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Introduction : Topological Data
Analysis and Statistics



Topological Data Analysis and Topological Inference

e Theaimof TDA is to infer relevant qualitative and quantitative topological
structures (clusters, holes ...) directly from the data.

e data : typically point cloud X,,

e Two popular methods in TDA : Mapper algorithm [Singh et al., 2007]
and persistent homology [Edelsbrunner et al., 2002].



Topological Data Analysis (TDA)

Why is topology interesting for data analysis?

e multiscale
e compact
e Invariant under coordinate changes
e stable with respect to (small) perturbations
e informative
topological space
topological descriptors h
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Topological Data Analysis (TDA)

e [or exploratory analysis, visualization

e For feature extraction and statistical learning

raw data

Magnetometer Data
(walking)
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e Topological descriptors
e Geometric descriptors

e Other signatures

Magnetometer Data
(cross trainer)
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Statistics, Learning and TDA

A statistical approach to TDA means that :
e we consider data as generated from an unknown distribution

e the inferred topological features by TDA methods are seen as estimators
of topological quantities describing an underlying object.
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Statistics, Learning and TDA

Directions of research (non-exhaustive list):

Consistency / convergence of TDA methods: [Chazall5 JMLR], [Bobrowski
17 Bernouilli]

Confidence regions for TDA [Fasy 14 AoS]| [Chazal 15 JOCG ]
Central tendency for persistent homology [Turner 14 DCG] [Fasy15 Nips]
Robust methods for TDA [Chazal 17, EJS Chazal 17 JMLR]

Representations of persistence in Euclidean spaces [Bubenikl5 JMLR]
Adams15]

Develop kernels for topological descriptors [Reininghaus 15 IEEE] [Carriere
17 ICML ]

Statistical analysis of Mapper [Carriere 17]



Homology
and
Persistent homology



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.

e The local feature size is a local notion of regularity :
For x € X, Ifsx(z) :=d (x, M(X°)).

X
e [he global version of the local feature

size is the reach [Federer, 1959] :

k(X) = xiél}}é Ifsx ().

The reach is small if either X is not
smooth or if X is close to being self-
Intersecting.

e Weak feature size and its extensions [Chazal and Lieutier, 2007] (by con-
sidering the critical values of dx).



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.

d,(X)Y) =inf{a>0| X CY® and Y C X}

Example :

Theorem [Chazal and Lieutier, 2007]: Let X and Y be two compact sets in
R and let € > 0 be such that d,,(X,Y) < ¢, wfs(X) > 2¢ and wfs(Y) > 2e.

Then for any 0 < a < 2¢, X® and Y? are homotopy equivalent.




Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.

d,(X)Y) =inf{a>0| X CY® and Y C X}

Example :

Theorem [Chazal and Lieutier, 2007]: Let X and Y be two compact sets in

I

R% and let € > 0 be such that@H(X, Y) < @fs(X) > 2¢ and wfs(Y) > 2e.
Then for any 0 < a < 2¢, X®4and Y? are homotopy equivalent.

Sampling conditions in Hausdorff metric.

Statistical analysis of homotopy inference can be deduced from support estima-
tion of a distribution under the Hausdorff metric.




Homology inference

¢ Homotopy Is not easy to compute Iin practice.

e Singular homology provides a algebraic description of “holes” in a geo-
metric shape (connected components, loops, etc ...)

e Betti number ;. is the rank of the k-th homology group.

e Computational Topology : Betti numbers can be computed on simplicial
complexes.

Homology inference [Niyogi et al., 2008 and 2011] [Balakrishnan et al., 2012]
he Betti number (actually the homotopy type) of Riemannian manifolds with
positive reach can be recovered with high probability from offsets of a sample on
(or close to) the manifold.




Persistent homology

Starting from a point cloud X,,, let Filt = (Co)aca be a fitration of nested
simplicial complexes.

