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graphs can encode statistical information about the data, or geometric information, or topological information, or a mixture of those.

Graph Structures in the Data Sciences

1

• Geometric proxy: neighborhood graphs, k-NN graphs, etc.

• Statistical proxy: dendrograms, cluster trees, spanning trees, etc.

• Input: proteins, social networks, galaxies, etc.

• Topological proxy: Reeb graphs, Joint Contour Nets, Mappers, etc.
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principle: summarize the topological structure of a map f : X → R through a graph

Topological graphs



Reeb Graph
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x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1({f(x)}) ]

Rf (X) := X/ ∼

X
f //

∼

��

R

Rf (X)

<<
R

fX

Prop: Rf (X) is a 1-d stratified space
(graph) e.g. when (X, f) is Morse,
or more generally of Morse type

a b c a b c



Applications of Reeb graphs
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• Skeletonization, parametrization

• Data comparison, segmentation, matching, property transfer, ...

• Time-varying data

• Scientific visualization

• · · ·



the basic question underlying these applications is to be able to compare Reeb graphsReeb graphs as metric spaces
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x

y
γ

Def: df (x, y) := infγ:x ymax f ◦ γ −min f ◦ γ

Rf



the basic question underlying these applications is to be able to compare Reeb graphsReeb graphs as metric spaces
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Def: dGH(Rf ,Rg) := infνf ,νg dH(νf (Rf ), νg(Rg))

νg

Rf Rg

Gromov-Hausdorff distance:

Note: dH(X,Y ) = inf{ε | Y ⊆
⋃
x∈X B(x, ε) and X ⊆

⋃
y∈Y B(y, ε)}
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the basic question underlying these applications is to be able to compare Reeb graphsReeb graphs as metric spaces
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Def: dGH(Rf ,Rg) := infνf ,νg dH(νf (Rf ), νg(Rg))

νg

Rf Rg

dGH is hard to compute, even for metric trees [Agarwal et al. 2015]

Gromov-Hausdorff distance:

variants and simplifications:

• correspondences in
product space [Gromov]

• correspondences from

[Bauer et al.]

continuous maps

• descriptor distances

• edit distances [di Fabio, Landi]

• interleaving distances

[Morozov et al.] [de Silva et al.]



Descriptors for Reeb graphs
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Ext+
0

Ord+
0

Rel−1

Ext−1

Dg Rf : bag-of-features descriptor for Rf (X):

Ord0Rf ←→ downward branches

Rel1Rf ←→ upward branches

Ext0Rf ←→ trunks (cc)

Ext1Rf ←→ loops

ordinary / relative

extended



Descriptors for Reeb graphs

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2009]

ordinary / relative

extended

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family
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Descriptors for Reeb graphs

Ext+
0

Ord+
0

Rel−1

Ext−1

Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2009]

ordinary / relative

extended

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

Ord: appears/dies in sublevels

Rel: appears/dies in superlevels

Ext: appears in sublevels, dies in superlevels 6



Descriptors for Reeb graphs

Ext+
0

Ord+
0

Rel−1

Ext−1

ordinary / relative

extended

Theorem (stability): [Bauer, Ge, Wang 2014]

dB(DgRf ,DgRg) ≤ 6 dGH(Rf ,Rg)

6



Descriptors for Reeb graphs

Ext+
0

Ord+
0

Rel−1

Ext−1

ordinary / relative

extended

Theorem (stability): [Bauer, Ge, Wang 2014]

dB(DgRf ,DgRg) ≤ 6 dGH(Rf ,Rg)

cost(m)

6



Descriptors for Reeb graphs

Ext+
0

Ord+
0

Rel−1

Ext−1

ordinary / relative

extended

Note: dB(Dg ·,Dg ·) is only a pseudometric on Reeb graphs

6



by ”locally” is meant ”locally in the Gromov-Hausdorff distance”

Descriptors for Reeb graphs

Ext+
0

Ord+
0

Rel−1

Ext−1

ordinary / relative

extended

Note: dB(Dg ·,Dg ·) is only a pseudometric on Reeb graphs

Thm: [Carrière, O. 2017]

dB(Dg ·,Dg ·) is locally a metric equivalent to dGH

6



Computing Reeb graphs

7

Procedure given a point cloud P and a filter f : P → R:

1. build a (possibly non-manifold) 2-d simplicial complex X on top of P

2. compute the Reeb graph of (X, f̄), where f̄ is the PL interpolation of f



Computing Reeb graphs

7

Procedure given a point cloud P and a filter f : P → R:

1. build a (possibly non-manifold) 2-d simplicial complex X on top of P

2. compute the Reeb graph of (X, f̄), where f̄ is the PL interpolation of f

Complexity: O(nm) for n points and m simplices

Q: convergence?

Thm: [Dey, Wang 2013]

For P an ε-sample of M a sufficiently regular manifold, and for X a Rips
complex on P of appropriate parameter r, dB(Dg Rf̄ (X), Dg Rf (M)) ≤ cr.



