Géométrie Algorithmique Données, Modèles, Programmes

7. Structures de données géométriques

Jean-Daniel Boissonnat

Collège de France 24 mai 2017

Géométrie algorithmique

Données, modèles, programmes

- Modèles géométriques discrets
 F. Cazals : Modèles géométriques pour la prédiction des interactions macro-moléculaires
- La puissance de l'aléa : algorithmes randomisés P. Calka : Probabilités géométriques
- Le calcul géométrique
 - S. Pion : La bibliothèque logicielle CGAL
- Génération de maillages
 J-M. Mirebeau : Les deux réductions de Voronoï et leur application aux équations aux dérivées partielles
- Courbes et surfaces
 - P. Alliez : Reconstruction de surfaces
- Espaces de configurations A. de Mesmay : Dessin de graphes
- Structures de données géométriques
 - D. Feldman : Core sets
- Géométrie des données
 - F. Chazal : Analyse topologique des données

Recherche de plus proches voisins en petites dimensions

- Recherche de plus proches voisins exacte
- Recherche de plus proches voisins approchée

Structures de données

Prétraitement et requêtes

Objectif : Prétraiter les données pour répondre efficacement à de nombreuses requêtes

Exemple : localisation dans une carte planaire

Mesures de complexité

- Taille de l'entrée : n
- Prétraitement taille de la structure S(n) temps de construction T(n)
- Temps de réponse : Q(n)

Cloisonnement, history graph

 $S(n) = O(n), T(n) = O(n \log n),$ $Q(n) = \log n$

Structures de données

Prétraitement et requêtes

Objectif : Prétraiter les données pour répondre efficacement à de nombreuses requêtes

Exemple : localisation dans une carte planaire

Mesures de complexité

- Taille de l'entrée : n
- Prétraitement taille de la structure *S*(*n*) temps de construction *T*(*n*)
- Temps de réponse : Q(n)

Cloisonnement, history graph

 $S(n) = O(n), T(n) = O(n \log n),$ $Q(n) = \log n$

Structures de données

Prétraitement et requêtes

Objectif : Prétraiter les données pour répondre efficacement à de nombreuses requêtes

Exemple : localisation dans une carte planaire

Mesures de complexité

- Taille de l'entrée : n
- Prétraitement taille de la structure *S*(*n*) temps de construction *T*(*n*)
- Temps de réponse : Q(n)

Cloisonnement, history graph

$$S(n) = O(n), T(n) = O(n \log n),$$

$$Q(n) = \log n$$

Recherche de plus proches voisins

Variantes

- k plus proches voisins : trouver les k points de P qui sont les plus proches de q
- Voisins à distance r : trouver les points de P à distance $\leq r$ de q
- Différentes métriques : L_2 , L_p , L_∞ , distance de Hamming etc...

Recherche de plus proches voisins

Variantes

- k plus proches voisins : trouver les k points de P qui sont les plus proches de q
- Voisins à distance r : trouver les points de P à distance ≤ r de q
- Différentes métriques : L_2, L_p, L_∞ , distance de Hamming etc...

Recherche de plus proches voisins

Variantes

- *k* plus proches voisins : trouver les *k* points de *P* qui sont les plus proches de *q*
- Voisins à distance r : trouver les points de P à distance ≤ r de q
- Différentes métriques : L_2 , L_p , L_∞ , distance de Hamming etc...

Recherche du plus proche voisin

Prétraiter un ensemble P de n points de \mathbb{R}^d

Requête : étant donné un point q, trouver rapidement un point de P plus proche de q

Solution triviale : comparer q à tous les points de P : $S(n) = T(n) = 0, \quad Q(n) = dn$

Applications

- recherche dans des bases de données
- quantification vectorielle, codage (théorie de l'information)
- classification en apprentissage
- reconnaissance d'image, parole, musique

Recherche du plus proche voisin

Prétraiter un ensemble P de n points de \mathbb{R}^d

Requête : étant donné un point q, trouver rapidement un point de P plus proche de q

Solution triviale : comparer q à tous les points de P : $S(n) = T(n) = 0, \quad Q(n) = dn$

Applications

- recherche dans des bases de données
- quantification vectorielle, codage (théorie de l'information)
- classification en apprentissage
- reconnaissance d'image, parole, musique

Recherche du plus proche voisin

Prétraiter un ensemble P de n points de \mathbb{R}^d

Requête : étant donné un point q, trouver rapidement un point de P plus proche de q

Solution triviale : comparer q à tous les points de P : $S(n) = T(n) = 0, \quad Q(n) = dn$

Applications

- recherche dans des bases de données
- quantification vectorielle, codage (théorie de l'information)
- classification en apprentissage
- reconnaissance d'image, parole, musique

Recherche de plus proches voisins en petites dimensions

- Recherche de plus proches voisins exacte
- Recherche de plus proches voisins approchée

3 Recherche de voisins et dimension intrinsèque des données

4 Recherche de voisins en grandes dimensions

Localisation dans le diagramme de Voronoï (d = 2)

Solution exacte optimale

Prétraitement : diagramme de Voronoï + structure de localisation

$$S(n) = O(n), \quad T(n) = O(n \log n)$$

Requête : $Q(n) = O(\log n)$

Localisation dans le diagramme de Voronoï (d = 2)

Solution exacte optimale

Prétraitement : diagramme de Voronoï + structure de localisation

$$S(n) = O(n), \quad T(n) = O(n \log n)$$

Requête : $Q(n) = O(\log n)$

Recherche des *k* plus proches voisins (d = 2)

Prétraitement : diagramme de Voronoï d'ordre k + structure de localisation

$$S(n) = O(kn), \quad T(n) = O(kn\log n)$$

Requête :

 $Q(n) = O(\log n)$

Le fléau de la dimension

- La taille des diagrammes de Voronoï croît de manière exponentielle avec la dimension $d: O\left(n^{\left\lceil \frac{d}{2} \right\rceil}\right)$
- Toutes les structures de données permettant de chercher un plus proche voisin en temps sous-linéaire ont une taille exponentielle : O ((dn)^{O(d)})