Persistent homology: identification of “persistent” topological features along the
filtration.

e multiscale information :

e more stable and more robust :
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Barecodes and Persistence Diagrams

Filtration of simplicial
complexes Filt(X,,)
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Barecodes and Persistence Diagrams

Filtration of simplicial
complexes Filt(X,,)

death
A v’ connected component
A ecycle
Offsets birth
- >
Barcode Dgm (Filt(X,,))

Persistence diagram of the
filtration Filt(X,,) built on X,,.



Distance between persistence diagrams and stability

x Dgm,
\ ¢ ngQ
Add the diagonal

Multiplicity: 2

|
O birth

The bottleneck distance between two diagrams Dgm, and Dgm, is

dp(Dgm,,Dgm,) = inf sup ||p — v(p)|l
V€L peDgm,

where I is the set of all the bijections between Dgm, and Dgm, and

Hp — quo — maX(’xP — C'7q|> |3/p — yq|)-



Distance between persistence diagrams and stability

x Dgm(Filt(X))
°* D Filt (Y
\ Add the diagonal gm( : ( ))

Multiplicity: 2

|
O birth

Theorem [Chazal et al., 2012]: For any compact metric spaces (X, p) and (Y, p’),
dp, (Dgm(Filt(X)), Dgm(Filt(Y))) < 2den (X,Y).
Consequently, if X and Y are embedded in the same metric space (M, p) then

dp, (Dgm(Filt(X)), Dgm(Filt(Y))) < 2dn (X,Y).




Statistics
and
Persistent homology



Persistence diagram inference [Chazal 2015 JMLR]

(M, p) metric space
X compact set in M.

./_\‘
i 5 ../_\;
. X, o

n points sampled in X
according to u

oo

well defined for any

compact metric space
[Chazal et al., 2012]

Filt(X) ~—— ™

Estimator of Dgm(Filt(K))

Dgm(Filt(X))

Convergence
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Persistence diagram inference

For a,b > 0, u satisfies the (a, b)-standard assumption on its support X, if for any
xr € X, and any r > 0 :

w(B(z,r)) > min(ar’, 1).

P(a,b,M) : set of all the probability measures satisfying the (a,b)-standard as-
sumption on the metric space (M, p).

Theorem: For a,b > 0 :
S Inn\*°
sup E [db(ng(Filt(Xu)), ng(Filt(Xn)))] <C (—)
peEP(a,b,M) n

where C' only depends on a and b.
Under additional technical hypotheses, for any estimator Dgm_ of Dgm(Filt(X,,)):

liminf sup E [db(ng(Filt(Xu)), D/gﬁn)} > C'n P
n—oo /LEP(CL,b,M)

where C’ is an absolute constant.




Confidence sets for persistence diagrams [Fasy 2014 AoS]

Persistence Diagram Persistence Diagram
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Confidence sets for persistence diagrams [Fasy 2014 AoS]

Persistence Diagram Persistence Diagram

Death
3
|
Death
3
|

0 1 2 3 A 2 3 0 1 2 3 gl 2 6
Birth Birth
P (ng(Filt(K)) s 7@) >1 -« 77

Using the Hausdorff stability, we can define confidence sets for persistence dia-
grams:

dp, (Dgm (Filt(K)), Dgm (Filt(X,,))) < dg (K, X,).

It is sufficient to find ¢,, such that

lim sup(dH(K, Xn) > cn) < a.

n—oo



Confidence sets for persistence diagrams [Fasy 2014 AoS]

Subsampling method:

o N subsamples Xj ..., X} of size b.

b,n’

e Compute T; = dy (Xin,Xn) 75=1,...,N.

e Compute Ly(t) = ~ Zj\f:l L7, >+,

o Take ¢ = 2L; *(a).

If P satisfies an (a,b) standard assumption then, for n large enough :

P(Wo (Dgm (Filt(X,)), Dgm (Filt(X,,))) > ) < P(du(X,,X,) > )

1/4
<b>
T

VAN



Central tendency for persistent homology
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e Frechet mean [Turner 2014]

e Use an alternative descriptor of persistence : Persistence landscapes
[Bubenik, 2015]



Persistence landscapes [Bubnik JMLR 2015]

d+b d—b
2 A 2o
° Ad P
o o .._-:--_-
° ®----- NZ
/_\A : /\
: b
X, Dgm(Filt (X)) persistence landscape
__ /b+d d—b
ng:{(dz;bz,dz;—bz),ze_[} FOrp_( _|2_ ) )Eng
t—b teb Y]
Ap(t) = ¢d—t te (X2, d]

Persistence landscape A of Dgm: :
0 otherwise.

