Artificial Photosynthesis Challenges & Opportunities

Peidong Yang Department of Chemistry University of California, Berkeley

Terawatt Challenge

 In 2008, total worldwide power consumption was 15 terawatts with 80 to 90 percent derived from the combustion of fossil fuels.

 Currently low percentage of renewable energy in world-wide energy portfolio

Global warming and CO2 emission

Terawatt Challenge: Solar

Total Solar Energy: 165,000 TW of sunlight hit the earth.

Renewable & Sustainable.

"I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal run out before we tackle that"

Thomas Edison (1931) in conversation with Henry Ford and Harvey Firestone

Energy Density & Storage

Harvesting Solar Energy: Solar to fuel

Some Endergonic Fuel Generation Reactions

DOE Energy Innovation Hub: Solar to Fuels

•10-year JCAP Goal, 2010: To demonstrate a manufacturably scalable solar fuel generator, using earth-abundant elements, that, with no wires, robustly produces fuel from the sun, 10 times more efficiently than (current) crops

OINT CENTER FOR ARTIFICIAL PHOTOSYNTHESIS

Peidong Yang (LBNL)

"...they're developing a way to turn sunlight and water into fuel for our cars. ..." President Obama's State of the Union remarks Jan. 2011

A Nobel Challenge

• Melvin Calvin: It is time to build an actual artificial photosynthetic system, to learn what works and what doesn't work, and thereby set the stage for making it work better.

ACCOUNTS OF CHEMICAL RESEARCH

VOLUME 11

NUMBER 10

O C T O B E R , 1978

Simulating Photosynthetic Quantum Conversion

Melvin Calvin

Laboratory of Chemical Biodynamics, University of California, Berkeley, California 94720 Received January 19, 1978

1961, Nobel prize in chemistry

So, why is this so difficult?

Sustainable and Renewable: Solar Fuel

Hydrogen; Methanol...

Require the invention of new photoactive materials that accomplish the combined tasks of **light harvesting**, **charge separation**, and **compartmentalized chemical transformations**.

Grand challenges for solar water splitting

Required Photocatalyst Parameters:

- 1. Bandgap in the visible
- 2. Correct CBM and VBM
- 3. Fast charge transfer across interface
- 4. Resistance to photocorrosion
- 5. Low-cost, abundant elements

First work on TiO2 water splitting

Electrochemical Photolysis of Water at a Semiconductor Electrode

ALTHOUGH the possibility of water photolysis has been inves gated by many workers, a useful method has only now be developed. Because water is transparent to visible light cannot be decomposed directly, but only by radiation wi wavelengths shorter than 190 nm (ref. 1).

For electrochemical decomposition of water, a potent difference of more than 1.23 V is necessary between o electrode, at which the anodic processes occur, and the othewhere cathodic reactions take place. This potential different is equivalent to the energy of radiation with a wavelength approximately 1,000 nm. Therefore, if the energy of light used effectively in an electrochemical system, it should possible to decompose water with visible light. Here with describe a novel type of photo-electrochemical cell white decomposes water in this way.

Electrolysis of water can occur even without applying electric power if one of the following three conditions is fulfilled. First, oxygen evolution occurs at a potential more negative than that at which hydrogen evolution occurs in normal conditions; second, hydrogen evolution occurs at a potential more positive than that at which oxygen evolution occurs in normal conditions; third, the potential for oxygen evolution is made more negative and that for hydrogen evolution is made more positive, until the former is more negative than the latter.

Current-voltage curves of a semiconducting n-type TiO₂

Fig. 2 Electrochemical cell in which the TiO_2 electrode is connected with a platinum electrode (see text). The surface area of the platinum black electrode used was approximately 30 cm².

A. Fujishiam, K. Honda, Nature, 1972, 238, 38

Using multi-junctions

Photo-electrochemical Device

efficient but expensive

Ohmic contact

Photovoltaic cell

> 11% efficient water splitting

Tunnel diode

interconnect

Photoelectrochemical

COL

Single Bandgap semiconductor for water splitting

Single bandgap semiconductor particles for overall water splitting with visible light K. Domen, Nature **440**, 295 (2006); Angew. Chem. Int. Ed. **45**, 7806 (2006)

Semiconductor Electrolyte Interface

Solar Water Splitting with single bandgap light absorber

Photoelectrochemical diodes: Dual Bandgap Concept

Designing dual-bandgap light absorber

Solar-Fuels Generators

Photocathode: Silicon Nanowire Array

Si wire array as photocathode

H. Jeong et al. 2009

Photocathode: Silicon nanowire array

Y. Hwang et al. 2010

Photocurrent from the Anode Materials

	Light I _{input}	I _{current} (mA/cm ²)		
TiO ₂ ¹	UV only	N/A		
doped- TiO ₂ ²	Simulated AM 1.5 100 mW/cm ²	0.85 mA/cm ²		
Si-doped Fe ₂ O ₃ ³	Simulated AM 1.5 100 mW/cm ²	2.3 mA/cm ²		
(Ga _{1-x} Zn _x) (N _{1-x} O _x) ⁴	Respond up to 450-500 nm	N/A		
KTaO3 ⁵	UV only	N/A		

Fujishima A, Honda K. Nature 1972;238:37–8.; 2) J. K. Park, S. Kim, A. J. Bard. *Nano. Lett.* 2006, 6, 24.
A. Kay, I. Cesar, M. Grätzel, *J. Am. Chem. Soc.* 2006, 128, 15717; 4) K. Maeda *et al, Nature.* 2006, 440, 295; 5). Kato H, Asakura K, Kudo A. J Am Chem Soc 2003;125:3082–9.

