldots, m_T) \in \mathbb{R}^{TNd}$, let $\gamma_k \in \mathcal{C}^0([0, 1], \mathbb{R}^d)$ be PL with $\gamma_k(t_i) = M_i^k$

 \longrightarrow One can associate to m a probability measure over the set of \mathcal{C}^0 paths:

 $\mu_m := \frac{1}{N} \sum_{k=1}^N \delta_{\gamma_k} \quad \in \operatorname{Prob}(\mathcal{C}^0([0,1],\mathbb{R}^d))$

→ Under suitable hypotheses, minimizers of the discrete problem converge to a so-called generalized minimizing geodesic,

 $\mu \in \operatorname{Prob}(\mathcal{C}^0([0,1],\mathbb{R}^d)).$

$$X = B(0,1) \subseteq \mathbb{R}^2 \qquad (s_*,s^*) = (\mathrm{id},-\mathrm{id})$$

Classical solutions: clockwise/counterclockwise rotations μ_{\pm}

 $X = B(0,1) \subseteq \mathbb{R}^2 \qquad (s_*, s^*) = (\mathrm{id}, -\mathrm{id})$

Classical solutions: clockwise/counterclockwise rotations μ_{\pm}

Examples of generalized solutions:

linear combination $\mu_{\frac{1}{2}}$ of μ_{\pm} constructed from rotations NB: dim $(spt(\mu_{\frac{1}{2}})) = 2$

 $t = \frac{1}{2}$

$$X = B(0,1) \subseteq \mathbb{R}^2$$
 $(s_*, s^*) = (id, -id)$

Brenier's generalized solution: $\mu \in Prob(\Gamma)$:

$$spt(\mu) = \{t \mapsto x \cos(\pi t) + v \sin(\pi t) \in \mathcal{C}^0([0, 1], X); \\ (x, v) \in X \times \mathbb{R}^2, \|v\|^2 = 1 - \|x\|^2\}$$

 \longrightarrow non-deterministic solution, $\dim(\operatorname{spt}(\mu)) = 3$

 $X = B(0,1) \subseteq \mathbb{R}^2 \qquad (s_*,s^*) = (\mathrm{id},-\mathrm{id})$

Brenier's generalized solution: $\mu \in \operatorname{Prob}(\Gamma)$:

$$spt(\mu) = \{t \mapsto x \cos(\pi t) + v \sin(\pi t) \in \mathcal{C}^0([0, 1], X); \\ (x, v) \in X \times \mathbb{R}^2, \|v\|^2 = 1 - \|x\|^2\}$$

 \longrightarrow non-deterministic solution, $\dim(\operatorname{spt}(\mu)) = 3$

Computed trajectories for $N = 10^5$, T = 17

Numerical result: Beltrami Flow in Square

Numerical result: Beltrami Flow in Square

Numerical result: Beltrami Flow in Square

24

Numerical result: Comparison of Trajectories

Comparison of Minkowski dimensions

Estimation of dim(spt(μ)) via log(N)/log($1/\delta_N$)

where $\delta_N = \text{minimum radius required to cover spt}(\mu)$ with N balls.

Square rotation, $t_{\max} \in \{0.9, 1.1, 1.3, 1.5\}$

Disk inversion

1) Laguerre diagrams provide a very suitable and efficient tool for discretizing :

1) Laguerre diagrams provide a very suitable and efficient tool for discretizing :

2) The discretized problems inherit many (geometric) features of the continuous ones.

1) Laguerre diagrams provide a very suitable and efficient tool for discretizing :

2) The discretized problems inherit many (geometric) features of the continuous ones.

3) Geometric inference for probability measures in $\mathbb{R}^{T \times N \times d}$ (e.g. dimension estimation). could provide insight on Brenier's generalized geodesics (fractal behavior?).

1) Laguerre diagrams provide a very suitable and efficient tool for discretizing :

2) The discretized problems inherit many (geometric) features of the continuous ones.

3) Geometric inference for probability measures in $\mathbb{R}^{T \times N \times d}$ (e.g. dimension estimation). could provide insight on Brenier's generalized geodesics (fractal behavior?).

Thank you for your attention!