AMk,t) = kmax A,(t), teER, keN,
peD
where kmax is k-th largest value in the set.

Stability: For any t € R and any k € N, |[\(k,t) — A (k,t)| < dp(Dgm, Dgm’).



Subsampling methods for pers. homology [Chazal ICML 2015]
joint work with F. Chazal, B. Fasy, F. Lecci, A. Rinaldo and L. Wasserman

o Let X ={Xy,---,X,,} sampled from p.
e \x: corresponding persistence landscape.
o W7 the measure induced by 1®™ on the space of persistence landscapes.

e We consider the point-wise expectations of the (random) persistence land-
scape under this measure:

Egr [Ax (t)], ¢ € [0,7]

e For S7",...,S)" some independent samples of size m from p®™, the em-
pirical counterpart of Egm [Ax ()] is

/

— 1

AP (t) = 7 E Asm(t), forallt e [0,T],
i=1



Subsampling methods for pers. homology [Chazal ICML 2015]

Definition: The p-th Wasserstein distance between two measures u, v de-
fined on (M, p) is

P

Woplier) = (inf [ [plpPancen)) "

I1

where the infimum is taken over all measures on M x Ml with marginals p
and v.

Stability of the average landscape:

Theorem: Let X ~ u®™ and Y ~ v®™, where 1 and v are two probability
measures on M. For any p > 1 we have

[Bay ] = Bup Av]|| < 2m3 W, ().

@)




Subsampling methods for pers. homology [Chazal ICML 2015]

Application: Analysis of accelerometer data.

F CI Walking Experiment with iPhone app
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e topological features carry discriminative information

e no registration/calibration preprocessing step needed



Commercial break: Gudhi with Statistical learning Python Libraries

ST auor g
\©

Geometric Understanding in Higher Dimensions

Interfaces  LIbrary
TDA

|

GUDHI

CGAL
GMP MPFR Eigen3

and coming soon : Gudhi Stat with more tools for statistics and TDA.



Robust TDA



Standard TDA methods are not robust to outliers

Circle Distance Function

X" = UB(x,r)

reX

= dx ([0,7])

where the distance
Sublevel Set, t=0.25 Persistence Diagram function dx to X is

dx(y) = int | — |

Death

Birth



Standard TDA methods are not robust to outliers

Circle with Outliers Distance Function

X" = UB(m,r)

reX

= dx ([0,7])

where the distance
Sublevel Set, t=0.25 Persistence Diagram function dx to X is

dx(y) = int | — |

Death




Some possible “noise models” for geometry

e Additive noise model o

P = ,u*CI) .o .0

/ e So ey .‘.0. e
°
noise dlstrlbutlon ° .:o e * G y*

distribution .Wlth support o « o000, o,
the geometric shape GG ° ¢ °

e Clutter noise model

P=mu+ (1—-—mU o C o o
~ °
/ . ° o o - coo,
C : o 0 ® oo
distribution with support Uniform distribu- o ® oo o (‘; ®
the geometric shape GG tion on the box o °© o, D5
° ¢ . °

e A few outliers
P=nmuy+(1—m)U

el T o .-:.'...; .g

distribution with support Distribution of outliers ° °
the geometric shape G



Robust TDA with an alternative distance function 7

We would like to consider the sub levels of an alternative distance function
related to the sampling measure, which support is X, or close to X.



Distance To Measure [Chazal 11 FocMm]

Preliminary distance function to a measure P:
Let u €]0, 1] be a positive mass, and P a probability measure on R¢:

opy(x) =inf{r >0: P (B(x,r)) > u}

Op. 1S the smallest distance needed to
capture a mass of at least w.

