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Introduction : Topological Data
Analysis and Statistics



Topological Data Analysis and Topological Inference

• The aim of TDA is to infer relevant qualitative and quantitative topological
structures (clusters, holes ...) directly from the data.

• Two popular methods in TDA : Mapper algorithm [Singh et al., 2007]
and persistent homology [Edelsbrunner et al., 2002].

• data : typically point cloud Xn



Topological Data Analysis (TDA)

β0 β1 β2

topological space

point cloud

topological descriptors

Why is topology interesting for data analysis?

• multiscale

• compact

• invariant under coordinate changes

• stable with respect to (small) perturbations

• informative



• For exploratory analysis, visualization

Topological Data Analysis (TDA)



• For exploratory analysis, visualization

• For feature extraction and statistical learning

• Topological descriptors

• Geometric descriptors

• Other signatures

raw data • supervised methods

• unsupervised methods

Topological Data Analysis (TDA)



A statistical approach to TDA means that :

• we consider data as generated from an unknown distribution

• the inferred topological features by TDA methods are seen as estimators
of topological quantities describing an underlying object.

Statistics, Learning and TDA

β0 β1 β2



Directions of research (non-exhaustive list):

• Consistency / convergence of TDA methods: [Chazal15 JMLR], [Bobrowski

17 Bernouilli]

• Confidence regions for TDA [Fasy 14 AoS] [Chazal 15 JOCG ]

• Central tendency for persistent homology [Turner 14 DCG] [Fasy15 Nips]

• Robust methods for TDA [Chazal 17, EJS Chazal 17 JMLR]

• Representations of persistence in Euclidean spaces [Bubenik15 JMLR]

[Adams15]

• Develop kernels for topological descriptors [Reininghaus 15 IEEE] [Carriere

17 ICML ]

• Statistical analysis of Mapper [Carriere 17]

• ...

Statistics, Learning and TDA



Homology
and

Persistent homology



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.

• The local feature size is a local notion of regularity :
For x ∈ X, lfsX(x) := d (x,M(Xc)) .

• Weak feature size and its extensions [Chazal and Lieutier, 2007] (by con-
sidering the critical values of dX).

• The global version of the local feature
size is the reach [Federer, 1959] :

κ(X) = inf
x∈Xc

lfsX(x).

The reach is small if either X is not
smooth or if X is close to being self-
intersecting.



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.

Theorem [Chazal and Lieutier, 2007]: Let X and Y be two compact sets in
Rd and let ε > 0 be such that dH(X,Y) < ε, wfs(X) > 2ε and wfs(Y) > 2ε.
Then for any 0 < α < 2ε, Xα and Yβ are homotopy equivalent.

Example :

dH(X,Y) = inf {α ≥ 0 | X ⊂ Yα and Y ⊂ Xα}



Topological Stability and Regularity

Topological inference : under “regularity assumptions”, topological properties of
X can be recovered from (the off-sets) of a close enough object Y.

Theorem [Chazal and Lieutier, 2007]: Let X and Y be two compact sets in
Rd and let ε > 0 be such that dH(X,Y) < ε, wfs(X) > 2ε and wfs(Y) > 2ε.
Then for any 0 < α < 2ε, Xα and Yβ are homotopy equivalent.

Example :

dH(X,Y) = inf {α ≥ 0 | X ⊂ Yα and Y ⊂ Xα}

Sampling conditions in Hausdorff metric.

Statistical analysis of homotopy inference can be deduced from support estima-
tion of a distribution under the Hausdorff metric.



Homology inference

• Homotopy is not easy to compute in practice.

• Singular homology provides a algebraic description of “holes” in a geo-
metric shape (connected components, loops, etc ...)

• Betti number βk is the rank of the k-th homology group.

• Computational Topology : Betti numbers can be computed on simplicial
complexes.

Homology inference [Niyogi et al., 2008 and 2011] [Balakrishnan et al., 2012] :
The Betti number (actually the homotopy type) of Riemannian manifolds with
positive reach can be recovered with high probability from offsets of a sample on
(or close to) the manifold.



Persistent homology

Starting from a point cloud Xn, let Filt = (Cα)α∈A be a fitration of nested
simplicial complexes.

• multiscale information ;

• more stable and more robust ;

α

Persistent homology: identification of “persistent” topological features along the
filtration.



