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1.  Introduction

The financial crisis of 2007–08 and the 
subsequent Great Recession, the most 

severe economic crisis since the Great 
Depression in the 1930s, have increased 

concerns from policy makers and academics 
about the empirical relevance of the stan-
dard representative rational agent frame-
work in macroeconomics. In an often-quoted 
speech during the crisis in November 2010, 
European Central Bank then-Governor 
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Jean-Claude Trichet (2010) expressed these 
concerns as follows: 

When the crisis came, the serious limitations of 
existing economic and financial models imme-
diately became apparent. Macro models failed 
to predict the crisis and seemed incapable of 
explaining what was happening to the econ-
omy in a convincing manner. As a policy-maker 
during the crisis, I found the available models 
of limited help. In fact, I would go further: in 
the face of the crisis, we felt abandoned by 
conventional tools. 

Macroeconomists have raised similar con-
cerns. For example, Blanchard (2014) 
stressed that 

The main lesson of the crisis is that we were 
much closer to “dark corners”—situations in 
which the economy could badly malfunction—
than we thought. Now that we are more aware 
of nonlinearities and the dangers they pose, we 
should explore them further theoretically and 
empirically … If macroeconomic policy and 
financial regulation are set in such a way as to 
maintain a healthy distance from dark corners, 
then our models that portray normal times 
may still be largely appropriate. Another class 
of economic models, aimed at measuring sys-
temic risk, can be used to give warning signals 
that we are getting too close to dark corners, 
and that steps must be taken to reduce risk and 
increase distance.

The most important class of macro-models, 
before the crisis commonly used by cen-
tral banks and other policy institutions, are 
the dynamic stochastic general equilibrium 
(DSGE) models. In response to the critique 
above, since the crisis DSGE macro-mod-
els have been adapted and extended by 
including financial frictions within the new 
Keynesian (NK) framework, for example, in 
Cúrdia and Woodford (2010, 2016); Gertler 
and Karadi (2011, 2013); Christiano, Motto, 
and Rostagno (2010); and Gilchrist, Ortiz, 
and Zakrajšek (2009). These extensions, 
however, maintain the standard rationality 
framework of mainstream macroeconomics 
assuming infinite horizon utility and profit 

maximization and fully rational expecta-
tions. In the speech quoted above, Trichet 
(2010) went much further: 

The atomistic, optimising agents underlying 
existing models do not capture behaviour during 
a crisis period. We need to deal better with het-
erogeneity across agents and the interaction 
among those heterogeneous agents. We need to 
entertain alternative motivations for economic 
choices. Behavioral economics draws on psy-
chology to explain decisions made in crisis cir-
cumstances. Agent-based modelling dispenses 
with the optimisation assumption and allows for 
more complex interactions between agents.

Since the outbreak of the financial-economic 
crisis a heavy debate among macroecono-
mists about the future of macroeconomic 
theory has emerged. The recent special issue 
on “Rebuilding Macroeconomic Theory” in 
the Oxford Review of Economic Policy (2018, 
volume 34, issues 1–2) collects a number 
of recent discussions on this topic. Stiglitz 
(2018) is particularly critical of DSGE mod-
els; Christiano, Eichenbaum, and Trabandt 
(2018) provide a detailed reply defending the 
DSGE approach. Based on questionnaires 
and two conferences, Vines and Wills (2018) 
conclude that four main changes to the 
core model in macroeconomics are recom-
mended: (i) to emphasize financial frictions, 
(ii) to place a limit on the operation of rational 
expectations, (iii) to include heterogeneous 
agents, and (iv) to devise more appropri-
ate microfoundations. There have also been 
more radical proposals for changing macro 
by a paradigm shift to using an interdisciplin-
ary complex systems approach, behavioral 
agent-based models, and simulation (rather 
than analytical tools), for example, Battiston 
et al. (2016), Bookstaber and Kirman (2018), 
Haldane and  Turrell (2018), and Dawid 
and Delli Gatti (2018).