Approximations to Reeb graphs
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• Joint Contour Nets [Carr, Duke 2014]

• Mappers [Singh, Mémoli, Carlsson 2007]

• etc.

• α-Reeb graphs [Chazal, Huang, Sun 2015]



Reeb Graph vs. Mapper
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x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1({f(x)}) ]

Rf (X) := X/ ∼

R
fX

mapper ≡ pixelized Reeb graph



Mapper in the continuous setting
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X

f

Y = R

I
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Mapper in the continuous setting
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X

f

Y = R

I

V

Mapper

Mf (X, I)



in practice, the result may be different from the continuous setting due to the neighborhood graphMapper in practice

10

X

f

Y = R

I

V

Mapper

δ

G = δ-neighborhood graph

Mf (G, I)



Mapper in applications
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Two types of applications:

• clustering

• feature selection

principle: identify statistically relevant sub-
populations through patterns (flares, loops)

flares

loops



In all these applications, Mapper has been used a bit like a magical tool. The main problem was the choice of parameters, which was difficult beause: 1) the method is extremely sensitive to the choice of parameters 2) there was no objective measure of quality of the outcome, which could have been used to drive the parameter selection So, what are the parameters?Choice of parameters

12

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- neighborhood size δ

geometric scale

range scale

lens | filter
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Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- neighborhood size δ

geometric scale

range scale

→ uniform cover I:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

r

g = 30%

I

R

lens | filter



Choice of parameters
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→ in practice: trial-and-error

Nielson et al.: Topological Data Analysis for Discovery in Preclinical Spinal Cord
Injury and Traumatic Brain Injury, Nature, 2015



Here is a simple experiment to gain insights into the choice of parameters.Choice of parameters

12

f̂
=

densit
y esti

mator

f
x =

x-coordinate

Example: P ⊂ R2 sampled from a
known probability distribution



What we see here is that the parameters are not completely independent. First of all, the choice of scale is bound to the choice of function since it depends on the structure of the level sets.Choice of parameters

12
δ = 1% δ = 10% δ = 25%

r = 0.3, g = 20%

f = f̂

f = fx



Meanwhile, the resolution and gain are related to each other.Choice of parameters

12

g

1/r
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

15

25

35

45

f = fx, δ = 1%



We see that some features are more delicate than others. For instance, here the loop is a fairly stable feature, while the central cluster appears alternatively as an independent cluster or as a flare

Meanwhile, the resolution and gain are related to each other.Choice of parameters

12

g

1/r
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

15

25

35

45

f = fx, δ = 1%



Choice of parameters

12

Recent contributions:

→ clarify the roles of r and g in the continuous setting

→ relate discrete and continuous Mappers under conditions on δ

→ introduce metrics between mappers

→ establish stability and convergence results for Mappers

2 approaches:

• connection to topological persistence and representation theory
[Carrière, O. 2016] < [Bauer, Ge, Wang 2013] [Cohen-Steiner, Edelsbrunner, Harer 2009]

• connection to constructible cosheaves in Sets and stratification theory
[Munch, Wang 2016] < [de Silva, Munch, Patel 2016]
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→ relate discrete and continuous Mappers under conditions on δ

→ introduce metrics between mappers

→ establish stability and convergence results for Mappers

2 approaches:

• connection to constructible cosheaves in Sets and stratification theory
[Munch, Wang 2016] < [de Silva, Munch, Patel 2016]

• connection to topological persistence and representation theory
[Carrière, O. 2016] < [Bauer, Ge, Wang 2013] [Cohen-Steiner, Edelsbrunner, Harer 2008]
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Descriptor for Mapper

R

Reminder: mapper ≡ pixelized Reeb graph

R
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QOrd
I

QRel
I

QExt
I

Descriptor for Mapper

Def: Given X, f, I:

Dg Mf :=
(

Ord Rf \QOrd
I

)
∪
(

Rel Rf \QRel
I

)
∪
(

Ext Rf \QExt
I

)



Message: each staircase is a union of stairs; each stair is defined from a single interval or pair of intervals in the cover

13

QOrd
I

QRel
I

QExt
I

Descriptor for Mapper

QOrd
I =

⋃
I∈I

Q+

Ĩ∪I+ QExt
I =

⋃
I,J∈I
I∩J 6=∅

Q−I∪J

Ĩ
I+

I−

Def: Given X, f, I:

Dg Mf :=
(

Ord Rf \QOrd
I

)
∪
(

Rel Rf \QRel
I

)
∪
(

Ext Rf \QExt
I

)
QRel
I =

⋃
I∈I

Q−
I−∪Ĩ
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QOrd
I

QRel
I

QExt
I

Descriptor for Mapper

Thm: [Carrière, O. 2016]

Dg Mf provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches

Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)

Ext1 ←→ loops
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Stability of Mapper

