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Geometric set systems

Point-disk incidences: an example of geometric set system.
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Geometric set systems

Typical applications: range searching, point set queries.

Map
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Macbeath regions

Macbeath decomposition (Macbeath 1952)

For any convex body K with unit volume and ε > 0, there is a
small collection of convex subsets of K with volume Θ(ε) such
that any halfplane h with vol(h ∩ K ) ≥ ε contains one of them.

K

h

≥ ε

Ghosh Combinatorial Macbeath Regions



Macbeath regions

Macbeath decomposition (Macbeath 1952)

For any convex body K with unit volume and ε > 0, there is a
small collection of convex subsets of K with volume Θ(ε) such
that any halfplane h with vol(h ∩ K ) ≥ ε contains one of them.

K

h

≥ ε

Ghosh Combinatorial Macbeath Regions



Macbeath regions

Macbeath decomposition (Macbeath 1952)

For any convex body K with unit volume and ε > 0, there is a
small collection of convex subsets of K with volume Θ(ε) such
that any halfplane h with vol(h ∩ K ) ≥ ε contains one of them.

K

h

≥ ε

Ghosh Combinatorial Macbeath Regions



Macbeath regions

Macbeath decomposition (Macbeath 1952)

For any convex body K with unit volume and ε > 0, there is a
small collection of convex subsets of K with volume Θ(ε) such
that any halfplane h with vol(h ∩ K ) ≥ ε contains one of them.

K

h

≥ ε

Ghosh Combinatorial Macbeath Regions



Mnets, or combinatorial Macbeath regions

Macbeath decomposition (Macbeath 1952)

For any convex body K with unit volume and ε > 0, there is a
small collection of convex subsets of K with volume Θ(ε) such
that any halfplane h with vol(h ∩ K ) ≥ ε includes one of them.

Mnets – for halfplanes

For a set K of n points and ε > 0, an Mnet is a collection of
subsets of Θ(εn) points such that any halfplane h with
|h ∩ K | ≥ εn includes one of them.

Goal: discrete analogue of Macbeath’s tool.
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Mnets, or combinatorial Macbeath regions

Macbeath decomposition (Macbeath 1952)

For any convex body K with unit volume and ε > 0, there is a
small collection of convex subsets of K with volume Θ(ε) such
that any halfplane h with vol(h ∩ K ) ≥ ε includes one of them.

Mnets – for disks

For a set K of n points and ε > 0, an Mnet is a collection of
subsets of Θ(εn) points such that any disk h with |h ∩ K | ≥ εn
includes one of them.

Goal: discrete analogue of Macbeath’s tool.
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Mnets, or combinatorial Macbeath regions

Macbeath decomposition (Macbeath 1952)

For any convex body K with unit volume and ε > 0, there is a
small collection of convex subsets of K with volume Θ(ε) such
that any halfplane h with vol(h ∩ K ) ≥ ε includes one of them.

Mnets – for [shapes]

For a set K of n points and ε > 0, an Mnet is a collection of
subsets of Θ(εn) points such that any [shape] h with |h ∩ K | ≥ εn
includes one of them.
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Bounds on Mnets

Question

What is the minimum size of an Mnet?

Theorem (D.–G.–J.–M. ’17)

Semialgebraic set systems with VC-dim. d <∞ and shallow
cell complexity ϕ have an ε-Mnet of size

O

(
d

ε
· ϕ
(
d

ε
, d

))
.

X Disks

X Rectangles

X Lines

X ‘Fat’ objects

× General convex sets

Theorem (D.–G.–J.–M. ’17)

This is tight for hyperplanes.
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Abstract set systems

X := arbitrary n-point set
Σ := collection of subsets of X , i.e., Σ ⊆ 2X

The pair (X ,Σ) is called a set system

Set systems (X ,Σ) are also referred to as hypergraphs,
range spaces
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Abstract set systems

Projection:
For Y ⊆ X ,

ΣY := {S ∩ Y : S ∈ Σ}

and
Σk
Y := {S ∩ Y : S ∈ Σ and |S ∩ Y | ≤ k}
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Primal shatter dimension and shallow cell complexity

Primal Shatter function Given (X ,Σ), primal shatter function is
defined as

πΣ(m) := max
Y⊆X , |Y |=m

|ΣY |

VC dimension: d0 := max {m |πΣ(m) = 2m}
Primal Shatter dimension: A set system has primal shatter
dimension d if for all m ≤ n, πΣ(m) ≤ O(md).