Espace mémoire	Temps de requête	
$O\left(n^{2^{d+1}}\right)$	$O\left(2^d \log n\right)$	Dobkin, Lipton 76
$O\left(n^{\left\lceil \frac{d}{2} \right\rceil(1+\delta)}\right)$	$O\left(d^d log n\right)$	Clarkson 88
$O(n^{d+\delta})$	$O\left(d^5\log n\right)$	Meiser 93
		Agarwal, Erickson 98

• La complexité en espace peut être réduite à 2^d si p est un net

Le fléau de la dimension

- La taille des diagrammes de Voronoï croît de manière exponentielle avec la dimension $d: O\left(n^{\left\lceil \frac{d}{2} \right\rceil}\right)$
- Toutes les structures de données permettant de chercher un plus proche voisin en temps sous-linéaire ont une taille exponentielle : O ((dn)^{O(d)})

Espace mémoire	Temps de requête	
$O\left(n^{2^{d+1}}\right)$	$O\left(2^d \log n\right)$	Dobkin, Lipton 76
$O\left(n^{\left\lceil \frac{d}{2} \right\rceil(1+\delta)}\right)$	$O\left(d^d logn ight)$	Clarkson 88
$O(n^{d+\delta})$	$O\left(d^5\log n\right)$	Meiser 93
	. ,	Agarwal, Erickson 98

• La complexité en espace peut être réduite à 2^d si p est un net

Recherche de plus proches voisins en petites dimensions

- Recherche de plus proches voisins exacte
- Recherche de plus proches voisins approchée

Recherche approchée et partitionnements plus économiques

Un partitionnement exact (diagramme de Voronoï) conduit à un coût mémoire exponentiel, ce qui enlève tout intérêt pratique au delà de la dimension 3

Si on veut faire mieux que la solution naïve linéaire, il faut réduire ses ambitions

- accepter une réponse approximative
- accepter une probabilité d'erreur

Recherche approchée et partitionnements plus économiques

Un partitionnement exact (diagramme de Voronoï) conduit à un coût mémoire exponentiel, ce qui enlève tout intérêt pratique au delà de la dimension 3

Si on veut faire mieux que la solution naïve linéaire, il faut réduire ses ambitions

- accepter une réponse approximative
- accepter une probabilité d'erreur

Recherche de voisins approchée

Plus proche voisin approché

Etant donné un ensemble *P* de *n* points de \mathbb{R}^d et un point de requête *q*,

un ϵ -plus proche voisin de q, est un point $p \in P$ tel que :

$$d(q,p) \leq (1+\epsilon)d(q,P)$$

Recherche approchée de voisins

Détection et optimisation

Recherche d'un voisin RV à distance $\leq r$ Soit $\mathcal{P} \subset \mathbb{R}^d$, r > 0 et $\varepsilon > 0$. q: un point de requête

 $\begin{array}{lll} {\rm si} & d(q,\mathcal{P}) \leq r & {\rm retourner} & p \in \mathcal{P} \quad {\rm s.t.} & \|p-q\| \leq (1+\varepsilon)r \\ {\rm si} & d(q,\mathcal{P}) \geq (1+\varepsilon)r & {\rm retourner} & ``d(q,\mathcal{P}) \geq r" \\ {\rm sinon} & {\rm retourner} & {\rm une \ des \ 2 \ reponses} \end{array}$

Recherche du plus proche voisin RV*

Utiliser RV et une recherche binaire sur r

 $\Rightarrow T(RV^*) = T(RV) \times O\log(\frac{\Phi}{\varepsilon}) \qquad \text{où } \Phi = \frac{\max p, q \in \mathcal{P} \|p-q}{\min p, q \in \mathcal{P} \|p-q}$

(étalement, spread)

Recherche approchée de voisins

Détection et optimisation

Recherche d'un voisin RV à distance $\leq r$ Soit $\mathcal{P} \subset \mathbb{R}^d$, r > 0 et $\varepsilon > 0$. q: un point de requête

 $\begin{array}{lll} {\rm si} & d(q,\mathcal{P}) \leq r & {\rm retourner} & p \in \mathcal{P} \quad {\rm s.t.} & \|p-q\| \leq (1+\varepsilon)r \\ {\rm si} & d(q,\mathcal{P}) \geq (1+\varepsilon)r & {\rm retourner} & ``d(q,\mathcal{P}) \geq r" \\ {\rm sinon} & {\rm retourner} & {\rm une \ des \ 2 \ reponses} \end{array}$

Recherche du plus proche voisin RV*

Utiliser RV et une recherche binaire sur r

$$\Rightarrow T(RV^*) = T(RV) \times O\log(\frac{\Phi}{\varepsilon}) \qquad \text{où } \Phi = \frac{\max p, q \in \mathcal{P} \| p - q \|}{\min p, q \in \mathcal{P} \| p - q \|}$$

(étalement, spread)

Pour chaque $p \in \mathcal{P}$, recouvrir B(p, r) avec des cellules de la grille de côté $\frac{r\varepsilon}{\sqrt{d}}$

Nombre de cellules intersectant B(p, r)Autour d'un point $\leq \left(\frac{C}{\varepsilon}\right)^d$ au total $\leq n \left(\frac{C}{\varepsilon}\right)^d$

(argument de volume, C < 5)

Pour chaque $p \in \mathcal{P}$, recouvrir B(p, r) avec des cellules de la grille de côté $\frac{r\varepsilon}{\sqrt{d}}$

Nombre de cellules intersectant B(p, r)

Autour d'un point $\leq \left(\frac{C}{\varepsilon}\right)^d$ (argument de volume, C < 5) au total $\leq n \left(\frac{C}{\varepsilon}\right)^d$