This paper surveys some of the litera-
ture taking such a more radical, behavioral 
departure from the standard representative 
rational agent model emphasizing the role 
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of nonrational expectations and bounded 
rationality in stylized complexity models. 
There is a large behavioral macroeco-
nomics literature on this topic, but many 
mainstream macroeconomists seem to be 
largely unaware of it. We argue that allow-
ing for learning and heterogeneous expec-
tations enriches the standard models with 
nonlinearities and many empirically relevant 
features, such as boom and bust cycles. In 
the last two decades a rich behavioral the-
ory of expectations that fits empirical time 
series observations, laboratory experiments, 
and survey data has emerged that should 
become part of the standard toolbox for pol-
icy analysis.1

Behavioral economics has become widely 
accepted and, one could argue, belongs to 
the mainstream at least since the Nobel 
Prizes of George Akerlof in 2001 and Daniel 
Kahnemann in 2002. But much of the 
research in the area of behavioral economics 
focused on individual behavior and macro-
economists, until recently, have argued that 
behavioral biases wash out at the aggregate 
level. Behavioral finance has also become well 
established and, for example, much of the 
work of the 2013 and 2017 Nobel Prize win-
ners Robert Shiller and Richard Thaler fits 
into behavioral finance. Recently, however, 
macroeconomists show an increased interest 
in behavioral modeling. For example, at the 
NBER summer institute Andrew Caplin and 
Mike Woodford have organized workshops on 
behavioral macroeconomics since 2015 and 
a JEL code (E03) for behavioral macroeco-
nomics has existed since 2017. Experimental 

1 In a related but different survey Woodford (2014) dis-
cusses the role of nonrational expectations within the new 
Keynesian modeling framework. While Woodford restricts 
attention to homogeneous expectations and stresses 
close-to-rational expectations, such as near-rational expec-
tations (Woodford 2010, Adam and Woodford 2012) and 
rational belief equilibria (Kurz 1997), we will stress behav-
ioral features and parsimonious forecasting heuristics and 
emphasize the role of heterogeneous expectations.

economics is also a well-established field 
and, one could argue, has become part of 
the mainstream since the Nobel Prizes of 
Reinhard Selten in 1994 and Vernon Smith in 
2002. Most lab experiments, however, focused 
on individual decision making or on strategic 
interactions in games with two or three play-
ers. Although market experiments with small 
groups (say six to ten subjects) go back a long 
way, to at least the double auction experiments 
of Smith (1962) and the influential asset mar-
ket bubble experiments of Smith, Suchanek, 
and Williams (1988), most macroeconomists 
have ignored laboratory experiments as a 
research method. But macroeconomics could 
benefit from lab experiments in a similar way 
as microeconomics has done, and macro-
economists should address the question: if a 
macro theory does not work in a simple con-
trolled laboratory environment, why would 
it work in reality? Experimental macroeco-
nomics is becoming increasingly popular as a 
complementary method to studying stylized 
macrosystems and falsifying macro theory in 
controlled laboratory environments; see, for 
example, the collection of papers in Duffy 
(2014) and the recent handbook chapters 
Duffy (2016), Arifovic and Duffy (2018), and 
Mauersberger and Nagel (2018).

The starting point of our survey is the 
development of theories of learning in mac-
roeconomics originating more than 30 years 
ago, when macroeconomists became aware 
of the multiplicity of (rational) equilibria in 
standard macro-model settings. As a direct 
motivation and inspiration for this survey we 
use the following quote from Lucas (1986) 
concerning stability or learning theory 
[emphasis added]: 

Recent theoretical work is making it increas-
ingly clear that the multiplicity of equilibria … 
can arise in a wide variety of situations involv-
ing sequential trading, in competitive as well as 
finite agent games. All but a few of these equi-
libria are, I believe, behaviorally uninteresting: 
They do not describe behavior that collections 
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of adaptively behaving people would ever hit 
on. I think an appropriate stability theory can 
be useful in weeding out these uninteresting 
equilibria … But to be useful, stability theory 
must be more than simply a fancy way of saying 
that one does not want to think about certain 
equilibria. I prefer to view it as an experimen-
tally testable hypothesis, as a special instance 
of the adaptive laws that we believe govern all 
human behavior.

