Géométrie Algorithmique Données, Modèles, Programmes

2. La puissance de l'aléa : algorithmes randomisés

Jean-Daniel Boissonnat

Collège de France 19 avril 2017

Géométrie algorithmique

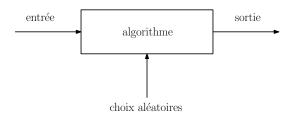
Données, modèles, programmes

- Modèles géométriques discrets
 - F. Cazals : Modèles géométriques pour la prédiction des interactions macro-moléculaires
- La puissance de l'aléa : algorithmes randomisés P. Calka : Probabilités géométriques
- Le calcul géométrique
 - S. Pion: La bibliothèque logicielle CGAL
- Génération de maillages
 - J-M. Mirebeau : Les deux réductions de Voronoï et leur application aux équations aux dérivées partielles
- Courbes et surfaces
 - P. Alliez: Reconstruction de surfaces
- Espaces de configurations
 - A. de Mesmay: Dessin de graphes
- Structures de données géométriques
 - D. Feldman: Core sets
- 6 Géométrie des données
 - F. Chazal : Analyse topologique des données

Distribution de l'entrée et choix aléatoires

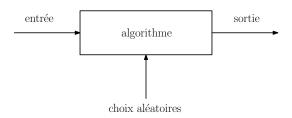


Distribution de l'entrée et choix aléatoires



- Modélisation de l'entrée et complexité combinatoire
- Introduction de choix aléatoires pour améliorer la complexité algorithmique

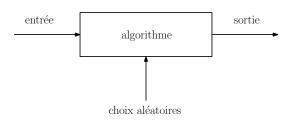
Algorithmes randomisés



Un algorithme randomisé effectue des choix aléatoires

- ordre d'insertion des données d'entrée
- échantillonnage aléatoire
- transformation aléatoire des données (perturbation, projection)

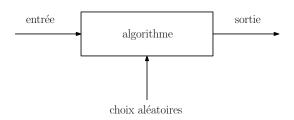
Analyse randomisée



- L'analyse est faite pour l'entrée la pire et en moyenne sur les choix aléatoires
- La sortie peut être toujours exacte (algorithme Las Vegas) ou seulement exacte en probabilité (agorithme Monte Carlo)

Algorithmes randomisés

Motivation



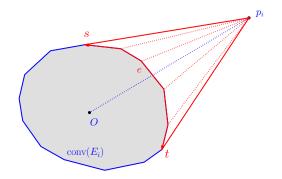
- Simplicité
- Universalité
- Efficacité (théorique et pratique)
- Analyse utile aussi en géométrie combinatoire

Algorithmes incrémentaux randomisés

Algorithmes en-ligne

3 Analyse combinatoire

Retour sur l'algorithme incrémental



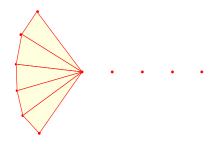
Analyse dans le cas le pire :

- d = 3: $O(n^2)$
- d quelconque : $O(n \log n + n^{\left\lfloor \frac{d+1}{2} \right\rfloor})$

(optimal en dimensions paires)

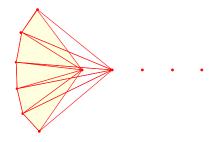
Retour sur l'algorithme incrémental

• d=3: aucun algorithme incrémental ne peut faire mieux que $O(n^2)$ dans le cas le pire



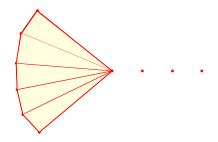
Retour sur l'algorithme incrémental

• d=3: aucun algorithme incrémental ne peut faire mieux que $O(n^2)$ dans le cas le pire



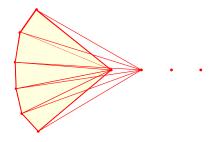
Retour sur l'algorithme incrémental

• d=3: aucun algorithme incrémental ne peut faire mieux que $O(n^2)$ dans le cas le pire



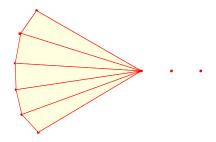
Retour sur l'algorithme incrémental

• d=3: aucun algorithme incrémental ne peut faire mieux que $O(n^2)$ dans le cas le pire



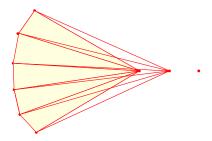
Retour sur l'algorithme incrémental

• d=3: aucun algorithme incrémental ne peut faire mieux que $O(n^2)$ dans le cas le pire