Shallow cell complexity ϕ(·, ·) If ∀Y ⊆ X ,∣∣∣Σk
Y

∣∣∣ ≤ |Y | × ϕ(|Y |, k).
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Shallow cell complexity of some geometric set systems

1. Points and half-spaces O(|Y |bd/2c−1kdd/2e)
or orthants in Rd

2. Points and balls O(|Y |b(d+1)/2c−1kd(d+1)/2e)
in Rd

3. (d − 1)-variate polynomial |Y |d−2+εk1−ε

function of constant degree
and points in Rd
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δ-packing number

Parameter: Let δ > 0 be a integer parameter

δ-separated: A set system (X ,Σ) is δ-separated if for all S1, S2

in Σ, if the size of the symmetric difference (Hamming distance)
S1∆S2 is greater than δ, i.e. |S1∆S2| > δ.

δ-packing number: The cardinality of the largest δ-separated
subcollection of Σ is called the δ-packing number of Σ.
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Shallow packing result

Theorem (Dutta-Ezra-G.’15 and Mustafa’16)

Let (X ,Σ) be a set system with VC-dim d and shallow cell
complexity ϕ(·) on a n-point set X . Let δ ≥ 1 and k ≤ n be two
integer parameters such that:

1. ∀S ∈
∑

, |S | ≤ k, and

2.
∑

is δ-packed.

Then

|Σ| ≤ dn

δ
ϕ

(
d n

δ
,
d k

δ

)

We can show that the above bound is tight.
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Polynomial partitioning lemma (incorrect version)

Theorem (Matoušek-Patáková 15)

Given a set of n-points P ⊂ Rm. Then there exists a polynomial
f (X1, . . . , Xm) of degree at most r1/m such that

1. Rm \ Z (f ) has at most r maximally connected components,
i.e, Rm \ Z (f ) = ω1 t · · · t ωt where ωi are maximally
connected components and t ≤ r .

2. |ωi ∩ P| ≤ n
r and |Z (f ) ∩ P| = 0

3. Any semialgebraic set O crosses at most r1− 1
m connected

components of Rm \ Z (f ).

(Def. of “Crossing”) We say a set A crosses a set B if
A ∩ B 6∈ {∅,B}.
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Proof of Mnets bound
(Sketching the) Upper bound construction

1 Build a maximal packing.

7 / 11

Assume all the large sets are of size exactly εn

Build a maximal packing with k = εn and δ = εn/2. Number
of sets in the packing is ≤ d

εϕ
(
d
ε , d
)

(via Shallow packing
lemma)

Any set of size εn in the set system is either in the packing or
has a large intersection with a set in the packing (size of
intersection ≥ εn/2)
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Proof: How to get a candidate Mnet set?

Partition each set in the maximal packing with a
r -partitioning polynomial (satisfying those magical properties),
where r is a large constant to be fixed later.

Include in your Mnets set all the subsets ωi ∩ P where
|ωi ∩ P| ≥ εn

r2 .

Do this for all the sets in the maximal packing and you will
get an Mnet satisfying the bound in the theorem.

Why is this a valid Mnet?
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Proof: Why the construction is a valid Mnet?

Let S ∈ Σ with |S | = εn.

Since the set system is a semialgebraic set system, there exists
a semialg. object O such that O ∩ P = S .

Since we have a maxi. packing, ∃Si from the packing such
that |S ∩ Si | ≥ εn/2.

Maximum contribution to |S ∩ Si | from connected regions
crossed by O and the small set is at most

εn

r
× r1− 1

m +
εn

r2
× r = εn

(
1

r1/m
+

1

r

)
� εn

2
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From Mnets to ε-nets

Theorem (D.–G.–J.–M. ’17)

(
ε-Mnet of size M

with sets of size ≥ τεn

)
=⇒ ε-net of size

log(εM)/τ + 1

ε

This gives ε-nets of size d
ε logϕ

(
d
ε , d
)
for semialgebraic set

systems.

Yields best known bounds on ε-nets for geometric set systems
with bounded VC-dim.

Table: Upper bounds on Mnets and ε-nets

Mnet ε-net

Disks ε−1 ε−1

Rectangles 1
ε log 1

ε
1
ε log log 1

ε

Halfspaces (Rd) O
(
ε−bd/2c) d

ε log 1
ε
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Probabilistic proof

Theorem (D.–G.–J.–M. ’17)

(
ε-Mnet of size M

with sets of size ≥ τεn

)
=⇒ ε-net of size

log(εM)/τ + 1

ε

Proof.

1 M is such an Mnet. Let p = 1
τεn log(εM).

2 Pick every point into a sample S with probability p.

3 ∀m ∈M, Pr[S ∩m = ∅] = (1− p)|m| ≤ e−p|m| ≤ 1
εM

4 In expectation, |S |+ |m ∈M : S ∩m = ∅| ≤ np + 1
ε .

5 so there is an ε-net of size ≤ np + 1
ε (why?).
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Conclusion

Ideally we want a combinatorial proof of the Mnets bound for
set systems.

Improve the current lower bound.

Find more applications/connections of Mnets in combinatorial
geometry.
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