Structure de données et algorithme

Recherche pour r fixé

Pour un point *q* de requête, tester si *q* appartient à une des cellules intersectant B(p, r) pour un point $p \in \mathcal{P}$

si oui : retourner p (p est à distance $\leq r + r\varepsilon$ de q) sinon : q n'a aucun voisin dans \mathcal{P} à distance $\leq r$

Complexité

$$S(n,r) = T(n,r) = n \left(\frac{C}{\varepsilon}\right)^d, \quad Q(n,r) = O(d)$$

Recherche du plus proche voisin

Construire *t* grilles pour les $r = r_0, r_0(1 + \varepsilon), ..., r_0(1 + \varepsilon)^t$

 $r_0 = \min_{p,q \in \mathcal{P}} \|p - q\|$, t est le plus petit entier t.q. $r_0(1 + \varepsilon)^t \ge \max_{p,q \in \mathcal{P}} \|p - q\|$

$$t \leq \log \Phi$$
, $S(n) = T(n) = \log \Phi \times n \left(\frac{C}{\varepsilon}\right)^d$, $Q(n) = \log \log \Phi \times O(d)$

Structure de données et algorithme

Recherche pour r fixé

Pour un point *q* de requête, tester si *q* appartient à une des cellules intersectant B(p, r) pour un point $p \in \mathcal{P}$

si oui : retourner p (p est à distance $\leq r + r\varepsilon \text{ de } q$) sinon : q n'a aucun voisin dans \mathcal{P} à distance $\leq r$

Complexité

$$S(n,r) = T(n,r) = n \left(\frac{C}{\varepsilon}\right)^d, \quad Q(n,r) = O(d)$$

Recherche du plus proche voisin

Construire *t* grilles pour les $r = r_0, r_0(1 + \varepsilon), ..., r_0(1 + \varepsilon)^t$

 $r_0 = \min_{p,q \in \mathcal{P}} \|p - q\|$, t est le plus petit entier t.q. $r_0(1 + \varepsilon)^t \ge \max_{p,q \in \mathcal{P}} \|p - q\|$

$$t \leq \log \Phi$$
, $S(n) = T(n) = \log \Phi \times n \left(\frac{C}{\varepsilon}\right)^d$, $Q(n) = \log \log \Phi \times O(d)$

Structure de données et algorithme

Recherche pour r fixé

Pour un point *q* de requête, tester si *q* appartient à une des cellules intersectant B(p, r) pour un point $p \in \mathcal{P}$

si oui : retourner p (p est à distance $\leq r + r\varepsilon$ de q) sinon : q n'a aucun voisin dans \mathcal{P} à distance < r

Complexité

$$S(n,r) = T(n,r) = n \left(\frac{C}{\varepsilon}\right)^d, \quad Q(n,r) = O(d)$$

Recherche du plus proche voisin

Construire *t* grilles pour les $r = r_0, r_0(1 + \varepsilon), ..., r_0(1 + \varepsilon)^t$

 $r_{0} = \min_{p,q \in \mathcal{P}} \|p - q\|, t \text{ est le plus petit entier t.q. } r_{0}(1 + \varepsilon)^{t} \ge \max_{p,q \in \mathcal{P}} \|p - q\|$ $t \le \log \Phi, \quad S(n) = T(n) = \log \Phi \times n \left(\frac{C}{\varepsilon}\right)^{d}, \quad Q(n) = \log \log \Phi \times O(d)$

 La recherche approchée permet de beaucoup réduire la complexité en espace

$$O(n^d) \searrow O\left(\log \Phi \times n \left(\frac{C}{\varepsilon}\right)^d\right)$$

• Peut-on supprimer la dépendance en d?

 La recherche approchée permet de beaucoup réduire la complexité en espace

$$O(n^d) \searrow O\left(\log \Phi \times n \left(\frac{C}{\varepsilon}\right)^d\right)$$

• Peut-on supprimer la dépendance en d?

Réduction de dimension

Projection aléatoire

Lemme (Corollaire de la concentration des fonctions Lipschitz [Lévy]) Soit *U* un sous-espace affine de dimension *k* de \mathbb{R}^d avec $k = \Omega(\frac{1}{\varepsilon^2} \log n)$

$$\forall p \in P, f(p) = \sqrt{\frac{d}{k} \pi_U(p)}$$

$$\forall p, q \in P, \text{ proba}\left[\frac{\|f(p) - f(q)\|^2}{\|p - q\|^2} \notin [(1 - \epsilon), (1 + \epsilon)]\right] \le \frac{2}{n^2}$$

Lemme de Johnson-Lindenstrauss

Soit *P* un ensemble de *n* points de \mathbb{R}^d et $\epsilon \in (0, 1)$. Si on projette *P* sur un plan aléatoire de dimension $k = \Omega(\frac{1}{\epsilon^2} \log n)$, avec probabilité $\frac{1}{n}$

$$\forall p, q \in P, (1-\epsilon) ||p-q||^2 \le ||f(p) - f(q)||^2 \le (1+\epsilon) ||p-q||^2$$

Démonstration : Proba $\ge 1 - \binom{n}{2} \frac{2}{n^2} = \frac{1}{n}$. Projeter O(n) fois donne une proba cst

Réduction de dimension

Projection aléatoire

Lemme (Corollaire de la concentration des fonctions Lipschitz [Lévy]) Soit *U* un sous-espace affine de dimension *k* de \mathbb{R}^d avec $k = \Omega(\frac{1}{\varepsilon^2} \log n)$

$$\begin{aligned} \forall p \in P, \, f(p) &= \sqrt{\frac{d}{k}} \, \pi_U(p) \\ \forall p, q \in P, \, \operatorname{proba}\left[\frac{\|f(p) - f(q)\|^2}{\|p - q\|^2} \not\in [(1 - \epsilon), (1 + \epsilon)]\right] &\leq \frac{2}{n^2} \end{aligned}$$