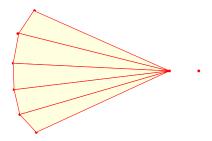
Retour sur l'algorithme incrémental

• d=3: aucun algorithme incrémental ne peut faire mieux que $O(n^2)$ dans le cas le pire



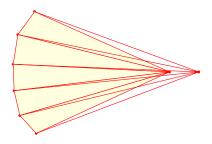
Retour sur l'algorithme incrémental

• d=3: aucun algorithme incrémental ne peut faire mieux que $O(n^2)$ dans le cas le pire



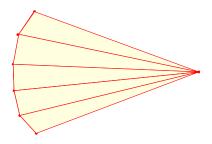
Retour sur l'algorithme incrémental

• d=3: aucun algorithme incrémental ne peut faire mieux que $O(n^2)$ dans le cas le pire



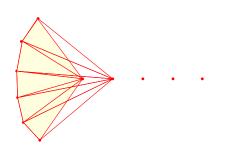
Retour sur l'algorithme incrémental

• d=3: aucun algorithme incrémental ne peut faire mieux que $O(n^2)$ dans le cas le pire



La révolution des algorithmes randomisés

Calcul incrémental d'une enveloppe convexe de n



M. Rabin, K. Clarkson and P. Shor

l'algorithme randomisé a une complexité moyenne optimale

$$O(n\log n + n^{\left\lfloor \frac{d}{2} \right\rfloor})$$

triangulation de Delaunay 3d : 1 million de points en 8.5s

Analyse randomisée 1

Mises à jour de l'enveloppe convexe et place mémoire

Hyp. : les points de \mathcal{P} sont insérés dans un ordre aléatoire

 $\mathcal{P}_i = \{p_1, ..., p_i\}$ est un échantillon aléatoire de taille i

N(i): espérance du nombre de facettes créées à l'étape i

$$\begin{array}{ll} N(i) & = & \displaystyle \sum_{f \subset \mathcal{P}, |f| = d} \operatorname{proba}(f \in \operatorname{conv}(\mathcal{P}_i)) \times \frac{d}{i} \\ \\ & = & \displaystyle \frac{d}{i} \; \mathsf{E}(|\operatorname{conv}(i,\mathcal{P})|) \quad \text{(espérance sur tous les échantillons aléatoires de } \mathcal{P} \; \text{de taille } i) \\ \\ & = & O\left(i^{\left\lfloor \frac{d}{2} \right\rfloor - 1}\right) \qquad \qquad \text{(th. de la borne sup.)} \end{array}$$

Espérance du nombre total de facettes créées

$$N = \sum_{i=1}^{n} N(i) = O\left(n^{\left\lfloor \frac{d}{2} \right\rfloor}\right)$$
 and $N = O(n)$ if $d = 2, 3$

Analyse randomisée 1

Mises à jour de l'enveloppe convexe et place mémoire

Hyp. : les points de \mathcal{P} sont insérés dans un ordre aléatoire

$$\mathcal{P}_i = \{p_1, ..., p_i\}$$
 est un échantillon aléatoire de taille i

N(i): espérance du nombre de facettes créées à l'étape i

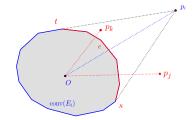
$$\begin{array}{ll} N(i) & = & \displaystyle \sum_{f \subset \mathcal{P}, |f| = d} \operatorname{proba}(f \in \operatorname{conv}(\mathcal{P}_i)) \times \frac{d}{i} \\ \\ & = & \displaystyle \frac{d}{i} \; \mathsf{E}(|\operatorname{conv}(i,\mathcal{P})|) \quad \text{(espérance sur tous les échantillons aléatoires de } \mathcal{P} \; \text{de taille } i) \\ \\ & = & O\left(i^{\left\lfloor \frac{d}{2} \right\rfloor - 1}\right) \qquad \qquad \text{(th. de la borne sup.)} \end{array}$$

Espérance du nombre total de facettes créées

$$N = \sum_{i=1}^{n} N(i) = O\left(n^{\left\lfloor \frac{d}{2} \right\rfloor}\right)$$
 and $N = O(n)$ if $d = 2, 3$

L'algorithme incrémental (un peu) révisé

- Localisation rapide
- Recherche des facettes rouges
- Création des nouvelles facettes