A key question for macroeconomic behav-
ior then is: what is the aggregate behavior 
that a collection of adaptively behaving indi-
viduals will learn to coordinate on? A second 
key question is: how can policy affect this 
complex coordination process? To discuss 
these questions and survey the state of the 
art of the literature two topics are of particu-
lar interest and deserve a brief discussion in 
this introduction: (i) complex systems and (ii) 
macro laboratory experiments.

There is no universal definition of a com-
plex system, but there are two important 
characteristics that we will stress:2 (i) nonlin-
earity and (ii) heterogeneity. Nonlinearities 
can lead to multiple equilibria and, as a con-
sequence, small changes at the micro level 
may amplify and lead to critical transitions 
or tipping points at the macro level. Figure 1 
illustrates the phenomenon of a critical tran-
sition—see Scheffer (2009) for an extensive 
discussion. When nonlinearities are mild, a 
change in parameters only causes a gradual 
change in the unique stable steady state of 
the system. When nonlinearities become 
stronger, then a small change in parameters 
may lead to a larger change in the stable 
steady state of the system, but the change is 

2 Another important aspect of complex systems that 
is receiving much attention in recent work concerns net-
works. For example, financial networks may have increased 
systemic risk and may have caused cascades that have exag-
gerated the global financial-economic crisis. This aspect of 
complex systems will not be dealt with here. The inter-
ested reader is, for example, referred to Iori and Mantegna 
(2018) and Goyal (2018).

still continuous and reversible. In the pres-
ence of very strong nonlinearities, multiple 
steady states arise and catastrophic changes 
from a “good” steady state to a “bad” or “cri-
sis” steady state of the system may occur after 
small changes of parameters (e.g., Scheffer 
2009, Scheffer et al. 2012). After such a cat-
astrophic change, the system can not easily 
be recovered and pushed back to the ”good” 
steady state (see the caption of figure 1). Such 
strong nonlinearities can model the “dark 
corners” of the economy Blanchard (2014) 
refers to. It is very important to understand 
the key nonlinearities of the economy, in 
order to control policy parameters to prevent 
the system from undesirable critical transi-
tions and sudden collapse. Standard DSGE 
models have been criticized for not being 
able to predict the financial-economic crisis. 
Such a critique may be unfair, because crises 
in complex systems are very hard to predict. 
However, what has been more critical for the 
standard DSGE model is its almost entire 
focus on (log) linearized models with fully 
rational agents and a unique equilibrium. In 
such models, by assumption, a crisis through 
a critical transition can never exist. A realistic 
model of the macroeconomy should allow for 
the possibility of a crisis other than through 
large exogenous shocks.

A second important aspect of complex sys-
tems is that they consist of multiple (often 
many) heterogeneous agents, who interact 
with each other. A multi-agent complex 
macro-system can not be reduced to a sin-
gle, individual agent system, but its inter-
actions at the micro level must be studied 
to explain its aggregate behavior.3 Complex 
systems exhibit emergent macro behavior as 
the aggregate outcome of micro interactions. 

3 The key observation that macro behavior in a com-
plex system can not be reduced to micro behavior has 
been nicely summarized in the title of one of the first and 
seminal papers on complexity: ”More Is Different,” by 
Anderson (1972).
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As a simple example from physics one may 
think of a glass of water, exhibiting a critical 
transition from liquid to solid when the tem-
perature (which may be viewed as a “policy 
parameter”) varies and falls below 0º. In eco-
nomics, a complex system consists of many 
economic agents (consumers, firms, inves-
tors, banks, etc.), which may be heteroge-
neous in various aspects. One would like to 
understand the emergent properties of com-
plex macroeconomic systems and, in particu-
lar, how policy parameters might affect these 
emergent aggregate outcomes.

Perhaps the most crucial difference from 
complex systems in the natural sciences is 
that in economics and the social sciences, 
the ”particles can think” and one needs a 
theory of adaptive behavior and learning. 