Barecodes and Persistence Diagrams

Xn

Barcode

Filtration of simplicial
complexes Filt(Xn)

Offsets



Barecodes and Persistence Diagrams

Dgm (Filt(Xn))
Persistence diagram of the

filtration Filt(Xn) built on Xn.

Xn

Barcode

Filtration of simplicial
complexes Filt(Xn)

Offsets birth

death



Distance between persistence diagrams and stability

birth

death

∞

0

Multiplicity: 2

Add the diagonal

Dgm1

Dgm2

The bottleneck distance between two diagrams Dgm1 and Dgm2 is

db(Dgm1,Dgm2) = inf
γ∈Γ

sup
p∈Dgm1

‖p− γ(p)‖∞

where Γ is the set of all the bijections between Dgm1 and Dgm2 and

‖p− q‖∞ = max(|xp − xq|, |yp − yq|).



Distance between persistence diagrams and stability

birth

death

∞

0

Multiplicity: 2

Add the diagonal

Theorem [Chazal et al., 2012]: For any compact metric spaces (X, ρ) and (Y, ρ′),

db (Dgm(Filt(X)),Dgm(Filt(Y))) ≤ 2 dGH (X,Y) .

Consequently, if X and Y are embedded in the same metric space (M, ρ) then

db (Dgm(Filt(X)),Dgm(Filt(Y))) ≤ 2 dH (X,Y) .

Dgm(Filt(Y))

Dgm(Filt(X))



Statistics
and

Persistent homology



Persistence diagram inference [Chazal 2015 JMLR]

∞

0
0

X̂n Filt(X̂n)

Dgm(Filt(X̂n))
n points sampled in X
according to µ

Filt(X)

∞

0
0

Dgm(Filt(X))

X

Convergence
???

Estimator of Dgm(Filt(K))

(M, ρ) metric space
X compact set in M. well defined for any

compact metric space
[Chazal et al., 2012]



Theorem: For a, b > 0 :

sup
µ∈P(a,b,M)

E
[
db(Dgm(Filt(Xµ)),Dgm(Filt(X̂n)))

]
≤ C

(
lnn

n

)1/b

where C only depends on a and b.

Under additional technical hypotheses, for any estimator D̂gmn of Dgm(Filt(Xµ)):

lim inf
n→∞

sup
µ∈P(a,b,M)

E
[
db(Dgm(Filt(Xµ)), D̂gmn)

]
≥ C′n−1/b

where C′ is an absolute constant.

For a, b > 0, µ satisfies the (a, b)-standard assumption on its support Xµ if for any
x ∈ Xµ and any r > 0 :

µ(B(x, r)) ≥ min(arb, 1).

P(a, b,M) : set of all the probability measures satisfying the (a, b)-standard as-
sumption on the metric space (M, ρ).

Persistence diagram inference



Confidence sets for persistence diagrams [Fasy 2014 AoS]

P
(

Dgm(Filt(K)) ∈ R̂
)
≥ 1− α ??



Confidence sets for persistence diagrams [Fasy 2014 AoS]

Using the Hausdorff stability, we can define confidence sets for persistence dia-
grams:

db (Dgm (Filt(K)) ,Dgm (Filt(Xn))) ≤ dH(K,Xn).

It is sufficient to find cn such that

lim sup
n→∞

(
dH(K,Xn) > cn

)
≤ α.

P
(

Dgm(Filt(K)) ∈ R̂
)
≥ 1− α ??



Confidence sets for persistence diagrams [Fasy 2014 AoS]

Subsampling method:

• N subsamples X1
b,n, . . . ,XNb,n of size b.

• Compute Tj = dH

(
Xjb,n,Xn

)
, j = 1, . . . , N .

• Compute Lb(t) = 1
N

∑N
j=1 1Tj>t,

• Take cb = 2L−1
b (α).