Conflit:
$$p \in \mathcal{P} \setminus \mathcal{P}_{i-1}, f \in \text{conv}(\mathcal{P}_{i-1}), p \dagger f \Leftrightarrow [Op] \cap \text{aff}(f) \neq \emptyset$$

Graphe de conflit :
$$CG_{i-1} = \{(p, f), p \in P \setminus P_{i-1} \times f \in conv(P_{i-1}) p \dagger f\}$$

Analyse randomisée 2

Mise à jour du graphe de conflit

$$\mathcal{P}_i^+ = \mathcal{P}_i \cup \{p_j\}$$
 : un sous-ensemble aléatoire de $i+1$ points de \mathcal{P}

$$\operatorname{conv}_1(\mathcal{P}_i^+) = \{ f \in \mathcal{P}_i^+, \ |f| = d, \ \exists \ \operatorname{unique} \ q \in \mathcal{P}_i^+: \ f \dagger q \}$$

N(i,j)= espérance du nombre de faces de $\mathrm{conv}_1(\mathcal{P}_i^+)$ créées à l'étape i et en conflit avec $p_j,j>i$

$$\begin{split} N(i,j) &= \sum_{f \in \mathcal{P}, |f| = d} \operatorname{proba}(f \in \operatorname{conv}_1(\mathcal{P}_i^+)) \times \frac{d}{i} \times \frac{1}{i+1} \\ &= \frac{d}{i(i+1)} \ \mathsf{E}(|\operatorname{conv}_1(i+1,\mathcal{P})|) \end{split}$$

espérance sur tous les échantillons aléatoires de $\,\mathcal{P}\,\,\,$ de taille $\,i+1\,\,$

Borne sur $E(|conv_1(r, P)|)$

Analyse arrière

$$R' = R \setminus \{p\}$$

$$f \in \operatorname{conv}(R')$$
 si $f \in \operatorname{conv}_1(R)$ et $p \dagger f$ (proba $= \frac{1}{r}$) ou $f \in \operatorname{conv}(R)$ et $R' \ni \operatorname{les} d$ sommets de f (proba $= \frac{r-d}{r}$)

En notant C_0 pour conv et prenant l'espérance

$$\begin{split} \mathsf{E}(|C_{0}(r-1,R)|) &= \frac{1}{r} |C_{1}(R)| + \frac{r-d}{r} |C_{0}(R)| \\ \mathsf{E}(|C_{0}(r-1,\mathcal{P})|) &= \frac{1}{r} \mathsf{E}(|C_{1}(r,\mathcal{P})| + \frac{r-d}{r} \mathsf{E}(|C_{0}(r,\mathcal{P})|) \\ \mathsf{E}(|C_{1}(r,\mathcal{P})|) &= d \, \mathsf{E}(|C_{0}(r,\mathcal{P})|) - r \, \left(\mathsf{E}(|C_{0}(r,\mathcal{P})|) - \mathsf{E}(|C_{0}(r-1,\mathcal{P})|) \right) \\ &\leq d \, \mathsf{E}(|C_{0}(r,\mathcal{P})|) \end{split}$$

Fin de l'analyse randomisée

Mise à jour du graphe de conflit

N(i,j) =espérance du nombre de faces de $conv_1(\mathcal{P}_i^+)$ créées à l'étape i et en conflit avec $p_j, j > i$

$$N(i,j) = \frac{d}{i(i+1)} \operatorname{E}(|C_1(i+1,\mathcal{P})|$$

$$\leq \frac{d^2}{i(i+1)} \operatorname{E}(|C_0(i+1,\mathcal{P})|) = O(i^{\left\lfloor \frac{d}{2} \right\rfloor - 2})$$

Espérance du coût total de mise à jour du graphe de conflit :

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} N(i,j) = \sum_{i=1}^{n} (n-i) O(i^{\left\lfloor \frac{d}{2} \right\rfloor - 2})$$
$$= O(n \log n + n^{\left\lfloor \frac{d}{2} \right\rfloor})$$

Résultat principal et corollaires

- L'enveloppe convexe de n points de \mathbb{R}^d peut être calculée en temps optimal $O(n \log n + n^{\left\lfloor \frac{d}{2} \right\rfloor})$ en utilisant un espace mémoire $O(n^{\left\lfloor \frac{d}{2} \right\rfloor})$
- Les mêmes bornes s'appliquent au calcul de l'intersection de n demi-espaces de \mathbb{R}^d
- et au calcul des diagrammes Vorono $\ddot{\mathbf{o}}$ et triangulations de Delaunay de n points de \mathbb{R}^d (remplacer d par d+1 dans les bornes)
- L'algorithme est simple et efficace en pratique
- Il peut être dérandomisé (au prix de la simplicité)