In social-economic systems a theory of indi-
vidual adaptive behavior is part of the law 
of motion of the macroeconomy. A central 
question to this survey is: what are the emer-
gent properties of stylized complex macro-
economic systems with boundedly rational 
heterogeneous agents? Will a collection of 
boundedly rational heterogeneous agents be 
more likely to coordinate on the (homoge-
neous) rational outcome, or are fluctuation 
with booms and bust cycles a more likely 
aggregate outcome? This brings us back to 
Lucas (1986) (see the earlier quote) who 
views the question of collective behavior and 
coordination as an empirical question, an 
experimentally testable hypothesis. Indeed a 
large literature on laboratory macro exper-
iments has developed in recent years, in 
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Figure 1. Multiple Steady States and Critical Transitions or Tipping Points

Notes: Panel A: when nonlinearities are mild, the steady state is unique and a change in parameters only leads 
to a gradual change in the stable steady state of the system. Panel B: when nonlinearities become stronger, a 
small change in parameters may lead to a larger change in the stable steady state of the system, but the change 
is still continuous and reversible. Panel C: with very strong nonlinearities, multiple steady states coexist and 
catastrophic changes from a “good” steady state to a “bad” or “crisis” steady state of the system may occur after 
small changes of a parameter. At the point ​​F​1​​​ a catastrophic change occurs and the system jumps from the 
“good” upper stable steady state to the “bad” lower steady state. After such a catastrophic change, the system 
can not easily be recovered as pushing back the system to the “good” steady state requires that the parameter 
be decreased until the point ​​F​2​​​, where the “bad” steady state disappears.
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particular the learning-to-forecast experi-
ments to study coordination of expectations 
in the lab. These macro experiments pro-
vide laboratory data, both at the individual 
(micro) and the aggregate (macro) level, 
which can be used to test, falsify, calibrate, 
or even estimate behavioral models. In this 
way, behavioral theory needs laboratory test-
ing as a complementary tool for empirical 
analysis of various behavioral assumptions 
and models.

The survey is organized as follows. 
Section 2 discusses behavioral models with 
different degrees of (ir)rationality. There are 
many different models with boundedly ratio-
nal interacting agents. To address the “wil-
derness of bounded rationality” our focus 
is on parsimonious decision rules that are 
validated in empirical work and laboratory 
experiments. This leads to stylized behav-
ioral complexity models that are still partly 
analytically tractable.4 Section 3 discusses 
experimental macroeconomics and policy 
experiments, while section 4 summarizes and 
discusses policy implications of the observed 
coordination failure on nonrational, almost 
self-fulfilling equilibria.

2.  Behavioral Models

What exactly is meant by “behavioral macro-
economics” is not easy to define. In his Nobel 
Prize lecture “Behavioral Macroeconomics 
and Macroeconomic Behavior,” Akerlof 
(2002) uses a very broad definition that, for 
example, includes models of asymmetric 
information, maintaining the assumption of 

4 Complementary to these stylized models, there is a 
large and rapidly increasing literature on agent-based sim-
ulation models using more detailed “bottom-up” model-
ing of individual decision rules of heterogeneous agents. 
The recent Handbook of Computational Economics on 
heterogeneous agent modeling (Hommes and  LeBaron 
2018) provides a state-of-the-art overview; see especially 
the survey by Dawid and Delli Gatti (2018) on agent-based 
macroeconomics.

rational expectations, to explain market fail-
ures.5 In a recent survey Driscoll and Holden 
(2014) summarize and discuss several con-
cepts that behavioral economics has brought 
to macro-models, such as fairness consider-
ations and other-regarding social preferences, 
cognitive biases, hyperbolic discounting of 
consumption and savings, habit formation, 
and rule-of-thumb consumption. De Grauwe 
(2012), in his Lectures on Behavioral 
Macroeconomics, emphasizes boundedly 
rational heterogeneous expectations in the 
new Keynesian macro-model, where agents 
switch between simple forecasting heuristics 
based upon their relative performance, as in 
Brock and Hommes (1997). There are thus 
many possible deviations—large or small—
from the benchmark rational model. In the 
traditional macroeconomic paradigm there 
are (at least) three crucial assumptions 
underlying many models: (i) agents have 
rational expectations; (ii) agents behave opti-
mally, that is, maximize utility, profits, etc.; 
and, related to both, (iii) agents have an 
infinite horizon for optimization and expec-
tations. A pragmatic (but still admittedly 
subjective) definition of behavioral macro-
economics would be that (at least) one of 
these assumptions is relaxed and replaced 
by some form of bounded rationality. How 
many of these assumptions should be relaxed 
and by how much is then a matter of debate. 
For example, most agent-based models devi-
ate from all of these three assumptions, to 
build a completely new macroeconomic sys-
tem from “bottom-up” modeling of agents’ 
using simple micro-decision rules (heuris-
tics); see Dawid and  Delli  Gatti (2018) for 
a recent survey on agent-based models in 
macroeconomics.