If P satisfies an (a, b) standard assumption then, for n large enough :

P
(
W∞ (Dgm (Filt(Xµ)) ,Dgm (Filt(Xn))) > cb

)
≤ P

(
dH (Xµ,Xn) > cb

)
≤ α+O

(
b

n

)1/4



Central tendency for persistent homology

• Frechet mean [Turner 2014]

• Use an alternative descriptor of persistence : Persistence landscapes
[Bubenik, 2015]



Persistence landscapes [Bubnik JMLR 2015]

b

d
d+b

2

d+b
2

d−b
2

Dgm =
{

( di+bi
2

, di+bi
2

), i ∈ I
} For p = ( b+d

2
, d−b

2
) ∈ Dgm,

Λp(t) =


t− b t ∈ [b, b+d

2
]

d− t t ∈ ( b+d
2
, d]

0 otherwise.
Persistence landscape λ of Dgm:

λ(k, t) = kmax
p∈D

Λp(t), t ∈ R, k ∈ N,

where kmax is k-th largest value in the set.

Stability: For any t ∈ R and any k ∈ N, |λ(k, t)− λ′(k, t)| ≤ db(Dgm,Dgm′).

Xn Dgm(Filt(Xn)) persistence landscape

d−b
2



Subsampling methods for pers. homology [Chazal ICML 2015]

• Let X = {X1, · · · , Xm} sampled from µ.

• λX : corresponding persistence landscape.

• Ψm
µ : the measure induced by µ⊗m on the space of persistence landscapes.

• We consider the point-wise expectations of the (random) persistence land-
scape under this measure:

EΨmµ
[λX(t)], t ∈ [0, T ]

• For Sm1 , . . . , S
m
` some independent samples of size m from µ⊗m, the em-

pirical counterpart of EΨmµ
[λX(t)] is

λm` (t) =
1

`

∑̀
i=1

λSmi (t), for all t ∈ [0, T ],

joint work with F. Chazal, B. Fasy, F. Lecci, A. Rinaldo and L. Wasserman



Subsampling methods for pers. homology [Chazal ICML 2015]

Theorem: Let X ∼ µ⊗m and Y ∼ ν⊗m, where µ and ν are two probability
measures on M. For any p ≥ 1 we have∥∥∥EΨmµ

[λX ]− EΨmν
[λY ]

∥∥∥
∞
≤ 2m

1
pWρ,p(µ, ν).

Definition: The p-th Wasserstein distance between two measures µ, ν de-
fined on (M, ρ) is

Wρ,p(µ, ν) =

(
inf
Π

∫
M×M

[ρ(x, y)]pdΠ(x, y)

) 1
p

,

where the infimum is taken over all measures on M ×M with marginals µ
and ν.

Stability of the average landscape:



Subsampling methods for pers. homology [Chazal ICML 2015]

Application: Analysis of accelerometer data.

• topological features carry discriminative information

• no registration/calibration preprocessing step needed

Fred

Fabrizio

Bertrand



and coming soon : Gudhi Stat with more tools for statistics and TDA.

Commercial break: Gudhi with Statistical learning Python Libraries



Robust TDA



Standard TDA methods are not robust to outliers

Xr :=
⋃
x∈X

B(x, r)

= d−1
X ([0, r])

where the distance
function dX to X is

dX(y) = inf
x∈X
‖x− y‖



Standard TDA methods are not robust to outliers

Xr :=
⋃
x∈X

B(x, r)

= d−1
X ([0, r])

where the distance
function dX to X is

dX(y) = inf
x∈X
‖x− y‖



Some possible “noise models” for geometry

• Additive noise model

• Clutter noise model

• A few outliers

P = µ ? Φ

distribution with support
the geometric shape G

noise distribution

P = πµ+ (1− π)U

distribution with support
the geometric shape G

Uniform distribu-
tion on the box

P = πµ+ (1− π)Ψ

distribution with support
the geometric shape G

Distribution of outliers

G

G

G



We would like to consider the sub levels of an alternative distance function
related to the sampling measure, which support is X, or close to X.

Robust TDA with an alternative distance function ?



Preliminary distance function to a measure P :
Let u ∈]0, 1[ be a positive mass, and P a probability measure on Rd:

δP,u(x) = inf {r > 0 : P (B(x, r)) ≥ u}

supp(P )

x

δP,u(x)

u

δP,u is the smallest distance needed to
capture a mass of at least u.

δP,u is the quantile function at u of the r.v.

‖x−X‖

where X ∼ P .