[Chazelle 1992]

Constructions incrémentales randomisées

Le cadre général de Clarkson & Shor

```
\mathcal{O}: un ensemble de n objets de complexité constante
```

```
Configuration f: définie par O(1) objets
```

$$\mathcal{F}(\mathcal{O}) = \{ \text{ configurations définies sur } \mathcal{O} \}$$

Conflit dans
$$\mathcal{O}$$
: $o \in \mathcal{O}$, $f \in F(\mathcal{O})$: $p \dagger f$

Problème : calculer $\mathcal{F}_0(\mathcal{O}) = \{ \text{ configurations de } \mathcal{F}(\mathcal{O}) \text{ sans conflit dans } \mathcal{O} \}$

Algorithme statique

 \mathcal{O}_i : ensemble des i premiers objets

 GC_i : graphe de conflit qui représente les conflits entre les objets de $\mathcal{O} \setminus \mathcal{O}_i$ et les configurations de $\mathcal{F}_0(\mathcal{O}_i)$

Algorithme

Pour i = 1, ..., n, insérer l'objet O_i

- 1. Accéder aux config. de $\mathcal{F}_0(\mathcal{O}_{i-1})$ en conflit avec O_i en utilisant GC_{i-1}
- 2. Construire les config. de $\mathcal{F}_0(\mathcal{O}_i)$
 - Supprimer les config. en conflit
 - **2** Construire les nouvelles config. définies avec O_i
- 3. Construire GC_i : établir des liens entre les nouvelles config. et les objets restant à insérer

Conditions d'actualisation

- 1. on peut décider si O_i et C sont en conflit en temps O(1)
- **2.** si O_i est en conflit avec j config., les nouvelles config. de $\mathcal{F}_0(\mathcal{O}_i)$ peuvent être calculées en temps O(j)
- 3. si j' est le nb de conflits entre les nouvelles config. et \mathcal{O}_i , les nouveaux conflits peuvent être calculés en temps O(j+j')

Théorème

Si les objets sont insérés dans un ordre aléatoire, le coût de l'algorithme est

Place mémoire :
$$P = O\left(\sum_{i=1}^{n} \frac{1}{i} E(|\mathcal{F}_0(\mathcal{O}_i)|)\right)$$

Mise à jour du GC :
$$T = O\left(\sum_{i=1}^n \frac{n-i}{i^2} E(|\mathcal{F}_0(\mathcal{O}_i)|)\right)$$

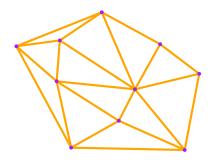
$$\longrightarrow$$
 Si $E(|\mathcal{F}_0(\mathcal{O}_i)|) = O(i)$: $P = O(n)$ $T = O(\log n)$

$$\longrightarrow$$
 Si $E(|\mathcal{F}_0(\mathcal{O}_i)|) = O(i^{\alpha})$ $P = O(n^{\alpha})$ $T = O(n^{\alpha})$

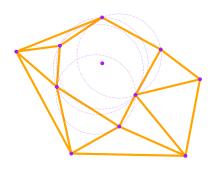
Algorithmes incrémentaux randomisés

Algorithmes en-ligne

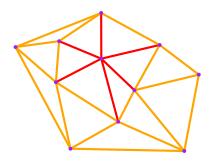
3 Analyse combinatoire



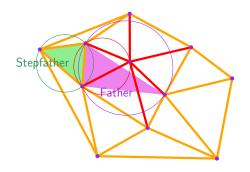
- $B(\text{fils}) \subset B(\text{p\`ere}) \cup B(\text{beau-p\`ere})$
- Les simplexes à enlever sont des feuilles de l'arbre de Delaunay



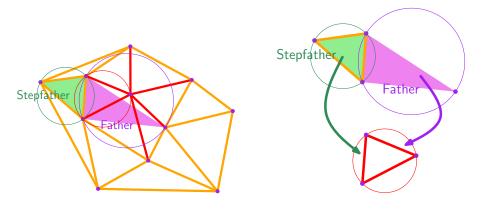
- $B(\text{fils}) \subset B(\text{p\`ere}) \cup B(\text{beau-p\`ere})$
- Les simplexes à enlever sont des feuilles de l'arbre de Delaunay



