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Starting Point: Graph Planarity

Question. Given a graph G, can we draw it in IR? without crossings?
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» Necessary and Sufficient Criteria for Planarity, e.g.,
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G is not planar < G contains (a subdivided) Ks or K3 3
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Question. Given a graph G, can we draw it in IR? without crossings?

AT & A

K4 planar K23 planar K33 not planar Ks not planar

Classical and well-understood:

» Necessary and Sufficient Criteria for Planarity, e.g.,
» Kuratowski
G is not planar < G contains (a subdivided) Ks or K3 3

» Hanani—Tutte
G can be drawn such that every pair of
G is planar < vertex-disjoint edges cross an even number
of times

> Linear-time planarity testing algorithms (Hopcroft-Tarjan)



Graphs and Simplicial Complexes

» ubiquitous combinatorial structure
> model pairwise interactions

» 1-dimensional spaces

e simplicial complexes > higher-dimensional spaces built from
(hypergraphs) simple building blocks (simplices)
» combinatorial description, basic input
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The Plan For Today

1. Embeddability of Simplicial Complexes
» higher-dimensional analogue of planarity

> classical topic in geometric topology:
van Kampen obstruction, Whitney trick
(elimination of double points)

» algorithms and computational complexity

2. Elimination Higher-Multiplicity Intersections

» Combinatorial application: counterexamples to the Topological
Tverberg Conjecture

* Many Important Topics Omitted
» Classificiation of embeddings (knot theory)
» Graphs on surfaces
» Quantitative nonembeddability (crossing numbers)
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k =1,d = 2 (graph planarity): linear-time (Hopcroft-Tarjan)
k = d = 2: Kuratowski-style characterization (Halin—Jung 1964)
~~ linear-time algorithm.

oy o

Ki=K; Kjp=Ksz Ky = 52 Ky Kvn

Every graph embeds in IR3, every 2-dimensional complex
embeds in R®, ... (general position)

There exist k-dimensional complexes not embeddable in IR?*
(van Kampen—Flores)

d = 2k, k > 3: van Kampen—Shapiro—Wu obstruction
~~ polynomial-time algorithm
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’ Given a k-dimensional simplicial complex K, does it embed into IR9?

» For d > 3, no hope for Kuratowski-style criterion

» Computational Viewpoint: algorithms to decide embeddability?

> d>4 (éadek, Kreél, Matougek, Tancer, Vok¥inek, W. 2011-2013)
» k>d—12>4 = algorithmically undecidable
» d < % = NP-hard; no algorithm known!

» d > 355 = polynomial-time

> d =3 (Matougek, Sedgwick, Tancer, W. 2014)
Embeddability in R3 (or $3) is algorithmically decidable.

(Builds on work of Haken, Rubinstein—Thompson in knot theory /
3-manifold topology: unknot recognition, 3-sphere recognition)



Embeddability in Higher Dimensions

‘ Given a k-dimensional simplicial complex K, does it embed into IR9?

» For d > 3, no hope for Kuratowski-style criterion

» Computational Viewpoint: algorithms to decide embeddability?

k(=2 3 4 5 6 7 8 9 10 11 12 13 14
1|P

2| P Dec NP

3 Dec NP NP P

4 NP Un NP NP P

5 Un Un NP NP P P

6 Un Un NP NP NP P P

T Un Un NP NP NP P P P
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Embeddability in R3: structure of the algorithm

> Test if K can be thickened to any 3-manifold X; check all possible
thickenings.

» The boundary of an embeddable X must be a disjoint union of
orientable surfaces (spheres with handles).

> If X can be embedded in S3, then there is an embedding such that
the complement is a union of balls and handle bodies (Fox 1948).

> Strategy: “Guess” a meridian v, glue a thickened disk to X along
~. Preserves embeddability, simplifies X. Recurse.