Lemme de Johnson-Lindenstrauss

Soit *P* un ensemble de *n* points de \mathbb{R}^d et $\epsilon \in (0, 1)$. Si on projette *P* sur un plan aléatoire de dimension $k = \Omega(\frac{1}{\epsilon^2} \log n)$, avec probabilité $\frac{1}{n}$

$$\forall p, q \in P, \ (1-\epsilon) \|p-q\|^2 \le \|f(p) - f(q)\|^2 \le (1+\epsilon) \|p-q\|^2$$

Démonstration : Proba $\ge 1 - \binom{n}{2} \frac{2}{n^2} = \frac{1}{n}$. Projeter O(n) fois donne une proba cst

Réduction de dimension

Application à la recherche de plus proches voisins

Le lemme de J&L appliqué dans l'espace de dimension *k* donne une structure de données

$$S(n) = \left(\frac{1}{\varepsilon}\right)^{O\left(\frac{\log n}{\varepsilon^2}\right)} \log \Phi = n^{O\left(\frac{\log \frac{1}{\varepsilon}}{\varepsilon^2}\right)} \log \Phi$$

 $Q(n) = \operatorname{coût} \operatorname{de} \operatorname{la projection} + \operatorname{coût} \operatorname{de} \operatorname{la recherche dans} \mathbb{R}^k$ $= O\left(\frac{d\log n}{\varepsilon^2}\right) + O(\log n \log \log \Phi)$

Requêtes géométriques

2 Recherche de plus proches voisins en petites dimensions

- Recherche de plus proches voisins exacte
- Recherche de plus proches voisins approchée

3 Recherche de voisins et dimension intrinsèque des données

Espaces doublants

Définition

Un ensemble *X* est de dimension doublante dbd(X) = d si *d* est le plus petit entier t.q.

 $\forall B$, $B \cap X$ peut être recouvert par 2^d boules de rayon moitié

Pour tout sous-ensemble Y de X : $dbd(Y) \leq dbd(X)$
Espaces doublants

Exemples

- Espace affine : si *X* est sous-ensemble d'un espace affine de dimension *k*, dbd(*X*) = *O*(*k*)
- Sous-variétés : si X est une sous-variété de dimension k de ℝ^d de portée positive, dbd(X) = O(k)
- Ensembles creux : si $\forall x \in X$, x n'a que k coordonnées non nulles, $dbd(X) = O(k \log d)$

Exploiter la petite dimension doublante

Si $X \subset \mathbb{R}^d$ est un espace de dimension doublante dbd(X)

- Z : il n'existe pas de plongement de X dans un espace R^m avec distortion 1 + ε si on impose que m et ε dépendent de dbd(X) et pas de n
 [Baral et al. 2015]
- Trouver une représentation de *X* qui s'adapte à dbd(*X*) : partitions de l'espace arborescentes

Exploiter la petite dimension doublante

Si $X \subset \mathbb{R}^d$ est un espace de dimension doublante dbd(X)

- Z: il n'existe pas de plongement de *X* dans un espace \mathbb{R}^m avec distortion $1 + \varepsilon$ si on impose que *m* et ε dépendent de dbd(*X*) et pas de *n* [Baral et al. 2015]
- Trouver une représentation de *X* qui s'adapte à dbd(*X*) : partitions de l'espace arborescentes

Découpage récursif en hyper-rectangles

Les arbres kd

- Chaque nœud N de l'arbre kd représente une cellule C(N) de la subdivision
- Les descendants d'un nœud *N* représentent les cellules obtenues en coupant *C*(*N*) par un hyperplan orthogonal à un axe de coordonnées
- Toutes les coupes à un niveau donné sont parallèles
- Les points de P sont affectés aux feuilles de l'arbre

Les arbres kd Complexité

$$\label{eq:rescaled} \begin{split} & \text{function MakeTree}(S) \\ & \text{If } [S] < n_0: \text{return } (\text{Leaf}) \\ & \text{Rule = ChooseRule}(S) \\ & \text{LeffTree = MakeTree} \{ x \in S : \text{Rule}(x) = \text{true} \}) \\ & \text{RightTree = MakeTree} \{ x \in S : \text{Rule}(x) = \text{false} \}) \\ & \text{return } (\text{Rule, LeftTree, RightTree}) \\ & \text{function ChooseRule}(S) \end{split}$$

Choose a coordinate direction *i* Rule(x) = ($x_i \le median(\{z_i : z \in S\}))$ return (Rule)

Profondeur de l'arbre et temps de localisation d'un point x

$$Q(n) = O(\log \frac{n}{n_0}) = O(\log n)$$
 si $n_0 = O(1)$

Taille et temps de construction

$$S(n) = O(n)$$
 $T(n) = n \log n$

(médiane en temps O(n))

Une borne inférieure

[Dasgupta & Freund 2008]

Les arbres kd ne s'adaptent pas à la dimension doublante de \mathcal{P}

$$\begin{split} X &= \bigcup_{i=1}^{d} \{ te_i, \ -1 \le t \le 1 \} \\ X &\subset B(O, 1) \\ X &\subset \bigcup_{i=1}^{d} B(\pm \frac{e_i}{2}, \frac{1}{2}) \quad (2d \text{ balls}) \end{split}$$

 $dbd(X) = \log 2d = 1 + \log d$

 $\begin{bmatrix} Z \end{bmatrix}$ L'arbre *kd* a besoin de *d* niveaux pour diviser par 2 le diamètre de ses cellules

Une borne inférieure

[Dasgupta & Freund 2008]

Les arbres kd ne s'adaptent pas à la dimension doublante de \mathcal{P}

$$\begin{split} X &= \bigcup_{i=1}^{d} \{ te_i, \ -1 \leq t \leq 1 \} \\ X &\subset B(O,1) \\ X &\subset \bigcup_{i=1}^{d} B(\pm \frac{e_i}{2}, \frac{1}{2}) \quad (2d \text{ balls}) \end{split}$$