- $B(\text{fils}) \subset B(\text{père}) \cup B(\text{beau-père})$
- Les simplexes à enlever sont des feuilles de l'arbre de Delaunay



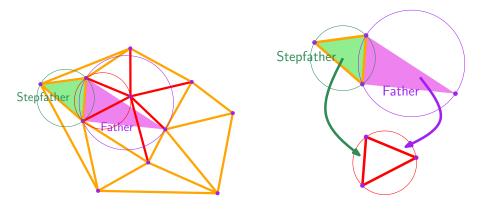
- $B(\text{fils}) \subset B(\text{père}) \cup B(\text{beau-père})$
- Les simplexes à enlever sont des feuilles de l'arbre de Delaunay



- $B(\text{fils}) \subset B(\text{père}) \cup B(\text{beau-père})$
- Les simplexes à enlever sont des feuilles de l'arbre de Delaunay

Algorithme en-ligne : arbre de Delaunay

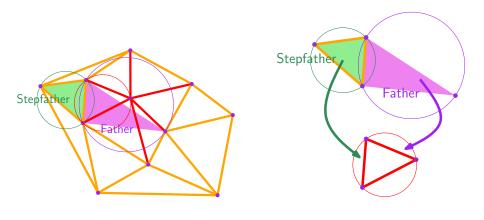
Utiliser l'historique de la construction comme une structure de localisation



- $B(fils) \subset B(p\`ere) \bigcup B(beau-p\`ere)$
- Les simplexes à enlever sont des feuilles de l'arbre de Delaunay

Algorithme en-ligne : arbre de Delaunay

Utiliser l'historique de la construction comme une structure de localisation



- $B(\text{fils}) \subset B(\text{père}) \bigcup B(\text{beau-père})$
- Les simplexes à enlever sont des feuilles de l'arbre de Delaunay

Algorithmes en ligne

GH_i: GDA d'histoire qui satisfait

P1 : les configurations de $\mathcal{F}_0(\mathcal{O}_i)$ sont des feuilles de GH_i

P2 : si un objet O est en conflit avec la config. attachée au nœud ν , il est en conflit avec un des parents de ν

Algorithme

Pour i = 1, ..., n, insérer l'objet O_i

- ① Chercher les config. de $\mathcal{F}_0(\mathcal{O}_{i-1})$ en conflit avec O_i en parcourant GH_{i-1}
- Construire GH_i de telle façon que P1 et P2 restent vraies
 - Créer les nouvelles feuilles de GH_i (nouvelles config.)
 - **2** Etablir les liens entre les feuilles de GH_{i-1} en conflit et les nouvelles feuilles de GH_i

Conditions d'actualisation

- On peut décider si O_i et une config. sont en conflit en temps O(1)
- Si O_i est en conflit avec j config., les nouvelles config. sans conflit sont calculables en temps O(j)
- Le nombre de fils d'un nœud = O(1) (cette condition peut être supprimée)

Analyse de l'algorithme en-ligne

 \mathcal{O}_i : échantillon aléatoire de i objets de \mathcal{O}

Place mémoire :
$$P = O\left(\sum_{i=1}^{n} \frac{1}{i} E(|\mathcal{F}_0(\mathcal{O}_i)|)\right)$$

Temps d'insertion :
$$T = O\left(\sum_{i=1}^{n} \frac{1}{i^2} E(|\mathcal{F}_0(\mathcal{O}_i)|)\right)$$

$$\longrightarrow$$
 si $E(|\mathcal{F}_0(\mathcal{O}_i)|) = O(i)$: $P = O(n)$ $T = O(\log n)$

$$\longrightarrow$$
 Si $E(|\mathcal{F}_0(\mathcal{O}_i)|) = O(i^{\alpha})$ $P = O(n^{\alpha})$ $T = O(n^{\alpha-1})$ $\alpha > 1$

Analyse de l'algorithme en-ligne

 \mathcal{O}_i : échantillon aléatoire de i objets de \mathcal{O}

Place mémoire :
$$P = O\left(\sum_{i=1}^{n} \frac{1}{i} E(|\mathcal{F}_0(\mathcal{O}_i)|)\right)$$