X outside 5 X' outside 5
ol

» Key Theorem. If X embeds in 53, then there exists a short
meridian v (of length bounded by a computable function of the
number of tetrahedra of X).
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Embeddability K < R and Deleted Products

Deleted Products and Embeddings
intersections of <«  zeros of auxiliary antipodal map K

f: K—R? f: (K x K)\ diagonal — R? )

N
\

= “deleted product” ,/I

f(x,y) = f(x) — f(y) .
(K x K)\diagonal

antipodal symmetry
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Embeddability K < R and Deleted Products

Deleted Products and Embeddings
intersections of <«  zeros of auxiliary antipodal map K

—e

f: K— R f: (K x K) \ diagonal — R

N
\

= “deleted product” ,/I

fx,y) = f(x) — f(y) .
(K x K)\diagonal

Nonembeddability via “Borsuk-Ulam Theorems”

No antipodal map (K x K) \ diagonal — R?\ {0}
= no embedding K — R

» Classical example: Borsuk-Ulam Theorem antipodal symmetry

No antipodal map S¢ — R4 \ {0}

van Kampen—Shapiro-Wu ( = embeddability)

dimK = ¢ >3 and 3 antipodal map (K x K) \ diagonal — R¢ \ {0}
= 3 embedding K — R¢

> Analogous results for for dim K < 2d — 1 (Haefliger-Weber) , fails for
dimK > %d (intuitively: presence of triple crossings)
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Algebraic Intersection Numbers

Proposition
Suppose dim K = %d . There exists a symmetry-preserving map

(K x K) \ diagonal — R9\ {0}
iff there exists a map f: K — RY in general position such that

f(o). f(7) =0
——
algebraic intersection number
for any pair of vertex-disjoint simplices of K.
e

. ; !

algebraic intersection number 0 _
finger move



The Classical Whitney Trick

» Eliminate a pair of isolated double points of opposite sign by a
local move (an ambient isotopy fixed outside a small ball),
provided the codimension is at least 3.

> ldea: “push” o upwards until the two intersections points x
and y disappear, keeping 7 and the boundary of ¢ and fixed.

» In low codimensions, doing this might require passing over
some obstacles and/or introducing new double points, but in
codimension 3 or more this can be avoided.
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Higher-Multiplicity intersections: Tverberg's Theorem

Theorem (Tverberg 1966)
Letr>2,d>1. Set N :=(d +1)(r —1).
Every S C R? with |S| > N + 1 has an “r-fold intersecting partition”

S=AU...UA,, conv(A;) N...Nconv(A,) # 0.
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Higher-Multiplicity intersections: Tverberg's Theorem

Theorem (Tverberg 1966)
Letr>2,d>1. Set N :=(d +1)(r —1).
Every S C R? with |S| > N +1 has an “r-fold intersecting partition”

S=AU...UA, conv(A;) N...Nconv(A,) # 0.

d=2r=3,N+1=7

Question
Is convexity/linearity necessary, or is continuity enough?
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Topological Tverberg Conjecture

Conjecture (Barany 1976) 3-fold intersection
Letr>2,d>1, N=(d+1)(r—1),
oN = N-dimensional simplex.

Then every continuous map f: o/ — R9

has an r-fold intersection.
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Conjecture (Bérény 1976) 3-fold intersection
Letr>2,d>1, N=(d+1)(r—1),
oN = N-dimensional simplex.
Then every continuous map f: o/ — R9
has an r-fold intersection.
Cornerstone of Topological Combinatorics
» True for
» r =2 [Bajmoczy—Bérany 1979]
» r prime [Bardny—Shlosman-Sziics 1981]
» r = p" prime power [Ozaydin 1987]
> Many variants and extensions (always for prime powers)
> Method: generalized Borsuk-Ulam theorems (for symmetric group)
Long-standing Open Problem
» What if r not a prime power?
» Conjecture commonly believed, existing methods insufficient!
3 symmetry-preserving (K x --- x K) \ diagonal — R =1\ {0} (Ozaydin)
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Eliminating Higher-Multiplicity Intersections

New Approach

» Construct counterexamples! Develop general theory to prove
existence of maps without r-fold intersections

Theorem (Mabillard & W.)
Ifdim K = ©=1d and codimension d — dim K > 3 then

r

K — R & (K x--- x K)\ diagonal — R4(=1)\ {0}
no r-fold intersection symmetry-preserving
Corollary

IfdimK = rjld, codimension d — dim K > 3, and r not a prime power

then there exists a map K — R? without r-fold intersection.