Definition: Dg Mf :=
(
Ord Rf \QOrd

I
)
∪
(
Rel Rf \QRel

I
)
∪
(
Ext Rf \QExt

I
)

Observation: distance to staircase boundary measures (in-)stability of each
feature of Mf (X, I) w.r.t. perturbations of (X, f, I)
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Dg Mf Dg Mg←→

Definition: Given X, I:

dI(Dg Mf , Dg Mg) := inf
m

costI(m)

m :

costI(m)

Stability of Mapper
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Dg Mf Dg Mg←→

Definition: Given X, I:

dI(Dg Mf , Dg Mg) := inf
m

costI(m)

m :

Thm: [Carrière, O. 2016]

For any Morse-type functions f, g : X → R:

dI(Dg Mf (X, I), Dg Mg(X, I)) ≤ ‖f − g‖∞

costI(m)

Stability of Mapper
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Dg Mf Dg Mg←→

Definition: Given X, I:

dI(Dg Mf , Dg Mg) := inf
m

costI(m)

m :

Thm: [Carrière, O. 2016]

For any Morse-type functions f, g : X → R:

dI(Dg Mf (X, I), Dg Mg(X, I)) ≤ ‖f − g‖∞

costI(m)

Extensions to:

• perturbations of X

• perturbations of I

Stability of Mapper
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X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

Questions:

• Statistical properties of the estimator Mf (X̂n, δn, I(gn, rn)) ?

• Convergence to the ground truth Rf (X) in dB? Deviation bounds?

f

I(gn, rn)

Convergence of Mapper

δn

Proposition [Carrière, Michel, O. 2017]:

Both maps are measurable.



The extra difficulty here is that there are some parameters to tune: δn, rn and gn. In cases where a, b are known, we can choose optimal parameter values.

16

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

Theorem [Carrière, Michel, O. 2017]:

If µ is (a, b)-standard, then for g ∈
(
0, 1

2

)
, δn = 8

(
2 logn
an

)1/b
, rn = Vn(δn)

g
:

sup
µ∈P

E
[
dB
(
Dg Rf (X)

)
, Dg Mf (X̂n, δn, I(g, rn))

]
≤ C ω(δn),

where ω is the modulus of continuity of f and C depends only on a, b. Moreover, the
estimator Dg Mf (X̂n, δn, I(g, rn)) is minimax optimal (up to logn factors).

f

I(gn, rn)

Convergence of Mapper

δn

Vn(δn) := max{f(Xi)− f(Xj) | ‖Xi −Xj‖ ≤ δn}
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Theorem [Carrière, Michel, O. 2017]:

If µ is (a, b)-standard, then for g ∈
(
0, 1

2

)
, δn = 8

(
2 logn
an

)1/b
, rn = Vn(δn)

g
:

sup
µ∈P

E
[
dB
(
Dg Rf (X)

)
, Dg Mf (X̂n, δn, I(g, rn))

]
≤ C ω(δn),

where ω is the modulus of continuity of f and C depends only on a, b. Moreover, the
estimator Dg Mf (X̂n, δn, I(g, rn)) is minimax optimal (up to logn factors).

f

I(gn, rn)

Convergence of Mapper

δn

Vn(δn) := max{f(Xi)− f(Xj) | ‖Xi −Xj‖ ≤ δn}

known generative model



Take s(n) = o( n
logn

)
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X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)

→ subsampling to tune δn: let β > 0 and take s(n) = n
log(n)1+β

δn := dH(X̂s(n)
n , X̂n) where X̂

s(n)
n is a subset of X̂n of size s(n)

Convergence of Mapper

δn



Theorem [Carrière, Michel, O. 2017]:

If µ is (a, b)-standard, then for g ∈
(
0, 1

2

)
, δn a above, rn = Vn(δn)

g
:

sup
µ∈P

E
[
dB
(
Dg Rf (X)

)
, Dg Mf (X̂n, δn, I(g, rn))

]
≤ C ω

((
log(n)2+β

n

)1/b
)

Take s(n) = o( n
logn

)
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X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

I(gn, rn)

→ subsampling to tune δn: let β > 0 and take s(n) = n
log(n)1+β

δn := dH(X̂s(n)
n , X̂n) where X̂

s(n)
n is a subset of X̂n of size s(n)

Convergence of Mapper

δn

→ iterate subsampling to get confidence regions



Mapper computed after denoising (density thresholding) with x-coordinate function as filter

synthetic experiments to start with

Mapper computed from scratch with height function, everything is fine

Experiments

17

confidence level: 85%



Same thing here.

Mapper computed with minus the height function → quasi-horizontal branches have confidence intervals intersecting the diagonal (not shown in the diagram)

Experiments

17

confidence level: 85%



1st principal component is used as filter. Mapper structure ok but bootstrap fails (confidence intervals intersect diagonal) due to low number of observations

Miller-Raven diabetes study: two flares corresponding to two groups of diseases

Experiments

17

confidence level: 85%
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