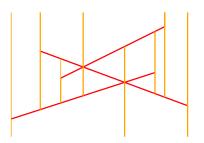
Temps d'insertion :
$$T = O\left(\sum_{i=1}^{n} \frac{1}{i^2} E(|\mathcal{F}_0(\mathcal{O}_i)|)\right)$$

$$\longrightarrow$$
 si $E(|\mathcal{F}_0(\mathcal{O}_i)|) = O(i)$: $P = O(n)$ $T = O(\log n)$

$$\longrightarrow$$
 Si $E(|\mathcal{F}_0(\mathcal{O}_i)|) = O(i^{\alpha})$ $P = O(n^{\alpha})$ $T = O(n^{\alpha-1})$ $\alpha > 1$

Cloisonnement vertical

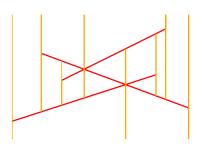
Objets, configurations et conflits



- Un ensemble \mathcal{O} de n segments se coupant en k points
- Une configuration est une des régions (demi-plan, triangle ou trapèze)
- Une configuration T et un segment s sont en conflit si $T \cap s \neq \emptyset$

Cloisonnement vertical

Conditions d'actualisation

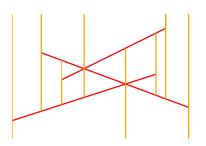


- Une configuration est définie par au plus 4 segments
- \bullet $\it T$ est découpé en ≤ 4 nouvelles configurations quand un nouveau segment est inséré

$$\bullet \ \mathcal{F}_0(i,\mathcal{O}) = O(i + k \frac{i^2}{n^2})$$

Cloisonnement vertical

Conditions d'actualisation



Théorème

Si on insère les segments dans un ordre aléatoire, on peut

- construire le cloisonnement en temps optimal $O(n \log n + k)$
- se localiser dans une carte planaire en temps $O(\log n)$

Localisation dans une carte planaire Analyse

Les segments $\mathcal S$ de la carte sont insérés dans un ordre aléatoire Localisation d'un point x quelconque : trouver la cellule du cloisonnement de $\mathcal S$ qui contient x

Q(x) = coût de recherche = nb de nœuds du GH en conflit avec x n_i désigne le nœud associé à la cellule qui contient x à l'étape i

$$E(Q(x))$$
 = $\sum_{i=1}^{n} \operatorname{proba}(n_i \text{ a \'et\'e cr\'e\'e \`a l'\'etape } i)$
 = $\sum_{i=1}^{n} \frac{4}{i}$
 = $O(\log n)$

Recherche des deux plus proches voisins

Problème : Quels sont, parmi n points du plan, les deux points les plus proches ? Peut-on éviter de tester toutes les paires de points ?

Recherche des deux plus proches voisins

Grille et algorithme incrémental

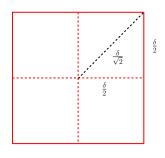
 P_i = ensemble des i premiers points

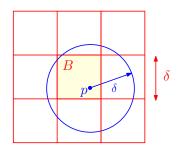
Chaque point de P_i est stocké dans la cellule qui le contient

- entrée : $p_1, ..., p_n$
- $\delta := +\infty$, G :=boîte englobante de $\mathcal P$
- **3** Pour i = 2, ..., n, insérer p_i dans G et trouver son plus proche voisin v_i dans \mathcal{P}_i
 - **o** si $||p_i v_i|| < \delta$, $ppp := (p_i, v_i)$
 - $0 \delta := \|p_i v_i\|$
 - 2 construire une nouvelle grille G de côté δ
 - \bullet localiser les points $p_1, ..., p_i$ dans G
- finpour
- o retourner ppp

Analyse de l'algorithme 1/2

Deux lemmes élémentaires





Lemme 1

Si $\mathcal P$ est contenu dans un carré de côté $\delta(\mathcal P)$, alors $|\mathcal P| \leq 4$

Lemme 2

Si ppp = (p, v) et $p \in B$, alors $q \in B$ ou dans une des 8 cellules incidentes à B

Analyse de l'algorithme 2/2

Théorème

On peut calculer les deux plus proches voisins en temps moyen O(n)