5 Other approaches emphasizing informational fric-
tions, but maintaining rational expectation,s include 
rational inattention (Sims 2010) and imperfect knowledge 
(Angeletos and Lian 2016).
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In our survey we focus on stylized behav-
ioral models with learning and heteroge-
neous expectations. The question of what 
kind of (near) equilibria a population of het-
erogeneous boundedly rational forecasters 
might coordinate will play a prominent role 
throughout the survey. We start the survey 
with homogeneous adaptive learning (sub-
section 2.1), then move to heterogeneous 
expectations (subsection 2.2) and behavioral 
new Keynesian models (subsection 2.3).

2.1	 Adaptive Learning

In the last three decades the adaptive 
learning approach has become a standard 
model of bounded rationality in macroeco-
nomics. Agents behave as econometricians 
or statisticians and use an econometric 
forecasting model—the perceived law of 
motion—whose parameters are updated 
over time, for example, through recursive 
ordinary least squares, as additional observa-
tions become available. Early papers in this 
area are, for example, by Marcet and Sargent 
(1989a, b). The comprehensive overviews 
given by Evans and Honkapohja (2001) and 
more recently by Evans and Honkapohja 
(2013) have contributed much to its popu-
larity in macroeconomics; see also Sargent 
(1993) for an early stimulating discussion of 
bounded rationality and learning.

Early work stressed learning of the param-
eters of a correctly specified model, that is, a 
perceived law of motion of exactly the same 
form as the (simplest) rational solution, with 
agents learning the parameters over time. 
Such an analysis then provides a stability 
theory of rational expectations equilibria and 
an equilibrium selection device to determine 
which rational equilibria are stable. Stability 
under adaptive learning should be seen as a 
minimum requirement of a rational expec-
tations equilibrium (REE), because without 
stability under learning, coordination of a 
population of adaptive agents on a rational 
equilibrium seems highly unlikely.

2.1.1	 Stability under Learning

For readers not familiar with adaptive 
learning it is useful to discuss stability under 
learning in a basic example. Consider a 
simple linear law of motion of the economy 
with an endogenous state variable ​​x​t​​​ driven 
by exogenous stochastic shocks ​​y​t​​​:

(1)	​​ x​t​​  =  a + b ​x​ t+1​ e  ​ + c ​y​t−1​​ + ​u​t​​,​

(2)	​​ y​t​​  =  d + ρ ​y​t−1​​ + ​ε​t​​.​

To be concrete, one may think of ​​x​t​​​ as an 
asset price, whose evolution is affected by 
price expectations ​​x​ t+1​ e  ​​ and by an exogenous 
AR(1) dividend process ​​y​t​​​ with autocorrela-
tion parameter ​ρ​, ​0  <  ρ  <  1​. The simplest 
rational solution, called the minimum state 
variable (MSV) solution, is of the form

(3)	​​ x​t​​  =  α + γ ​y​t−1​​ + ​u​t​​,​

with the price given as a linear function of 
the exogenous fundamental shocks (divi-
dends). Assume for the moment that the 
parameters ​α​ and ​γ​ are fixed. Given that all 
agents believe that ​​x​t​​​ follows the perceived 
law of motion (PLM) (3) the implied actual 
law of motion (ALM) becomes

(4)�​​ x​t​​ = a + bα + bγd + ​(c + bγρ)​ ​y​t−1​​ + ​u​t​​.​

A rational expectations solution is then a 
fixed point of the mapping ​T​, from the PLM 
(3) to the ALM (4), and must satisfy

(5) ​ T​(α, γ)​  = ​ (a + bα + bγd, c + bγρ)​.​

The fixed point of the T-map corresponds to 
an REE solution and is given by:

(6)	​ α  = ​   a _ 
1 − b

 ​ + ​  bcd _____________  
​(1 − b)​​(1 − bρ)​

 ​,

	  γ  = ​   c _ 
1 − bρ ​.​
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Adaptive learning means that agents learn 
the parameters ​α​ and ​γ​ of the PLM (3) using 
estimation techniques such as ordinary least 
squares, which may be written in a recursive 
form algorithm. A simple associated 
differential equation governs the stability of 
the adaptive learning process and is given by

(7)  ​​
{

​
​ dα __ 
dτ ​ = ​T​1​​​(α, γ)​ − α = a + ​  bcd _____ 

1 − bρ ​ + ​(b − 1)​α
​    

​ dγ __ 
dτ ​ = ​T​2​​​(α, γ)​ − γ = c + ​(bρ − 1)​γ.

 ​​ ​

The REE in (3) is also a fixed point of this 
differential equation (7) and, in this example, 
it is a (locally) stable fixed point, when the 
parameters ​bρ  <  1​. One of the main gen-
eral results form the adaptive learning liter-
ature is the E-stability principle stating that 
an REE (i.e., a fixed point of the T-map) is 
locally stable under adaptive learning pro-
cesses such as ordinary least squares (OLS), 
when it is a locally stable fixed point of the 
associated ordinary differential equation 
(ODE). In this particular example, when 
agents believe that the PLM is of the form 
(3) and learn the parameters through OLS, 
the learning process converges (locally) to 
the REE. E-stability should be viewed as a 
necessary condition for REE to be empiri-
cally relevant. If an REE is not E-stable, 
then coordination of a large population of 
adaptive agents on such an equilibrium 
seems highly unlikely.

But what happens if the agents believe in 
a different PLM than the MSV solution (3)? 
For example, to forecast the state vari-
able ​​x​t​​​ it seems natural to include its lagged 
value ​​x​t−1​​​. Assume that instead of (3), agents 
believe that the PLM is of the (slightly) more 
general form

(8)	​​ x​t​​  =  α + β ​x​t−1​​ + γ ​y​t−1​​ + ​u​t​​.​

This is an example where the PLM is overpa-
rameterized with respect to the MSV ratio-
nal solution. In a similar way one can extend 

the T-mapping ​T​(α, β, γ)​​ and simple alge-
bra yields for ​α​ and ​γ​ the same REE fixed 
point as in (6) together with ​β  =  0​.6 It can 
be shown that this REE fixed point is again 
E-stable. The adaptive learning process is 
therefore robust with respect to overparam-
eterization of the PLM in (8) and the REE in 
(3) is called strongly E-stable. Another par-
simonious and perhaps plausible possibility 
would be that agents believe that the PLM is 
of the simpler form

(9)	​​ x​t​​  =  α + β ​x​t−1​​ + ​u​t​​,​

that is, agents do not realize that ​​x​t​​​ is 
driven by an exogenous fundamental pro-
cess ​​y​t​​​, but simply forecast ​​x​t​​​ by lagged 
observations ​​x​t−1​​​. This is a simple exam-
ple of misspecification, where the PLM is 
different from the MSV solution. We will 
return to the important issue of misspecifi-
cation in subsection 2.1.3.

2.1.2	 Endogenous Fluctuations under  
	 Adaptive Learning

Early work stressed adaptive learning as 
an equilibrium selection device of REE and 
studied E-stability of rational equilibria in 
various models, for example, in an asset pric-
ing model with informed and uninformed 
traders (Bray 1982), the cobweb model 
(Bray and Savin 1986), in a general class of 
linear stochastic models (Marcet and Sargent 
1989b) and in linear models with private 
information (Marcet and Sargent 1989a).

Later work has shown that adaptive learn-
ing need not converge to a rational expecta-
tions equilibrium, but learning may induce 
endogenous (periodic or even chaotic) busi-
ness cycle fluctuations. Examples include 
the learning equilibria in overlapping gen-
erations models (Bullard 1994; Grandmont 

6 There is an additional REE fixed point ​β  =  1 /b​,  
representing rational bubble solutions; see Evans and 
Honkapohja (2001).
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1985, 1998), learning to believe in chaos 
(Schönhofer 1999), the consistent expecta-
tions equilibria in nonlinear cobweb models 
(Hommes and Sorger 1998), the learning to 
believe in sunspots (Woodford 1990), and 
the exuberance equilibria (Bullard, Evans, 
and Honkapohja 2008). 