 $dbd(X) = \log 2d = 1 + \log d$

 $\begin{bmatrix} Z \\ d \end{bmatrix}$ L'arbre *kd* a besoin de *d* niveaux pour diviser par 2 le diamètre de ses cellules

La randomisation aide

Arbres RP (projections aléatoires)

[Dasgupta & Sinha 2012]

1. Choisir une direction v au hasard sur S^{d-1}

2. Choisir une perturbation δ au hasard dans un intervalle ${\it I}$

- 3. Calculer la médiane perturbée
- $m = \text{mediane}(p \cdot v, p \in \mathcal{P}) + \delta$
- 4. Couper à la médiane selon $H \perp v$

Rotation aléatoire des axes de coordonnées

[Vempala 2012]

Théorème

 \mathcal{P} un ensemble fini de points de \mathbb{R}^d de dimension doublante k. Il existe une cst A t.q., avec probabilité > 1/2, toute cellule C et toute cellule C' qui est au moins $Ak \log k$ niveaux en dessous de C vérifient

$$\operatorname{diam}(C' \cap \mathcal{P}) \leq \frac{1}{2}\operatorname{diam}(C \cap \mathcal{P})$$

La randomisation aide

Arbres RP (projections aléatoires)

[Dasgupta & Sinha 2012]

1. Choisir une direction v au hasard sur S^{d-1}

2. Choisir une perturbation δ au hasard dans un intervalle ${\it I}$

- 3. Calculer la médiane perturbée
- $m = \text{mediane}(p \cdot v, p \in \mathcal{P}) + \delta$
- 4. Couper à la médiane selon $H \perp v$

Rotation aléatoire des axes de coordonnées

[Vempala 2012]

Théorème

 \mathcal{P} un ensemble fini de points de \mathbb{R}^d de dimension doublante k. Il existe une cst A t.q., avec probabilité > 1/2, toute cellule C et toute cellule C' qui est au moins $Ak \log k$ niveaux en dessous de C vérifient

$$\operatorname{diam}(C' \cap \mathcal{P}) \leq \frac{1}{2}\operatorname{diam}(C \cap \mathcal{P})$$

La randomisation aide

Arbres RP (projections aléatoires)

[Dasgupta & Sinha 2012]

1. Choisir une direction v au hasard sur S^{d-1}

2. Choisir une perturbation δ au has ard dans un intervalle ${\it I}$

- 3. Calculer la médiane perturbée $m = \text{mediane}(p \cdot v, p \in \mathcal{P}) + \delta$
- $m = \text{mediane}(p \cdot v, p \in \mathcal{P}) + \delta$
- 4. Couper à la médiane selon $H \perp v$

Rotation aléatoire des axes de coordonnées

[Vempala 2012]

Théorème

 \mathcal{P} un ensemble fini de points de \mathbb{R}^d de dimension doublante k. Il existe une cst A t.q., avec probabilité > 1/2, toute cellule C et toute cellule C' qui est au moins $Ak \log k$ niveaux en dessous de C vérifient

$$\operatorname{diam}(C'\cap \mathcal{P}) \leq \frac{1}{2}\operatorname{diam}(C\cap \mathcal{P})$$

Idée de la preuve

• Considérer les points dans une cellule *C* (rayon 1) et la recouvrir de $k^{k/2}$ boules B_i de rayon $r = 1/\sqrt{k}$

- Considérer toutes les paires (B_i, B_j) à distance ≥ 1/2r. Une coupe aléatoire sépare B_i et B_j avec proba cst
- Il y a k^k paires (B_i, B_j). Après k log k coupes, les paires éloignées ont été séparées avec proba cst

Idée de la preuve

- Considérer les points dans une cellule C (rayon 1) et la recouvrir de k^{k/2} boules B_i de rayon r = 1/√k
- Considérer toutes les paires (B_i, B_j) à distance ≥ 1/2r. Une coupe aléatoire sépare B_i et B_j avec proba cst
- Il y a k^k paires (B_i, B_j). Après k log k coupes, les paires éloignées ont été séparées avec proba cst

Idée de la preuve

- Considérer les points dans une cellule C (rayon 1) et la recouvrir de k^{k/2} boules B_i de rayon r = 1/√k
- Considérer toutes les paires (B_i, B_j) à distance ≥ 1/2r. Une coupe aléatoire sépare B_i et B_j avec proba cst
- Il y a k^k paires (B_i, B_j). Après k log k coupes, les paires éloignées ont été séparées avec proba cst

Des arbres kd à la recherche de proches voisins

le point de \mathcal{P} le plus proche de *x* n'appartient pas toujours à la cellule qui contient *x*

Plusieurs heuristiques

Des arbres kd à la recherche de proches voisins

Ζ

le point de \mathcal{P} le plus proche de *x* n'appartient pas toujours à la cellule qui contient *x*

Plusieurs heuristiques

Recherche de plus plus proches voisinsArbres RP[Dasgupta & Sinha 2013]

Analyse

- $F(q, \{p_1, ..., p_n\}) = \frac{1}{n} \sum_{i=2}^{n} \frac{\|q-p_1\|}{\|q-p_i\|}$ (les p_i sont triés par dist. $\nearrow a q$)
- Probabilité d'échec = $O(F \log \frac{1}{F})$ (ne retourne pas le ppv (q)) (sur la randomisation dans la construction de l'arbre)
- si $q \in \mathcal{P}$ est choisi au hasard dans \mathcal{P} $E(F) \leq C^k \log \Phi(\mathcal{P})$ où $k = \operatorname{dbd}(\mathcal{P})$

Recherche de plus plus proches voisinsArbres RP[Dasgupta & Sinha 2013]