Démonstration
$$X_i = 1$$
 si $\delta(\mathcal{P}_i) \neq \delta(\mathcal{P}_{i-1}, X_i = 0$ sinon

$$T(n) = 1 + \sum_{i=3}^{n} (1 + X_i \times i)$$

$$E(T(n)) = E\left(1 + \sum_{i=3}^{n} (1 + X_i \times i)\right)$$

$$\leq n + \sum_{i=2}^{n} E(X_i) \times i$$

$$\leq n + \sum_{i=2}^{n} \operatorname{proba}(X_i = 1) \times i$$

$$\leq n + \sum_{i=2}^{n} \frac{2}{i} \times i$$

$$\leq 3n$$

35/46

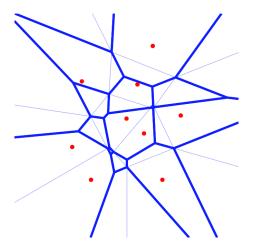
Algorithmes incrémentaux randomisés

Algorithmes en-ligne

Analyse combinatoire

Diagrammes de Voronoï d'ordre k

 \mathcal{P} un ensemble fini de points de \mathbb{R}^d (sites)



Chaque cellule de $\mathrm{Vor}_k(\mathcal{P})$ est l'ensemble des points de \mathbb{R}^d qui ont les mêmes k plus proches sites

Complexité combinatoire des diagrammes de Voronoï d'ordre *k*

Théorème

Le nombre de faces de tous les diagrammes de Vorono $\ddot{\mathbf{v}}$ Vor $_{j}(P)$ d'ordres $j \leq k$ est

$$O\left(k^{\lceil \frac{d+1}{2} \rceil} n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$

Démonstration

- ▶ Utiliser le relèvement dans \mathbb{R}^{d+1} (linéarisation)
- Énumérer les sommets de niveaux au plus k dans un arrangement d'hyperplans de \mathbb{R}^{d+1} avec un argument probabiliste
- Vérifier que la borne s'applique aux faces de toutes dimensions (pour d fixé)

Complexité combinatoire des diagrammes de Voronoï d'ordre *k*

Théorème

Le nombre de faces de tous les diagrammes de Vorono $\ddot{\mathbf{v}}$ Vor $_{j}(P)$ d'ordres $j \leq k$ est

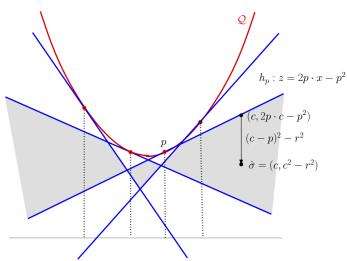
$$O\left(k^{\lceil \frac{d+1}{2} \rceil} n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$

Démonstration

- ▶ Utiliser le relèvement dans \mathbb{R}^{d+1} (linéarisation)
- Finumérer les sommets de niveaux au plus k dans un arrangement d'hyperplans de \mathbb{R}^{d+1} avec un argument probabiliste
- Vérifier que la borne s'applique aux faces de toutes dimensions (pour d fixé)

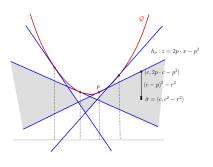
Diagramme de Voronoï d'ordre k et k-niveaux

Linéarisation dans l'espace des sphères



$$c \in \operatorname{Vor}_2(p,q) \ \Leftrightarrow \ \exists \, \sigma(c,r): \ \hat{\sigma} \in h_p^- \cap h_q^-$$

k-niveaux dans un arrangement d'hyperplans



- $\mathcal{H} = \text{arrangement des } h_p, \ p \in \mathcal{P}$
- Les cellules de $\operatorname{Vor}_k(\mathcal{P})$ sont en bijection avec les cellules de \mathcal{H} de niveau k, i.e. avec k hyperplans $h_p, p \in \mathcal{P}$, au dessus
- Le niveau d'un sommet d'une telle cellule de \mathcal{H} varie de k à $\max(0, k d)$
- En position générale, chaque sommet est incident à *d* hyperplans

Le théorème de l'échantillon

 \mathcal{O} un ensemble de n objets.

 $\mathcal{F}(\mathcal{O})$ ensemble des configurations définies par b objets

 $\mathcal{F}_{j}(\mathcal{O})$ ensemble des configurations définies sur \mathcal{O} et en conflit avec j objets

 $\mathcal{F}_{\leq k}(\mathcal{O})$ ensemble des configurations définies sur \mathcal{O} en conflit avec $\leq k$ objets de \mathcal{O}

 $\mathcal{R}(r)$ a random sample of \mathcal{O} of size r

Théorème de l'échantillon [Clarkson & Shor 1992]

Pour
$$2 \le k \le \frac{n}{b+1}$$
, $|\mathcal{F}_{\le k}(\mathcal{O})| \le 4 \ (b+1)^b \ k^b \ \mathsf{E}(|\mathcal{F}_0(\mathcal{R}(\left\lfloor \frac{n}{k} \right\rfloor))|)$

espérance prise sur tous les échantillons $\mathcal{R}\subset\mathcal{O}$ de taille $|\cdot|$

Le théorème de l'échantillon

 \mathcal{O} un ensemble de n objets.