0p., IS the quantile function at u of the r.v.

|l — X]

where X ~ P.



Distance To Measure [Chazal 11 FocMm]

Preliminary distance function to a measure P:
Let u €]0, 1| be a positive mass, and P a probability

opy(x) =inf{r >0: P (B(x,r))

Definition: Given a

measure on R¢:

> u}

probability measure P

on R% and m > 0, the distance function to
the measure P (DTM) is defined by

dp,m;a:eRdH<

. m 1/2
— [ 6% . (2)d
[ o)




Distance To Measure [Chazal 11 FocMm]

Properties of the DTM :

e Stability under Wassertein perturbations:

1
HdP,m — dQ,mHoo S —mWQ(Pa Q)

e The function z — d%, (x) is semiconcave, this is ensuring strong reg-
ularity properties on the geometry of its sublevel sets.

e Consequently, if Pisa probability distribution close to P for Wasserstein
distance Wy, then the sublevel sets of ds, provide a topologically

Y

correct approximation of the support of P.



Distance to The Empirical Measure (DTEM)

Let Xq,...,X,, sample according to P and let P,, be the empirical measure.
Then

k
1
2, o(0) =7 3|l = X3
1=1

where [| X (1) — || = [|X@2) — 2| = - 2 [[ X)) —2]- - 2 [[X(n) — 2]
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Geometric inference with the DTM

Theorem: [Chazal et al., 2011]
Let 11 be a measure that has dimension at most £ > 0 with compact support

G such that reach,(G) > R > 0 for some a > 0.

Let v be another measure and € be an upper bound on the uniform distance
between dg and d,, ,,,. Then, for any r € [4e/a?, R— 3¢] and any i €]0, R],
the r-sublevel sets of d, ,,, and the n-sublevel sets of dg are homotopy
equivalent as soon as:

1/k+1/2
O .

R./mg 17k
<
Wa(p,v) < < Y Clp)~""m

In practice : X7 ...X,, sampled according to P.

Assume Ws (P, 1) small. e e ’
o ® o’ ht o ©
P, =>"_,0x, : empirical measure. g et o G®
° . o %o °*
Than for n large enough, Ws(P,,, 1) is small and the e o o%3

sublevel sets of dp_ ., provide a topologically correct
approximation of GG.




Wasserstein deconvolution and D TM denoising

Additive noise model

P:,u*CI) .o .0 o ®

® o
/ \ ® ... o .. ..‘. ..
°
noise distribution ° .:o "0 : G e °

distribution with support
the geometric shape G °

In this case, W5 (P, 14) can be large.

Ideally we would like to denoise directly dp_ ,,, but this can be hardly achieved
because the DTM is not a linear functional of the measure.

Alternative approach : deconvolve the observed measure [Caillerie EJS 2011]

Xq,..., X, > Deconvol\jed > dz, .m
measure [i,

WQ(Pnnu) > WZ(ﬁnaN) > \/m|’d~n,m — duHoo

(5¢0) (— 0)



Wasserstein deconvolution and DTM denoising
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DTM and persistent homology

Cassini Curve Distance Function Sublevel Set, t=0.45 Persistence Diagram
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DTM and persistent homology

d?;g* ngP,m

1
db (ngP,m7 ngQ,m) < Hdp,m o dQ,mHoo < \/—EWQ(Pa Q)
Take ) = P, ... T
Wasserstein Stability of the D
[Chazal et al., 2012]

Stability of Persistent homology [Cohen-
Steiner et al.,2005, Chazal et al., 2012}




Estimation of the DTM via the empirical DTM
[Chazal EJS 17, Chazal JMLR 17]

Quantity of interest:
d?an k() — d%%(:c)

‘n

e Observe that e
(@) = o [ B ()

where F, is the cdf of ||z — X||? with X ~ P.

e [he distance to the empirical measure is the empirical counter part of
the distance to P:

1 m
dp, m(z)’=— [ F, . (u)d
pon@? = — [ Fo
where F , is the cdf of ||z — X||? with X ~ P,,.

e Finally we get that

£y (o) = @) = [ {F ) - Fr ) du



Estimation of the DTM via the empirical DTM
[Chazal EJS 17, Chazal JMLR 17]

Quantity of interest:

Two complementary approaches of the problem:

k

e Asymptotic approach : =% = m is fixed and n tends to infinity.

e Non asymptotic approach : n is fixed, and we want a tight control
over the fluctuations of the empirical DTM, in function of k£, which
can be taken very small.

