Geometry Understanding in Higher Dimensions
 Collège de France, June 2017

Topological Graphs for Data Analysis Structure, Stability, and Statistics

Steve Oudot

Graph Structures in the Data Sciences

- Input: proteins, social networks, galaxies, etc.
- Statistical proxy: dendrograms, cluster trees, spanning trees, etc.
- Geometric proxy: neighborhood graphs, k-NN graphs, etc.
- Topological proxy: Reeb graphs, Joint Contour Nets, Mappers, etc.

Graph Structures in the Data Sciences

- Input: proteins, social networks, galaxies, etc.
- Statistical proxy: dendrograms, cluster trees, spanning trees, etc.
- Geometric proxy: neighborhood graphs, k-NN graphs, etc.
- Topological proxy: Reeb graphs, Joint Contour Nets, Mappers, etc.

Topological graphs

principle: summarize the topological structure of a map $f: X \rightarrow \mathbb{R}$ through a graph

Reeb Graph

$x \sim y \Longleftrightarrow\left[f(x)=f(y)\right.$ and x, y belong to same cc of $\left.f^{-1}(\{f(x)\})\right]$
$\mathrm{R}_{f}(X):=X / \sim$

Prop: $\mathrm{R}_{f}(X)$ is a 1-d stratified space (graph) e.g. when (X, f) is Morse, or more generally of Morse type

Applications of Reeb graphs

- Scientific visualization
- Skeletonization, parametrization

- Data comparison, segmentation, matching, property transfer, ...
- Time-varying data

(a)

(b)

(c)

(d)

Reeb graphs as metric spaces

Def: $\mathrm{d}_{f}(x, y):=\inf _{\gamma: x \rightsquigarrow y} \max f \circ \gamma-\min f \circ \gamma$

Reeb graphs as metric spaces

Gromov-Hausdorff distance:
Def: $\mathrm{d}_{\mathrm{GH}}\left(\mathrm{R}_{f}, \mathrm{R}_{g}\right):=\inf _{\nu_{f}, \nu_{g}} \mathrm{~d}_{\mathrm{H}}\left(\nu_{f}\left(\mathrm{R}_{f}\right), \nu_{g}\left(\mathrm{R}_{g}\right)\right)$

Note: $\mathrm{d}_{\mathrm{H}}(X, Y)=\inf \left\{\varepsilon \mid Y \subseteq \bigcup_{x \in X} B(x, \varepsilon)\right.$ and $\left.X \subseteq \bigcup_{y \in Y} B(y, \varepsilon)\right\}$

Reeb graphs as metric spaces

Gromov-Hausdorff distance:
Def: $\mathrm{d}_{\mathrm{GH}}\left(\mathrm{R}_{f}, \mathrm{R}_{g}\right):=\inf _{\nu_{f}, \nu_{g}} \mathrm{~d}_{\mathrm{H}}\left(\nu_{f}\left(\mathrm{R}_{f}\right), \nu_{g}\left(\mathrm{R}_{g}\right)\right)$
d_{GH} is hard to compute, even for metric trees [Agarwal et al. 2015]

Reeb graphs as metric spaces

Gromov-Hausdorff distance:
variants and simplifications:

- correspondences in product space [Gromov]
- correspondences from continuous maps
[Bauer et al.]
- edit distances [di Fabio, Landi]
- interleaving distances [Morozov et al.] [de Silva et al.]
- descriptor distances

Def: $\mathrm{d}_{\mathrm{GH}}\left(\mathrm{R}_{f}, \mathrm{R}_{g}\right):=\inf _{\nu_{f}, \nu_{g}} \mathrm{~d}_{\mathrm{H}}\left(\nu_{f}\left(\mathrm{R}_{f}\right), \nu_{g}\left(\mathrm{R}_{g}\right)\right)$
$\mathrm{d}_{\text {GH }}$ is hard to compute, even for metric trees [Agarwal et al. 2015]

Descriptors for Reeb graphs

$\operatorname{Dg} \mathrm{R}_{f}$: bag-of-features descriptor for $\mathrm{R}_{f}(X)$:

$\operatorname{Ord}_{0} \mathrm{R}_{f} \longleftrightarrow$ downward branches	$\operatorname{Ext}_{0} \mathrm{R}_{f} \longleftrightarrow$ trunks (cc)
$\operatorname{Rel}_{1} \mathrm{R}_{f} \longleftrightarrow$ upward branches	$\operatorname{Ext}_{1} \mathrm{R}_{f} \longleftrightarrow$ loops