 $\mathcal{F}(\mathcal{O})$ ensemble des configurations définies par b objets

 $\mathcal{F}_{j}(\mathcal{O})$ ensemble des configurations définies sur \mathcal{O} et en conflit avec j objets

 $\mathcal{F}_{\leq k}(\mathcal{O})$ ensemble des configurations définies sur \mathcal{O} en conflit avec $\leq k$ objets de \mathcal{O}

 $\mathcal{R}(r)$ a random sample of \mathcal{O} of size r

Théorème de l'échantillon [Clarkson & Shor 1992]

Pour
$$2 \le k \le \frac{n}{b+1}$$
, $|\mathcal{F}_{\le k}(\mathcal{O})| \le 4 (b+1)^b k^b \mathsf{E}(|\mathcal{F}_0(\mathcal{R}(\left\lfloor \frac{n}{k} \right\rfloor))|)$

espérance prise sur tous les échantillons $\mathcal{R}\subset\mathcal{O}$ de taille $\lfloor \frac{n}{k} \rfloor$

Démonstration du théorème de l'échantillon

$$\mathsf{E}\left(|\mathcal{F}_0(\mathcal{R}(r)|)\right) = \sum_j |\mathcal{F}_j(\mathcal{O})| \frac{\binom{n-b-j}{r-b}}{\binom{n}{r}} \ge |\mathcal{F}_{\le k}(\mathcal{O})| \frac{\binom{n-b-k}{r-b}}{\binom{n}{r}}$$

un calcul permet de montrer que pour $r = \frac{n}{k}$

$$\frac{\binom{n-b-k}{r-b}}{\binom{n}{r}} \ge \frac{1}{4(b+1)^b k^b}$$

Borne sur le nombre de sommets des niveaux $\leq k$

Théorème Le nombre de faces des niveaux $\leq k$ d'un arrangement de n hyperplans de \mathbb{R}^d est $O(k^{\lceil \frac{d}{2} \rceil} n^{\lfloor \frac{d}{2} \rfloor})$

Démonstration

O l'ensemble des hyperplans

 \mathcal{R} un échantillon aléatoire de \mathcal{H}

 $\mathcal{F}_{\leq k}(\mathcal{O})$: l'ensemble des sommets de $\mathcal{H}(L)$ de niveaux $\leq k,\, k>1$

Par le théorème de l'échantillon aléatoire et le théorème de la borne supérieure

$$|\mathcal{F}_{\leq k}(\mathcal{O})| \leq 4(d+1)^d k^d O\left(\lfloor \frac{n}{k} \rfloor^{\lfloor \frac{d}{2} \rfloor}\right)$$

Si les hyperplans sont en position générale (cas le pire), la borne vaut pour les faces de toutes dimensions

Corollaire 1

Diagrammes de Voronoï d'ordres $\leq k$

Complexité combinatoire

Le nombre total de faces de tous les diagrammes de Voronoï d'ordres $\leq k$ de n points de \mathbb{R}^d est

$$O\left(k^{\left\lceil \frac{d+1}{2} \right\rceil} n^{\left\lfloor \frac{d+1}{2} \right\rfloor}\right)$$

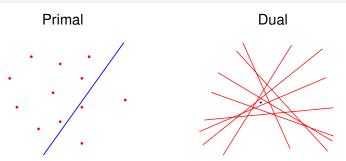
Construction

C'est aussi le temps requis pour calculer ces diagrammes si $d \ge 3$.

Pour d = 2, le temps est $O(nk^2 \log \frac{n}{k})$

Corollaire 2

k-ensembles



Etant donné un ensemble $\mathcal P$ de n points de $\mathbb R^d$, un k-ensemble est un sous-ensemble de $\mathcal P$ de taille k qui peut être séparé des autres points de $\mathcal P$ par un hyperplan

Le nombre total de $\leq k$ -ensembles de \mathcal{P} est

$$O\left(k^{\left\lceil \frac{d}{2}\right\rceil}n^{\left\lfloor \frac{d}{2}\right\rfloor}\right)$$

D'autres algorithmes randomisés dans la suite du cours

- La méthode probabiliste et le lemme local de Lovasz
- Projections aléatoires
- La recherche de plus proches voisins en grandes dimensions