Analyse

- $F(q, \{p_1, ..., p_n\}) = \frac{1}{n} \sum_{i=2}^{n} \frac{\|q-p_1\|}{\|q-p_i\|}$ (les p_i sont triés par dist. $\nearrow a q$)
- Probabilité d'échec = $O(F \log \frac{1}{F})$ (ne retourne pas le ppv (q)) (sur la randomisation dans la construction de l'arbre)
- si $q \in \mathcal{P}$ est choisi au hasard dans \mathcal{P} $E(F) \leq C^k \log \Phi(\mathcal{P})$ où $k = \operatorname{dbd}(\mathcal{P})$

Recherche de plus plus proches voisinsArbres RP[Dasgupta & Sinha 2013]

Analyse

- $F(q, \{p_1, ..., p_n\}) = \frac{1}{n} \sum_{i=2}^{n} \frac{\|q-p_1\|}{\|q-p_i\|}$ (les p_i sont triés par dist. $\nearrow a q$)
- Probabilité d'échec = $O(F \log \frac{1}{F})$ (ne retourne pas le ppv (q)) (sur la randomisation dans la construction de l'arbre)
- si $q \in \mathcal{P}$ est choisi au hasard dans \mathcal{P} $E(F) \leq C^k \log \Phi(\mathcal{P})$ où $k = \operatorname{dbd}(\mathcal{P})$

Requêtes géométriques

2 Recherche de plus proches voisins en petites dimensions

- Recherche de plus proches voisins exacte
- Recherche de plus proches voisins approchée

3 Recherche de voisins et dimension intrinsèque des données

Partitionnement aléatoire de l'espace

 \mathcal{P} un ensemble de *n* points de \mathbb{R}^d

- k hyperplans définissent 2^k cellules
- chaque cellule est caractérisée par un vecteur de {0,1}^k
- en moyenne chaque cellule contient ⁿ/_{2^k} points
- Localisation : trouver la cellule C(x) qui contient un point x : O(dk)
- Trouver le point de C(x) le plus proche de x : coût moyen : $O(d \frac{n}{2^k})$
- Coût de recherche du ppv (x) : $O(dk + d \frac{n}{2^k}) = O(\log n)$ si $k = O(\log n)$

Probabilité d'échec?

Partitionnement aléatoire de l'espace

 \mathcal{P} un ensemble de *n* points de \mathbb{R}^d

- *k* hyperplans définissent 2^{*k*} cellules
- chaque cellule est caractérisée par un vecteur de {0,1}^k
- en moyenne chaque cellule contient ⁿ/_{2^k} points
- Localisation : trouver la cellule C(x) qui contient un point x : O(dk)
- Trouver le point de C(x) le plus proche de x : coût moyen : $O(d \frac{n}{2^k})$
- Coût de recherche du ppv (x) : $O(dk + d \frac{n}{2^k}) = O(\log n)$ si $k = O(\log n)$

Probabilité d'échec?

Hâchage sensible à la localité (LSH)

Un domaine toujours actif depuis l'article fondateur [Indyk & Motwani 1998]

Définition

Une famille de fonctions \mathcal{F} est dite (r, R)-sensible si, pour tous $p, q \in \mathcal{P}$, il existe $p_1, p_2 \in [0, 1], p_1 > p_2$ t.q. si f est pris au hasard dans \mathcal{F}

$$If d(p,q) \le r \quad \Rightarrow \quad \operatorname{proba}(f(p) = f(q)) \ \ge \ p_1$$

(2) if $d(p,q) > R \Rightarrow \operatorname{proba}(f(p) = f(q)) \leq p_2$

Recherche de voisins sur l'hypercube

Hypercube et distance de Hamming

d-hypercube : $\mathcal{H}^d = \{0, 1\}^d$

Mots binaires : $p \in \mathcal{H}^d$: $p = (p_1, ..., p_d)$ où $p_i = 0$ ou 1

Distance de Hamming $d_H(p,q)$ entre $p,q \in \mathcal{H}^d$

Nombre de coordonnées i t.q. $p_i \neq q_i$

 $d_H((0, 1, 0), (1, 1, 1)) = 2$

Recherche approchée de voisins sur l'hypercube

Recherche d'un voisin à distance $\leq r$

Soit $\mathcal{P} \subset \mathcal{H}^d$, r > 0 et $\varepsilon > 0$, et q un point de requête.

si $d_H(q, \mathcal{P}) \leq r$ retourner $p \in \mathcal{P}$ s.t. $\|p - q\| \leq (1 + \varepsilon)r$

si $d_H(q, \mathcal{P}) \ge (1 + \varepsilon) r$ retourner " $d_H(q, \mathcal{P}) \ge r$ "

sinon retourner une des 2 réponses

Recherche du plus proche voisin

Utiliser la recherche de voisins et une recherche binaire $\rightarrow \times$ le coût du pb de décision par $O \log(\frac{d}{\epsilon})$

Recherche approchée de voisins sur l'hypercube

Recherche d'un voisin à distance $\leq r$

Soit $\mathcal{P} \subset \mathcal{H}^d$, r > 0 et $\varepsilon > 0$, et q un point de requête.

si $d_H(q, \mathcal{P}) \leq r$ retourner $p \in \mathcal{P}$ s.t. $\|p - q\| \leq (1 + \varepsilon)r$

si $d_H(q, \mathcal{P}) \ge (1 + \varepsilon) r$ retourner " $d_H(q, \mathcal{P}) \ge r$ "

sinon retourner une des 2 réponses

Recherche du plus proche voisin

Utiliser la recherche de voisins et une recherche binaire

 $\rightarrow \times$ le coût du pb de décision par $O\log(\frac{d}{\epsilon})$

Recherche de voisins sur l'hypercube

Une famille de fonctions sensible

 $\mathcal{F} = \{f_1, ..., f_d\}$ où $f_i(p) = i$ -ième coordonnée de p

Lemme

 $\forall r > 0, \varepsilon > 0, \ \mathcal{F} \text{ est } (r, (1 + \varepsilon)r) \text{-sensible}$