Challenges in semiconductor design: the anode materials

Single crystalline InGaN Nanowires for solar water splitting

T. Kuykendall et al. Nature Mater, 3, 528, 2004; Nature Materials, 6, 951, 2007

Alloyed Nanowires: Full Color Spectrum

In_xGa_{1-x}N Photocurrent Measurements pH3

C. Hahn, unpublished results

In_xGa_{1-x}N Photocorrosion Test

24 Hr, 4.5 Suns Illumination, pH 3 0.5 M Na₂SO₄ Solution, Pt Clusters

InGaN is a promising photoanode material.

Si/InGaN Core/Shell Wire

In_xGa_{1-x}N nanorod shell grows on the patterned Si wire arrays, which provide high surface area as well as light trapping.
Spectrally splitting light absorption, tunable bandgap, and bandedge

Artificial Leaf: Nanowire Bilayer Paper Solar-Fuels Generators

Photoanode Nanowire Mesh/Oxidation Catalysts

0

Proton conductive Polymer Membrane

Photocathode Nanowire Mesh/Reduction Catalysts

✓ Light harvesting, anode/cathode
✓ Charge separation
✓ Vectorial charge transport
✓ Compartmentalized chemical transformations: Catalysts
✓ Polymer Membrane

- Solution synthesis/processing, Large scale
- Casting and printing
- Fully integrated photoanodes and photocathodes
- Porous network for asymmetric decoration of oxidation/reduction catalysts

Bilayer Nanowire Mesh

18.tif Cal: 0.262536 nm/pix 6:29:10 p 08/12/10

20 nm HV=120.0kV

Bilayer Nanowire Mesh: Light Absorption

Solar-to-Fuel Conversion

The overall efficiency for the conversion of available sunlight to fuel:

 $\eta_{\text{overall}} = \eta_{\text{PV}}$ (photovoltaic efficiency)

- $\eta_{\rm CT}$ (charge transfer efficiency)
 - η_{cat} (catalysis efficiency)

Candidate Energy-Storing Reactions

Dual oxidation/reduction components needed for overall catalytic cycles

• Water Splittin	g	light/catalyst
-	2 H ₂ O	$\rightarrow 2 H_2 + O_2$
Oxidation	2 H ₂ O	\longrightarrow O ₂ + 4 H ⁺ + 4 e ⁻
Reduction	2 H⁺ + 2 e⁻	\longrightarrow H ₂

Carbon Dioxide Fixation

	CO ₂	light/catalyst →	CO + 1/2 O ₂		
Oxidation	2 H ₂ O	>	O ₂ + 4 H⁺ + 4 e⁻		
Reduction	CO ₂ + 2 H⁺ + 2 e	>	$CO + H_2O$		

Matching solar flux with catalytic activity

Molecular catalysts for water oxidation

Molecular catalysts are structurally and mechanistically well understood.

Turnover rates (10⁻³ to 10⁰ s⁻¹) are generally too slow to compete with back ET in non-sacrificial systems.

Turnover frequencies (TOF) for oxygen evolution at Co and Mn oxide materials

Activity Metrics/Goals:

~x 10^2 for H₂; ~x 10^4 for O₂ >x 10^5 for CO₂

Oxide	TOF (sec ⁻¹)	Overvoltage, η (mV)	рН	T (°C)	Quantum yield	Reference
Co ₃ O ₄	0.035	325	5	RT	58%	Harriman (1988) [1]
Co ₃ O ₄	<u>≥</u> 0.0025	350	14	30		Tamura (1981) [2]
Co ₃ O ₄	<u>≥</u> 0.020	295	14	120		Wendt (1994) [3]
Co ₃ O ₄	<u>≥</u> 0.0008	414	14.7	25		Tseung (1983) [4]
Co ₃ O ₄	<u>≥</u> 0.006	235	14	25		Singh (2007) [5]
Co,P film	<u>≥</u> 0.0007	410	7	25		Nocera (2008) [6]
MnO ₂	<u>≥</u> 0.013	440	7	30		Tamura (1977) [7]
Mn_2O_3	0.055	325	5	RT	35%	Harriman (1988) [1]

[1] Harriman, A.; Pickering, I.J.; Thomas, J.M.; Christensen, P.A. J. Chem. Soc., Farad. Trans. 1 1988, 84, 2795-2806.

[2] Iwakura, C.; Honji, A.; Tamura, H. Electrochim. Acta 1981, 26, 1319-1326.

[3] Schmidt, T.; Wendt, H. *Electrochim. Acta* **1994**, *39*, 1763-1767.

[4] Rasiyah, P.; Tseung, A.C.C. J. Electrochem. Soc. 1983, 130, 365-368.

[5] Singh, R.N.; Mishra, D.; Anindita; Sinha, A.S.K.; Singh, A. *Electrochem. Commun.* 2007, *9*, 1369-1373.

[6] Kanan, M.W.; Nocera, D.G. Science **2008**, 321, 1072-1075.

[7] Morita, M.; Iwakura, C.; Tamura, H. *Electrochim. Acta* **1977**, *22*, 325-328.

p-Si Nanowire Photocathode

AP: Challenges & Opportunities

Photoanode materials critical part of the solar Fuels Technology.

Dual bandgap Configuration-Integrated Photocanode/cathode, mimicking photosynthesis in Nature

Catalysts with much higher TOF, and Lower overpotential.

* Disclaimer: Water is recycled through artificial photosynthesis & combustion! Same with CO2.

Nanoscale to Macroscale

Gas Station of the Future