Distance To Measure [Chazal 11 FoCM]



Preliminary distance function to a measure P :
Let u ∈]0, 1[ be a positive mass, and P a probability measure on Rd:

δP,u(x) = inf {r > 0 : P (B(x, r)) ≥ u}

supp(P )

x

δP,u(x)

u

Definition: Given a probability measure P
on Rd and m > 0, the distance function to
the measure P (DTM) is defined by

dP,m : x ∈ Rd 7→
(

1

m

∫ m

0

δ2
P,u(x)du

)1/2

Distance To Measure [Chazal 11 FoCM]



Distance To Measure [Chazal 11 FoCM]

• Stability under Wassertein perturbations:

‖dP,m − dQ,m‖∞ ≤
1√
m
W2(P,Q)

• The function x 7→ d2
P,m(x) is semiconcave, this is ensuring strong reg-

ularity properties on the geometry of its sublevel sets.

• Consequently, if P̃ is a probability distribution close to P for Wasserstein
distance W2, then the sublevel sets of dP̃ ,m provide a topologically
correct approximation of the support of P .

Properties of the DTM :



Let X1, . . . , Xn sample according to P and let Pn be the empirical measure.
Then

d2
Pn,

k
n

(x) =
1

k

k∑
i=1

||x−X(i)||2

where ||X(1) − x|| ≥ ||X(2) − x|| ≥ · · · ≥ ||X(k) − x| · · · ≥ ||X(n) − x||

Distance to The Empirical Measure (DTEM)

x

k = 8

X(i)



Geometric inference with the DTM

Theorem: [Chazal et al., 2011]
Let µ be a measure that has dimension at most k > 0 with compact support
G such that reachα(G) ≥ R > 0 for some α > 0.
Let ν be another measure and ε be an upper bound on the uniform distance
between dG and dν,m0 . Then, for any r ∈ [4ε/α2, R−3ε] and any η ∈]0, R[,
the r-sublevel sets of dµ,m0 and the η-sublevel sets of dG are homotopy
equivalent as soon as:

W2(µ, ν) ≤
R
√
m0

5 + 4/α2
− C(µ)−1/km

1/k+1/2
0 .

G

In practice : X1 . . . Xn sampled according to P .

Assume W2(P, µ) small.

Pn =
∑n
i=1 δXi : empirical measure.

Than for n large enough, W2(Pn, µ) is small and the
sublevel sets of dPn,m provide a topologically correct
approximation of G.



Wasserstein deconvolution and DTM denoising

Additive noise model

P = µ ? Φ

distribution with support
the geometric shape G

noise distribution G

In this case, W2(P, µ) can be large.

Ideally we would like to denoise directly dPn,n, but this can be hardly achieved
because the DTM is not a linear functional of the measure.

Alternative approach : deconvolve the observed measure [Caillerie EJS 2011]

X1, . . . , Xn Deconvolved
measure µ̃n

dµ̃n,m

W2(Pn, µ) ≥W2(µ̃n, µ) ≥
√
m‖dµ̃n,m − dµ‖∞

(→ 0)(→ 0)



Wasserstein deconvolution and DTM denoising



DTM and persistent homology



DTM and persistent homology

db

(
DgmP,m,DgmQ,m

)
≤ ‖dP,m − dQ,m‖∞ ≤

1√
m
W2(P,Q)

Stability of Persistent homology [Cohen-
Steiner et al.,2005, Chazal et al., 2012]

Wasserstein Stability of the DTM
[Chazal et al., 2012]

Xi ∼ P

Take Q = Pn ...

dP,m

birth

death

∞

0

DgmP,m



Estimation of the DTM via the empirical DTM

Quantity of interest:
d2
Pn,

k
n

(x)− d2
P, kn

(x)

• Observe that

d2
P,m(x) =

1

m

∫ m

0

F−1
x (u)du

where Fx is the cdf of ‖x−X‖2 with X ∼ P .

• The distance to the empirical measure is the empirical counter part of
the distance to P :

dPn,m(x)2 =
1

m

∫ m

0

F−1
x,n(u)du

where Fx,n is the cdf of ‖x−X‖2 with X ∼ Pn.

• Finally we get that

d2
Pn,

k
n

(x)− d2
P, kn

(x) =
1

m

∫ m

0

{
F−1
x,n(u)− F−1

x (u)
}
du

[Chazal EJS 17, Chazal JMLR 17]



Estimation of the DTM via the empirical DTM

Quantity of interest:
d2
Pn,

k
n

(x)− d2
P, kn

(x)

Two complementary approaches of the problem:

• Asymptotic approach : kn
n = m is fixed and n tends to infinity.