We do not use Wasserstein stability for either of the two approaches.
Wasserstein rates of convergence [Fournier and Guillin, 2013 ;Dereich et al.,
2013] do not provide tight rates for the DTM in this context.



Bootstrap and significance of topological features

Aim : studying the persistent homology of the sub-levels of the DTM and
providing confidence regions.

Two alternative boostrap methods :

e by bootstrapping the DTM

e Bottleneck Bootstrap



Bootstrap and significance of topological features

Bootstrapping the DTM
P

o



Bootstrap and significance of topological features

Bootstrapping the DTM

;

5T



Bootstrap and significance of topological features

Bootstrapping the DTM

p «—¥®»p

n

LS

p, «<—» p:



Bootstrap and significance of topological features

Bootstrapping the DTM

p «—¥®»p

n

LS

p, «<—» p:



Bootstrap and significance of topological features

Bootstrapping the DTM
For m € (0,1), define ¢, by

(\/7Hd Pn,mHOO > Coz) — Q.
Let X7,..., X} be a sample from P,, and let P} be the corresponding (boot-
strap) empirical measure.

We consider the bootstrap quantity dpx ,,(x) of dp,, m.

The bootstrap estimate ¢, is defined by
(\/_Hdpn,m o dQ;;’mHOO > éa ‘)(17 . 7)(n> —

where ¢, can be approximated by Monte Carlo.

Theorem: If F-! is regular enough, the DTM is Hadamard differentiable at
P. Consequently, the bootstrap method for the DTM is asymptotically valid.




Bootstrap and significance of topological features

Bootstrapping the DTM

Dgm : persistence diagram of the sub-levels of dp ,,

/\

Dgm : persistence diagram of the sub-levels of dp_ ,,.

et
Cp, = {E ¢ Diag: dy(Dgm, E) < } |
mn

where Diag is the set of all the persistence diagrams.

Then, Bootstrap estimate

. WG
P(ngecn>—P(db<ng,ng>< zw(ud%,m B, lloo < ’)

~Vn




Bootstrap and significance of topological features

The Bottleneck Bootstrap

Dgm : persistence diagram of the sub-levels of dp ,,

igﬁ . persistence diagram of the sub-levels of dp_ ,,.

—k
Dgm . persistence diagram of the sub-levels of dp: .

We directly bootstrap in the set of the persistence diagram by considering the

/\*/\

random quantity dp,(Dgm ,Dgm). We define ¢, by

P (/ndy,(Dgm , Dgm) > io | X1,..., Xn) = @

he quantile £, can be estimated by Monte Carlo.



Bootstrap and significance of topological features

For both methods we can identify significant features by putting a band
of size 2¢,, or 2t,, around the diagonal:

Cassini with Noise DTM Bootstrap Bottleneck Bootstrap Together
L'.'! -l
1 &
| I | |
04 06 08 1.0 04 06 08 10 04 06 08 1.0
Birth Birth Birth

In practice, the bottleneck bootstrap can lead to more precise inferences because
In many cases the stability result is not sharp enough:

db(ng7 ng> < HdP,m — dPn,mHoo-



Concluding remarks

TDA methods focus on the topological properties (homology / persistent
homology) of a shape.

TDA methods can be used

— as an ‘“exploratory method”, in particuar when the point cloud is
sampled on (close to) a real geometric object

— as a 'feature extraction” procedure, next these extracted features can
be used for learning purposes.

TDA is an emerging field, at the interface maths, computer sciences, statis-
tics.

Many topics about the statistical analysis of TDA

Applications in many fields of sciences ( medecine, biology, dynamic sys-
tems, astronomy, dynamical systems, physics ...)
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