Proof. 3
Symmetry-preserving map exists [Ozaydin]
= map K — R? without r-fold intersection exists. O

» Counterexamples to “generalized Van Kampen—Flores conjecture”
for non-prime powers (answers a question of Gromov)

13/18



Overcoming the Codimension Restriction

» Solution 1 (Frick 2015): Reduction to lower-dimensional
skeleton using a trick of Gromov and Blagojevi¢—Frick—Ziegler

14 /18



Overcoming the Codimension Restriction

» Solution 1 (Frick 2015): Reduction to lower-dimensional
skeleton using a trick of Gromov and Blagojevi¢—Frick—Ziegler
Proposition (Gromov; Blagojevi¢—Frick—Ziegler)
Letr=6,18=3-6,15=3-(6— 1), 100 = (18 + 2)(6 — 1).

If there is g : : skelis('%%) — R® without 6-fold intersection,
then there exists f: o9 — R® without 6-fold intersection.

14 /18



Overcoming the Codimension Restriction

» Solution 1 (Frick 2015): Reduction to lower-dimensional
skeleton using a trick of Gromov and Blagojevi¢—Frick—Ziegler
Proposition (Gromov; Blagojevi¢—Frick—Ziegler)
Letr>2,d=3r, m=3(r—1), M:=(d+2)(r —1).

If there is g: : skelpm(c™) — RY without r-fold intersection,
then there exists f: o™ — RIT! without r-fold intersection.

~> counterexamples for d > 3r + 1
(f: 1% — R without 6-fold intersection)

14 /18



Overcoming the Codimension Restriction

» Solution 1 (Frick 2015): Reduction to lower-dimensional
skeleton using a trick of Gromov and Blagojevi¢—Frick—Ziegler
Proposition (Gromov; Blagojevi¢—Frick—Ziegler)
Letr>2,d=3r, m=3(r—1), M:=(d+2)(r —1).

If there is g: : skelpm(c™) — RY without r-fold intersection,
then there exists f: o™ — RIT! without r-fold intersection.

~> counterexamples for d > 3r + 1
(f: 1% — R without 6-fold intersection)

» Solution 2 (Mabillard & W. 2015): Prismatic maps
~» counterexamples for d > 3r

(f: 0% — R without 6-fold intersection)

14 /18



Overcoming the Codimension Restriction

» Solution 1 (Frick 2015): Reduction to lower-dimensional
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If there is g: : skelpm(c™) — RY without r-fold intersection,
then there exists f: o™ — RIT! without r-fold intersection.

~> counterexamples for d > 3r + 1
(f: 1% — R without 6-fold intersection)

» Solution 2 (Mabillard & W. 2015): Prismatic maps
~» counterexamples for d > 3r

(f: 0% — R without 6-fold intersection)

» Further improvement in codimension restriction [Avvakumov,
Mabillard, Skopenkov, W.] ~~ counterexamples for d > 2r
(f: 0% — R'? without 6-fold intersection)
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r-Fold Algebraic Intersection Numbers

Proposition
Suppose dim K = %d . There exists a symmetry-preserving map

(K x --- x K) \ diagonal — R4(—1)\ {0}
iff there exists a map f: K — R in general position such that

f(o1)e ...« f(0oy) =0

r-fold algebraic intersection number

for any r-tuple of vertex-disjoint simplices of K.

15/18



Triple Whitney Trick




Triple Whitney Trick




Triple Whitney Trick

Three disks inside a ball intersecting in two points of opposite sign.



Triple Whitney Trick

Restriction to blue disk: intersection points in different
components of the intersections.
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Outlook / Open Problems

» Embeddability for dim K > 5d? Decidable/undecidable?

» codimension d — dim K > 37 Extensions of Haefliger-Weber:
“Calculus of embeddings” (Goodwillie—Klein—Weiss).
Algorithmic?
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Multiple Intersections
» Codimension 17
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» The Planar Case? Is there an analogue of the Hanani-Tutte
Theorem for r-fold intersections? (Symmetry-preserving map
= map to R? without r-fold intersection?)

17/18



Outlook / Open Problems
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Embeddability for dim K > 2d? Decidable/undecidable?

» codimension d — dim K > 37 Extensions of Haefliger-Weber:
“Calculus of embeddings” (Goodwillie—Klein—Weiss).
Algorithmic?

Embeddability for d = 3. Computational complexity?
Construct embeddings / maps without r-fold intersections
(# decide existence)

Multiple Intersections

» Codimension 17

» The Planar Case? Is there an analogue of the Hanani-Tutte
Theorem for r-fold intersections? (Symmetry-preserving map
= map to R? without r-fold intersection?)

Other "h-principles” in topological combinatorics?

(equivariant map from configuration space = geometric solution?)
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Merci de votre attention!