- extended

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Stenere, Edelsbrunner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edestsbunner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edestsbunner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edestsbunner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edestsbunner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Stenere, Edelsbrunner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Stenere, Edelsbrunner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Stenere, Edelsbrunner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Stenere, Edelsbrunner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Stenere, Edelsbrunner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edeststruner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edeststruner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edeststruner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edeststruner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edeststruner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edeststruner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edestsbunner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edeststruner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edeststruner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Construction uses extended persistence: [Cohen-Steiner, Edeststruner, Harer 2009]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph
- use homological algebra to encode the evolution of the topology of the family

Descriptors for Reeb graphs

Theorem (stability): [Bauer, Ge, Wang 2014]

$$
\mathrm{d}_{B}\left(\mathrm{Dg} \mathrm{R}_{f}, \operatorname{Dg} \mathrm{R}_{g}\right) \leq 6 \mathrm{~d}_{\mathrm{GH}}\left(\mathrm{R}_{f}, \mathrm{R}_{g}\right)
$$

Descriptors for Reeb graphs

Theorem (stability): [Bauer, Ge, Wang 2014]

$$
\mathrm{d}_{B}\left(\mathrm{Dg} \mathrm{R}_{f}, \operatorname{Dg} \mathrm{R}_{g}\right) \leq 6 \mathrm{~d}_{\mathrm{GH}}\left(\mathrm{R}_{f}, \mathrm{R}_{g}\right)
$$

Descriptors for Reeb graphs

Note: $\mathrm{d}_{B}(\mathrm{Dg} \cdot, \mathrm{Dg} \cdot)$ is only a pseudometric on Reeb graphs

Descriptors for Reeb graphs

Note: $\mathrm{d}_{B}(\mathrm{Dg} \cdot, \mathrm{Dg} \cdot)$ is only a pseudometric on Reeb graphs
Thm: [Carrière, O. 2017]
$\mathrm{d}_{B}(\mathrm{Dg} \cdot, \mathrm{Dg} \cdot)$ is locally a metric equivalent to d_{GH}

Computing Reeb graphs

Procedure given a point cloud P and a filter $f: P \rightarrow \mathbb{R}$:

1. build a (possibly non-manifold) 2-d simplicial complex X on top of P
2. compute the Reeb graph of (X, \bar{f}), where \bar{f} is the PL interpolation of f

Computing Reeb graphs

Procedure given a point cloud P and a filter $f: P \rightarrow \mathbb{R}$:

1. build a (possibly non-manifold) 2-d simplicial complex X on top of P
2. compute the Reeb graph of (X, \bar{f}), where \bar{f} is the PL interpolation of f

Complexity: $O(n m)$ for n points and m simplices
Q: convergence?

Thm: [Dey, Wang 2013]
For P an ε-sample of M a sufficiently regular manifold, and for X a Rips complex on P of appropriate parameter $r, \mathrm{~d}_{B}\left(\operatorname{Dg}_{\bar{f}}(X), \operatorname{Dg} \mathrm{R}_{f}(M)\right) \leq c r$.

Approximations to Reeb graphs

- α-Reeb graphs [Chazal, Huang, Sun 2015]
- Joint Contour Nets [Carr, Duke 2014]
- Mappers [Singh, Mémoli, Carlsson 2007]
- etc.

Reeb Graph vs. Mapper

$x \sim y \Longleftrightarrow\left[f(x)=f(y)\right.$ and x, y belong to same cc of $\left.f^{-1}(\{f(x)\})\right]$
$\mathrm{R}_{f}(X):=X / \sim$

mapper \equiv pixelized Reeb graph

Mapper in the continuous setting

Mapper in the continuous setting

Mapper in the continuous setting

Mapper in the continuous setting

Mapper in practice

Mapper in applications

Two types of applications:

- clustering
- feature selection
principle: identify statistically relevant subpopulations through patterns (flares, loops)

Choice of parameters

Parameters:

- function $f: P \rightarrow \mathbb{R}$ lens | filter
- cover \mathcal{I} of $\operatorname{im}(f)$ by open intervals
- neighborhood size δ

Choice of parameters

Parameters:

- function $f: P \rightarrow \mathbb{R} \longleftarrow$ lens | filter
- cover \mathcal{I} of $\operatorname{im}(f)$ by open intervals
- neighborhood size δ

range scale geometric scale

\rightarrow uniform cover \mathcal{I} :
- resolution / granularity: r (diameter of intervals)
- gain: g (percentage of overlap)

Choice of parameters

\rightarrow in practice: trial-and-error
high-dimensional data sets ${ }^{40,48}$. This is performed automatically within the software, by deploying an ensemble machine learning algorithm that iterates through overlapping subject bins of different sizes that resample the metric space (with replacement), thereby using a combination of the metric location and similarity of subjects in the network topology. After performing millions of iterations, the algorithm returns the most stable, consensus vote for the resulting 'golden network' (Reeb graph), representing the multidimensional data shape ${ }^{12,40}$.

Nielson et al.: Topological Data Analysis for Discovery in Preclinical Spinal Cord Injury and Traumatic Brain Injury, Nature, 2015

Choice of parameters

Example: $P \subset \mathbb{R}^{2}$ sampled from a known probability distribution

Choice of parameters

$$
r=0.3, g=20 \%
$$

$$
\delta=1 \%
$$

$\delta=10 \%$

$\delta=25 \%$

Choice of parameters

$$
\begin{aligned}
& \text { 4, } 50-10
\end{aligned}
$$

$$
\begin{aligned}
& 35-10
\end{aligned}
$$

Choice of parameters

Choice of parameters

Recent contributions:

\rightarrow clarify the roles of r and g in the continuous setting
\rightarrow introduce metrics between mappers
\rightarrow establish stability and convergence results for Mappers
\rightarrow relate discrete and continuous Mappers under conditions on δ

2 approaches:

- connection to topological persistence and representation theory
[Carrière, O. 2016] < [Bauer, Ge, Wang 2013] [Cohen-Steiner, Edelsbrunner, Harer 2009]
- connection to constructible cosheaves in Sets and stratification theory
[Munch, Wang 2016] < [de Silva, Munch, Patel 2016]

Choice of parameters

Recent contributions:

\rightarrow clarify the roles of r and g in the continuous setting
\rightarrow introduce metrics between mappers
\rightarrow establish stability and convergence results for Mappers
\rightarrow relate discrete and continuous Mappers under conditions on δ

2 approaches:

- connection to topological persistence and representation theory
[Carrière, O. 2016] < [Bauer, Ge, Wang 2013] [Cohen-Steiner, Edelsbrunner, Harer 2008]
- connection to constructible cosheaves in Sets and stratification theory
[Munch, Wang 2016] < [de Silva, Munch, Patel 2016]

Descriptor for Mapper

Reminder: mapper \equiv pixelized Reeb graph

Descriptor for Mapper

Def: Given X, f, \mathcal{I} :
$\operatorname{Dg~M}_{f}:=\left(\operatorname{Ord}_{f} \backslash Q_{\mathcal{I}}^{\text {Ord }}\right) \cup\left(\operatorname{Rel}_{\mathrm{R}_{f}} \backslash Q_{\mathcal{I}}^{\mathrm{Rel}}\right) \cup\left(\operatorname{Ext~R}_{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ext}}\right)$

Descriptor for Mapper

Def: Given X, f, \mathcal{I} :

$$
\operatorname{Dg~M}_{f}:=\left(\operatorname{Ord} \mathrm{R}_{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ord}}\right) \cup\left(\operatorname{Rel}_{f} \backslash Q_{\mathcal{I}}^{\mathrm{Rel}}\right) \cup\left(\operatorname{Ext}_{\mathrm{R}_{f}} \backslash Q_{\mathcal{I}}^{\mathrm{Ext}}\right)
$$

$$
Q_{\mathcal{I}}^{\mathrm{Ord}}=\bigcup_{I \in \mathcal{I}} Q_{\tilde{I} \cup I^{+}}^{+} \quad Q_{\mathcal{I}}^{\mathrm{Rel}}=\bigcup_{I \in \mathcal{I}} Q_{I^{-} \cup \tilde{I}}^{-} \quad Q_{\mathcal{I}}^{\mathrm{Ext}}=\bigcup_{\substack{I, J \in \mathcal{I} \\ I \cap J \neq \emptyset}} Q_{I \cup J}^{-}
$$