Démonstration

1. Si $d_H(p,q) \le r$, $p \text{ et } q \text{ ont } \le r$ bits différents, et $\operatorname{proba}(f_i(p) = f_i(q)) \ge p_1 = 1 - \frac{r}{n}$ (f_i tiré au hasard dans \mathcal{F})

2. Si $d_H(p,q) \ge (1+\varepsilon) r$, proba $(f_i(p) = f_i(q)) \le p_2 = 1 - \frac{(1+\varepsilon)}{n}$

Recherche de voisins sur l'hypercube

Une famille de fonctions sensible

 $\mathcal{F} = \{f_1, ..., f_d\}$ où $f_i(p) = i$ -ième coordonnée de p

Lemme

$$\forall r > 0, \varepsilon > 0, \ \mathcal{F} \text{ est } (r, (1 + \varepsilon)r) \text{-sensible}$$

Démonstration

1. Si $d_H(p,q) \le r$, $p \text{ et } q \text{ ont } \le r$ bits différents, et $\operatorname{proba}(f_i(p) = f_i(q)) \ge p_1 = 1 - \frac{r}{n}$ (f_i tiré au hasard dans \mathcal{F})

2. Si $d_H(p,q) \ge (1+\varepsilon) r$, proba $(f_i(p) = f_i(q)) \le p_2 = 1 - \frac{(1+\varepsilon) r}{n}$

Amplification de la sensibilité

Concaténer des fonctions de hâchage

Combiner *k* fonctions : $\mathcal{G}_k = \{g \mid g(p) = (f^1(p), ..., f^k(p)), \text{ où } f^i \in \mathcal{F}\}$

$$\begin{array}{lll} \mathsf{Op\acute{e}rateur} \stackrel{\wedge}{=} : & g(p) \stackrel{\wedge}{=} g(q) & \Leftrightarrow & g^i(p) = g^i(q), \;\;\forall\; i \in [1,k] \end{array}$$

Lemme

Si \mathcal{F} est une famille (r, R)-sensible avec p_1 et p_2 , alors \mathcal{G}_k est (r, R)-sensible avec p_1^k et p_2^k

Démonstration

$$\forall p, q \in \mathcal{H}^{d}, \quad d_{H}(p,q) \leq r :$$

$$\text{proba}(g(p) \stackrel{\wedge}{=} g(q)) = \text{proba}\left(f^{i}(p) = f^{i}(q) \; \forall i \in [1,n]\right)$$

$$= \prod_{i=1}^{k} \text{proba}(f^{i}(p) = f^{i}(q)) \geq p_{1}^{k}$$

De même, $\forall p, q \in \mathcal{H}^d$, $d_H(p,q) > R$: proba $(g(p) \stackrel{\wedge}{=} g(q)) \leq p_2^k$

Amplification de la sensibilité

Concaténer des fonctions de hâchage

Combiner *k* fonctions : $\mathcal{G}_k = \{g \mid g(p) = (f^1(p), ..., f^k(p)), \text{ où } f^i \in \mathcal{F}\}$

$$\begin{array}{lll} \mathsf{Op\acute{e}rateur} \stackrel{\wedge}{=} : & g(p) \stackrel{\wedge}{=} g(q) & \Leftrightarrow & g^i(p) = g^i(q), \;\;\forall\; i \in [1,k] \end{array}$$

Lemme

Si \mathcal{F} est une famille (r, R)-sensible avec p_1 et p_2 , alors \mathcal{G}_k est (r, R)-sensible avec p_1^k et p_2^k

Démonstration

$$\forall p, q \in \mathcal{H}^d, \quad d_H(p,q) \le r :$$

$$\text{proba}(g(p) \triangleq g(q)) = \text{proba}\left(f^i(p) = f^i(q) \quad \forall i \in [1,n]\right)$$

$$= \prod_{i=1}^k \text{proba}(f^i(p) = f^i(q)) \ge p_1^k$$

De même, $\forall p, q \in \mathcal{H}^d$, $d_H(p,q) > R$: $\operatorname{proba}(g(p) \stackrel{\wedge}{=} g(q)) \leq p_2^k$

Recherche de collisions

Structure de données

On peut construire une structure de données qui permet de trouver l'ensemble des points de P en collision avec un point de requête q

$$X = \{p \in \mathcal{P} : g(p) = g(q)\}$$

 $S(n,k) = O(nk), \quad T(n,k) = O(nk), \quad Q(n,k) = O(k+|X|)$

Réamplification

$$\mathcal{H}_t = \{g \mid g(p) = (g^1(p), ..., g^t(p)), \text{ où } g^i \in \mathcal{G}_k\}$$

Opérateur $\stackrel{\vee}{=}$: $g(p) \stackrel{\vee}{=} g(q) \Leftrightarrow \exists i \in [1, t] \mid g^i(p) = g^i(q)$

Lemme

Si \mathcal{G}_k est une famille (r, R)-sensible pour l'opérateur $\stackrel{\wedge}{=}$ avec p_1^k et p_2^k , alors \mathcal{H}_t est (r, R)-sensible pour l'opérateur $\stackrel{\vee}{=}$ avec probabilités

$$\phi = 1 - (1 - p_1^k)^t$$
 et $\psi = 1 - (1 - p_2^k)^t$

Démonstration

 $\forall p,q \in \mathcal{H}^d, \ d_H(p,q) \leq r:$

$$\operatorname{proba}(g(p) \stackrel{\vee}{=} g(q)) = 1 - \prod_{i=1}^{t} \operatorname{proba}(g^{i}(p) \neq g^{i}(q)) \geq 1 - (1 - p_{1}^{k})^{t}$$

De même, $\forall p, q \in \mathcal{H}^d$, $d_H(p,q) > R$: proba $(g(p) \stackrel{\vee}{=} g(q)) \leq 1 - (1 - p_2^k)^t$