• Non asymptotic approach : n is fixed, and we want a tight control
over the fluctuations of the empirical DTM, in function of k, which
can be taken very small.

We do not use Wasserstein stability for either of the two approaches.
Wasserstein rates of convergence [Fournier and Guillin, 2013 ;Dereich et al.,
2013] do not provide tight rates for the DTM in this context.

[Chazal EJS 17, Chazal JMLR 17]



Bootstrap and significance of topological features

Aim : studying the persistent homology of the sub-levels of the DTM and
providing confidence regions.

Two alternative boostrap methods :

• by bootstrapping the DTM

• Bottleneck Bootstrap



Bootstrap and significance of topological features

Bootstrapping the DTM

P

Pn



Bootstrap and significance of topological features

Bootstrapping the DTM

P

Pn

Pn

Bootstrapping the DTM

P ∗n



Bootstrap and significance of topological features

Bootstrapping the DTM

P

Pn

Pn

Bootstrapping the DTM

P ∗n



Bootstrap and significance of topological features

Bootstrapping the DTM

P

Pn

Pn

Bootstrapping the DTM

P ∗n

Φ(P )

Φ(Pn)

Φ(Pn)

Φ(P ∗n)



Bootstrap and significance of topological features

Bootstrapping the DTM

For m ∈ (0, 1), define cα by

P
(√
n||d2

P,m − d2
Pn,m||∞ > cα

)
= α.

Let X∗1 , . . . , X
∗
n be a sample from Pn, and let P ∗n be the corresponding (boot-

strap) empirical measure.

We consider the bootstrap quantity dP∗n ,m(x) of dPn,m.

The bootstrap estimate ĉα is defined by

P
(√

n||d2
Pn,m − d

2
P∗n ,m

||∞ > ĉα |X1, . . . , Xn

)
= α

where ĉα can be approximated by Monte Carlo.

Theorem: If F−1
x is regular enough, the DTM is Hadamard differentiable at

P . Consequently, the bootstrap method for the DTM is asymptotically valid.



Bootstrap and significance of topological features

Dgm : persistence diagram of the sub-levels of dP,m

D̂gm : persistence diagram of the sub-levels of dPn,m.
Let

Cn =

{
E ∈ Diag : db(D̂gm, E) ≤ ĉα√

n

}
,

where Diag is the set of all the persistence diagrams.

Then,

P(Dgm ∈ Cn) = P
(

db(Dgm, D̂gm) ≤ ĉα√
n

)
≥ P

(
‖d2
P,m − d2

Pn,m‖∞ ≤
ĉα√
n

)

Bootstrapping the DTM

Bootstrap estimate



Bootstrap and significance of topological features

The Bottleneck Bootstrap

Dgm : persistence diagram of the sub-levels of dP,m

D̂gm : persistence diagram of the sub-levels of dPn,m.

D̂gm
∗

: persistence diagram of the sub-levels of dP∗n ,m.

We directly bootstrap in the set of the persistence diagram by considering the

random quantity db(D̂gm
∗
, D̂gm). We define t̂α by

P
(√

ndb(D̂gm
∗
, D̂gm) > t̂α |X1, . . . , Xn

)
= α.

The quantile t̂α can be estimated by Monte Carlo.



Bootstrap and significance of topological features

In practice, the bottleneck bootstrap can lead to more precise inferences because
in many cases the stability result is not sharp enough:

db(D̂gm,Dgm) ≤ ‖dP,m − dPn,m‖∞.

For both methods we can identify significant features by putting a band
of size 2ĉα or 2t̂α around the diagonal:



Concluding remarks

• TDA methods focus on the topological properties (homology / persistent
homology) of a shape.

• TDA methods can be used

– as an “exploratory method”, in particuar when the point cloud is
sampled on (close to) a real geometric object

– as a “feature extraction” procedure, next these extracted features can
be used for learning purposes.

• TDA is an emerging field, at the interface maths, computer sciences, statis-
tics.

• Many topics about the statistical analysis of TDA

• Applications in many fields of sciences ( medecine, biology, dynamic sys-
tems, astronomy, dynamical systems, physics ...)
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