Descriptor for Mapper

Thm: [Carrière, O. 2016]
Dg M_{f} provides a bag-of-features descriptor for $\mathrm{M}_{f}(X, \mathcal{I})$:
Ord $_{0} \longleftrightarrow$ downward branches
Ext $_{0} \longleftrightarrow$ trunks (cc)
$\operatorname{Rel}_{1} \longleftrightarrow$ upward branches
Ext $_{1} \longleftrightarrow$ loops

Descriptor for Mapper

Thm: [Carrière, O. 2016]
$\mathrm{Dg} \mathrm{M}_{f}$ provides a bag-of-features descriptor for $\mathrm{M}_{f}(X, \mathcal{I})$:
Ord $_{0} \longleftrightarrow$ downward branches
$\operatorname{Rel}_{1} \longleftrightarrow$ upward branches

Ext $_{0} \longleftrightarrow$ trunks (cc)
Ext $_{1} \longleftrightarrow$ loops

Descriptor for Mapper

Thm: [Carrière, O. 2016]
$\mathrm{Dg} \mathrm{M}_{f}$ provides a bag-of-features descriptor for $\mathrm{M}_{f}(X, \mathcal{I})$:
$\operatorname{Ord}_{0} \longleftrightarrow$ downward branches
$\operatorname{Rel}_{1} \longleftrightarrow$ upward branches
Ext $_{0} \longleftrightarrow$ trunks (cc)
Ext $_{1} \longleftrightarrow$ loops

Stability of Mapper

Definition: $\mathrm{Dg} \mathrm{M}_{f}:=\left(\operatorname{Ord}_{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ord}}\right) \cup\left(\operatorname{RelR}_{f} \backslash Q_{\mathcal{I}}^{\mathrm{Rel}}\right) \cup\left(\operatorname{ExtR}_{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ext}}\right)$
Observation: distance to staircase boundary measures (in-)stability of each feature of $\mathrm{M}_{f}(X, \mathcal{I})$ w.r.t. perturbations of (X, f, \mathcal{I})

Stability of Mapper

Definition: $\mathrm{Dg} \mathrm{M}_{f}:=\left(\operatorname{Ord}_{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ord}}\right) \cup\left(\operatorname{RelR}_{f} \backslash Q_{\mathcal{I}}^{\mathrm{Rel}}\right) \cup\left(\operatorname{ExtR}_{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ext}}\right)$
Observation: distance to staircase boundary measures (in-)stability of each feature of $\mathrm{M}_{f}(X, \mathcal{I})$ w.r.t. perturbations of (X, f, \mathcal{I})

Stability of Mapper

Definition: $\mathrm{Dg} \mathrm{M}_{f}:=\left(\operatorname{Ord}_{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ord}}\right) \cup\left(\operatorname{RelR}_{f} \backslash Q_{\mathcal{I}}^{\mathrm{Rel}}\right) \cup\left(\operatorname{ExtR}_{f} \backslash Q_{\mathcal{I}}^{\mathrm{Ext}}\right)$
Observation: distance to staircase boundary measures (in-)stability of each feature of $\mathrm{M}_{f}(X, \mathcal{I})$ w.r.t. perturbations of (X, f, \mathcal{I})

Stability of Mapper

Definition: Given X, \mathcal{I} :

$$
\mathrm{d}_{\mathcal{I}}\left(\operatorname{Dg} \mathrm{M}_{f}, \operatorname{Dg} \mathrm{M}_{g}\right):=\inf _{m} \operatorname{cost}_{\mathcal{I}}(\mathrm{m})
$$

$m: \mathrm{Dg} \mathrm{M}_{f} \longleftrightarrow \mathrm{Dg} \mathrm{M}_{g}$

Stability of Mapper

Definition: Given X, \mathcal{I} :

$$
\mathrm{d}_{\mathcal{I}}\left(\operatorname{Dg~M}_{f}, \operatorname{Dg} \mathrm{M}_{g}\right):=\inf _{m} \operatorname{cost}_{\mathcal{I}}(\mathrm{m})
$$

Thm: [Carrière, O. 2016]

For any Morse-type functions $f, g: X \rightarrow \mathbb{R}$:

$$
\mathrm{d}_{\mathcal{I}}\left(\operatorname{Dg~M}_{f}(X, \mathcal{I}), \operatorname{Dg~M}_{g}(X, \mathcal{I})\right) \leq\|f-g\|_{\infty}
$$