Réamplification

$$\mathcal{H}_t = \{g \mid g(p) = (g^1(p), ..., g^t(p)), \text{ où } g^i \in \mathcal{G}_k\}$$

Opérateur $\stackrel{\vee}{=}$: $g(p) \stackrel{\vee}{=} g(q) \Leftrightarrow \exists i \in [1, t] \mid g^i(p) = g^i(q)$

Lemme

Si \mathcal{G}_k est une famille (r, R)-sensible pour l'opérateur $\stackrel{\wedge}{=}$ avec p_1^k et p_2^k , alors \mathcal{H}_t est (r, R)-sensible pour l'opérateur $\stackrel{\vee}{=}$ avec probabilités

$$\phi = 1 - (1 - p_1^k)^t$$
 et $\psi = 1 - (1 - p_2^k)^t$

Démonstration

 $\forall p, q \in \mathcal{H}^d, \ d_H(p,q) \leq r:$ $\operatorname{proba}(g(p) \stackrel{\vee}{=} g(q)) = 1 - \prod_{i=1}^t \operatorname{proba}(g^i(p) \neq g^i(q)) \geq 1 - (1 - p_1^k)^t$

 $\text{De m{\ emphase}} \text{ m{\ emphase}} \forall \ p,q \in \mathcal{H}^d, \ \ d_{\!H}(p,q) > \textit{R} : \text{proba}(g(p) \stackrel{\vee}{=} g(q)) \ \le \ 1 - (1 - p_2^k)^t$
Choix de t et nombre moyen de collisions

 $t = \left\lceil \frac{4}{p_1^k} \right\rceil$

$$\Rightarrow \quad \phi = 1 - (1 - p_1^k)^t \geq 1 - \exp(-p_1^k t) \geq 1 - \exp(-4) \geq \frac{3}{4} \Rightarrow \quad \psi = 1 - (1 - p_2^k)^t \leq t p_2^k \leq 8 \left(\frac{p_2}{p_1}\right)^k$$

Lemme

L'espérance du nombre de points de $\mathcal{P} \setminus B(q, r(1 + \varepsilon))$ en collision avec q est $L = O\left(n \left(\frac{p_2}{p_1}\right)^k\right)$

Structure de données et choix de *k*

Structure de données : construire *t* structures de données précédentes : S(n) = T(n) = O(nkt)

Temps de requête

Extraire les *L* points et calculer la distance de *q* à ces points prend un temps $Q(n) = O(kt + Ld) = O\left(kt + n\left(\frac{p_2}{p_1}\right)^k\right)$

Choisir *k* pour équilibrer les 2 termes $\rightarrow t, L = O(n^{\frac{1}{1+\epsilon}})$ et $k = O(\log n)$

Probabilité de succès : $cst \rightarrow cst (1 - \frac{1}{n})$ en construisant $O(\log n)$ structures de données et en les interrogeant toutes

Structure de données et choix de *k*

Structure de données : construire *t* structures de données précédentes : S(n) = T(n) = O(nkt)

Temps de requête

Extraire les *L* points et calculer la distance de *q* à ces points prend un temps $Q(n) = O(kt + Ld) = O\left(kt + n\left(\frac{p_2}{p_1}\right)^k\right)$

Choisir *k* pour équilibrer les 2 termes $\rightarrow t, L = O(n^{\frac{1}{1+\varepsilon}})$ et $k = O(\log n)$

Probabilité de succès : $cst \rightarrow cst (1 - \frac{1}{n})$ en construisant $O(\log n)$ structures de données et en les interrogeant toutes

Structure de données et choix de *k*

Structure de données : construire *t* structures de données précédentes : S(n) = T(n) = O(nkt)

Temps de requête

Extraire les *L* points et calculer la distance de *q* à ces points prend un temps $Q(n) = O(kt + Ld) = O\left(kt + n\left(\frac{p_2}{p_1}\right)^k\right)$

Choisir *k* pour équilibrer les 2 termes $\rightarrow t, L = O(n^{\frac{1}{1+\varepsilon}})$ et $k = O(\log n)$

Probabilité de succès : $cst \rightarrow cst (1 - \frac{1}{n})$ en construisant $O(\log n)$ structures de données et en les interrogeant toutes

Recherche de voisins sur l'hypercube Problème de décision ($\mathcal{P} \in \mathcal{H}^d, r, R = (1 + \varepsilon), q$)

Théorème

La structure de données résoud le problème de décision avec grande probabilité

$$T(n) = O(n^{1+1/(1+\varepsilon)} \log^2 n)$$

$$S(n) = O(dn + n^{1+1/(1+\varepsilon)} \log^2 n)$$

$$Q(n) = O(dn^{1/(1+\varepsilon)} \log n)$$

Utile pour ε assez grand : $\varepsilon = 10 \Rightarrow Q(n) = O(d n^{1/11})$

Recherche de voisins sur l'hypercube Problème de décision ($\mathcal{P} \in \mathcal{H}^d, r, R = (1 + \varepsilon), q$)

Théorème

La structure de données résoud le problème de décision avec grande probabilité

$$T(n) = O(n^{1+1/(1+\varepsilon)} \log^2 n)$$

$$S(n) = O(dn + n^{1+1/(1+\varepsilon)} \log^2 n)$$

$$Q(n) = O(dn^{1/(1+\varepsilon)} \log n)$$

Utile pour ε assez grand : $\varepsilon = 10 \Rightarrow Q(n) = O(d n^{1/11})$

Conclusions

- Le problème de la recherche de voisins a suscité beaucoup de recherches
- Pour obtenir des structures de données qui ne dépendent pas exponentiellement de la dimension ambiante, il faut se limiter à des approximations et/ou utiliser des algorithmes randomisés
- Les projections aléatoires jouent un rôle central
- D'autres problèmes qui n'ont pas été abordés
 - k plus proches voisins
 - tous les plus (k) proches voisins
 - plus petite paire (2ième cours)
 - Variantes de LSH (autres métriques)