$m: \mathrm{Dg}_{\mathrm{g}} \longleftrightarrow \mathrm{Dg} \mathrm{M}_{g}$

Stability of Mapper

Definition: Given X, \mathcal{I} :

$$
\mathrm{d}_{\mathcal{I}}\left(\mathrm{Dg} \mathrm{M}_{f}, \operatorname{Dg} \mathrm{M}_{g}\right):=\inf _{m} \operatorname{cost}_{\mathcal{I}}(\mathrm{m})
$$

Thm: [Carrière, O. 2016]

For any Morse-type functions $f, g: X \rightarrow \mathbb{R}$:
$\mathrm{d}_{\mathcal{I}}\left(\operatorname{Dg~}_{f}(X, \mathcal{I}), \quad \operatorname{Dg~}_{g}(X, \mathcal{I})\right) \leq\|f-g\|_{\infty}$

Extensions to:

- perturbations of X
- perturbations of \mathcal{I}

$m: \mathrm{Dg}_{\mathrm{M}} \longleftrightarrow \mathrm{Dg} \mathrm{M}_{g}$

Questions:

- Statistical properties of the estimator $\mathrm{M}_{f}\left(\widehat{X}_{n}, \delta_{n}, \mathcal{I}\left(g_{n}, r_{n}\right)\right)$?
- Convergence to the ground truth $\mathrm{R}_{f}(X)$ in d_{B} ? Deviation bounds?

Convergence of Mapper

$$
V_{n}\left(\delta_{n}\right):=\max \left\{f\left(X_{i}\right)-f\left(X_{j}\right) \mid\left\|X_{i}-X_{j}\right\| \leq \delta_{n}\right\}
$$

Theorem [Carrière, Michel, O. 2017]:
If μ is (a, b)-standard, then for $g \in\left(0, \frac{1}{2}\right), \delta_{n}=8\left(\frac{2 \log n}{a n}\right)^{1 / b}, r_{n}=\frac{V_{n}\left(\delta_{n}\right)}{g}$:

$$
\sup _{\mu \in \mathcal{P}} \mathbb{E}\left[\mathrm{d}_{B}\left(\operatorname{Dg} \mathrm{R}_{f}(X)\right), \operatorname{Dg} \mathrm{M}_{f}\left(\widehat{X}_{n}, \delta_{n}, \mathcal{I}\left(g, r_{n}\right)\right)\right] \leq C \omega\left(\delta_{n}\right)
$$

where ω is the modulus of continuity of f and C depends only on a, b. Moreover, the estimator $\mathrm{Dg} \mathrm{M}_{f}\left(\widehat{X}_{n}, \delta_{n}, \mathcal{I}\left(g, r_{n}\right)\right)$ is minimax optimal (up to $\log n$ factors).

Convergence of Mapper

$$
V_{n}\left(\delta_{n}\right):=\max \left\{f\left(X_{i}\right)-f\left(X_{j}\right) \mid\left\|X_{i}-X_{j}\right\| \leq \delta_{n}\right\}
$$

Theorem [Carrière, Michel, O. 2017]: known generative model If μ is (a, b)-standard, then for $g \in\left(0, \frac{1}{2}\right), \delta_{n}=8\left(\frac{2 \log n}{a n}\right)^{1 / b}, r_{n}=\frac{V_{n}\left(\delta_{n}\right)}{g}$:

$$
\sup _{\mu \in \mathcal{P}} \mathbb{E}\left[\mathrm{d}_{B}\left(\operatorname{Dg} \mathrm{R}_{f}(X)\right), \operatorname{Dg~M}{ }_{f}\left(\widehat{X}_{n}, \delta_{n}, \mathcal{I}\left(g, r_{n}\right)\right)\right] \leq C \omega\left(\delta_{n}\right)
$$

where ω is the modulus of continuity of f and C depends only on a, b. Moreover, the estimator $\mathrm{Dg} \mathrm{M}_{f}\left(\widehat{X}_{n}, \delta_{n}, \mathcal{I}\left(g, r_{n}\right)\right)$ is minimax optimal (up to $\log n$ factors).

\rightarrow subsampling to tune δ_{n} : let $\beta>0$ and take $s(n)=\frac{n}{\log (n)^{1+\beta}}$
$\delta_{n}:=\mathrm{d}_{\mathrm{H}}\left(\hat{X}_{n}^{s(n)}, \hat{X}_{n}\right)$ where $\hat{X}_{n}^{s(n)}$ is a subset of \hat{X}_{n} of size $s(n)$

Convergence of Mapper

\rightarrow subsampling to tune δ_{n} : let $\beta>0$ and take $s(n)=\frac{n}{\log (n)^{1+\beta}}$ $\delta_{n}:=\mathrm{d}_{\mathrm{H}}\left(\hat{X}_{n}^{s(n)}, \hat{X}_{n}\right)$ where $\hat{X}_{n}^{s(n)}$ is a subset of \hat{X}_{n} of size $s(n)$

Theorem [Carrière, Michel, O. 2017]:
If μ is (a, b)-standard, then for $g \in\left(0, \frac{1}{2}\right), \delta_{n}$ a above, $r_{n}=\frac{V_{n}\left(\delta_{n}\right)}{g}$:

$$
\sup _{\mu \in \mathcal{P}} \mathbb{E}\left[\mathrm{d}_{B}\left(\operatorname{Dg} \mathrm{R}_{f}(X)\right), \operatorname{Dg~M}_{f}\left(\widehat{X}_{n}, \delta_{n}, \mathcal{I}\left(g, r_{n}\right)\right)\right] \leq C \omega\left(\left(\frac{\log (n)^{2+\beta}}{n}\right)^{1 / b}\right)
$$

Convergence of Mapper

\rightarrow subsampling to tune δ_{n} : let $\beta>0$ and take $s(n)=\frac{n}{\log (n)^{1+\beta}}$ $\delta_{n}:=\mathrm{d}_{\mathrm{H}}\left(\hat{X}_{n}^{s(n)}, \hat{X}_{n}\right)$ where $\hat{X}_{n}^{s(n)}$ is a subset of \hat{X}_{n} of size $s(n)$

Theorem [Carrière, Michel, O. 2017]:
If μ is (a, b)-standard, then for $g \in\left(0, \frac{1}{2}\right), \delta_{n}$ a above, $r_{n}=\frac{V_{n}\left(\delta_{n}\right)}{g}$:

$$
\sup _{\mu \in \mathcal{P}} \mathbb{E}\left[\mathrm{d}_{B}\left(\operatorname{Dg~R}_{f}(X)\right), \operatorname{Dg~M}{ }_{f}\left(\widehat{X}_{n}, \delta_{n}, \mathcal{I}\left(g, r_{n}\right)\right)\right] \leq C \omega\left(\left(\frac{\log (n)^{2+\beta}}{n}\right)^{1 / b}\right)
$$

Experiments

confidence level: 85\%

Experiments

confidence level: 85\%

Experiments

confidence level: 85\%

References

Metrics on Reeb graphs:

- M. Carrière, S. O. (2017): Proc. Sympos. Comput. Geom.
- de Silva, Munch, Patel (2016): Discrete Comput. Geometry, 55(4):854-906
- di Fabio, Landi (2016): Discrete Comput. Geometry, 55(2):423-461
- F. Chazal, R. Huang, J. Sun (2015): Discrete Comput. Geometry, 53(3):621-649
- U. Bauer, E. Munch, Y. Wang (2015): Proc. Sympos. Comput. Geom.
- U. Bauer, X. Ge, Y. Wang (2014): Proc. Sympos. Comput. Geom.
- Morozov, Weber (2014): Proc. TopoinVis

Mapper: structure, stability, statistics:

- M. Carrière, B. Michel, S. O. (2017): arXiv 1511.05823 [math.AT]
- M. Carrière, S. O. (2016): Proc. Sympos. Comput. Geom.
- E. Munch, B. Wang (2016): Proc. Sympos. Comput. Geom.
- G.Singh, F. Mémoli, G. Carlsson (2007): Proc. Sympos. Point-Based Graphics

Miscellaneous:

- Agarwal, Fox, Nath, Sidiropoulos, Wang (2015): Proc. Sympos. Algorithms Comput.
- Carr, Duke (2014): IEEE Trans Vis Comput Graph.
- Cohen-Steiner, Edelsbrunner, Harer (2009): J. Found. Comput. Mathematics
- M. Gromov (1981):Structures métriques pour les variétés riemanniennes. CEDIC