Constant Gain Learning.—Adaptive 
learning typically generates slow learning 
of parameters, because standard recursive 
estimation algorithms give equal weight 
to all past observations. Consequently, the 
weight given to the most recent observa-
tion becomes smaller and converges to ​0​ as 
the number of observations goes to infin-
ity. The vanishing weight given to the most 
recent observation typically has a stabilizing 
effect on the learning dynamics. An alterna-
tive parameter updating scheme is constant 
gain learning, giving a fixed weight (the gain 
coefficient) to the most recent observations. 
Constant gain learning is consistent with lab 
experiments and survey data, where subjects 
or forecasters typically give more weight 
to the most recent observations. Constant 
gain learning models often give a better fit 
to macro and financial data and are able 
to generate observed stylized facts in time 
series data, such as high persistence, excess 
volatility, and clustered volatility (Evans and 
Honkapohja 2001; Sargent 1993; Milani 
2007, 2011; Branch and Evans 2010).

Bubbles and Crash Dynamics under 
Learning.—Branch and Evans (2011a) 
develop a simple linear mean-variance asset 
pricing model capable of generating bubbles 
and crashes when agents use constant-gain 
learning to forecast expected returns and the 
conditional variance of stock returns.7

7 There is a large literature on periodically collapsing 
rational bubbles. Blanchard and Watson (1982) develop 
a theory of rational bubbles in which agents’ (rational) 
expectations are influenced by extrinsic random variables 

Agents can choose between a risk-free 
asset paying a fixed return ​r​ and a risky asset 
(say a stock) paying stochastic dividends. 
Denote ​​y​t​​​ as the dividend payoff and ​​p​t​​​ as 
the asset price. Agents are risk averse and 
assumed to be myopic mean-variance maxi-
mizers. The mean-variance demand ​​z​dt​​​ is

(10) ​​ z​dt​​  = ​ 
​E​ t​ ⁎​​(​p​t+1​​ + ​y​t+1​​)​ − ​(1 + r)​ ​p​t​​   _____________________  

a​σ​ t​ 2​
 ​​

where ​​E​ t​ ⁎​​(​p​t+1​​ + ​y​t+1​​)​​ denotes the condi-
tional expectation of ​​p​t+1​​ + ​y​t+1​​​, a is the risk 
aversion, and ​​σ​ t​ 2​​ denotes agents’ conditional 
expectations about the variance of excess 
returns ​​p​t+1​​ + ​y​t+1​​ − ​(1 + r)​ ​p​t​​​. The equi-
librium price is derived from market clear-
ing ​​z​dt​​  = ​ z​st​​​ and given by

(11) ​​ p​t​​ = ​  1 _ 
1 + r

 ​​[​E​ t​ ⁎​​(​p​t+1​​ + ​y​t+1​​)​ − a​σ​ t​ 2​ ​z​st​​]​.​

The term ​a​σ​ t​ 2​ ​z​st​​​ may be seen as a time-varying 
risk premium. Dividends ​​y​t​​​ and the supply of 
shares ​​z​st​​​ are assumed to follow simple inde-
pendent and identically distributed (IID) 
stochastic processes. Assuming ​​σ​ t​ 2​  = ​ σ​​ 2​​ at 
steady state, the rational fundamental price 
can be computed as the discounted sum of 
future dividends minus the time-varying risk 
premium, and is given by

​​p​ t​ ⁎​ = ​ ∑ 
j=1

​ 
∞

 ​​ ​β ​​  j​​E​t​​​(​y​t+j​​)​ − β​ ∑ 
j=0

​ 
∞

 ​​ ​β  ​​ j​a​σ​​ 2​ ​E​t​​​(​z​st+j​​)​,​

where ​β  =  1 / ​(1 + r)​​ is the discount fac-
tor. There is additionally a class of rational 

whose properties are in line with historical bubble epi-
sodes. West (1987), Froot and Obstfeld (1991), and Evans 
(1991) construct rational bubbles that periodically explode 
and collapse. A controversial issue for rational bubbles is 
that the trigger for the bubble collapse is often modeled 
by an exogenous sunspot process. In the model of Branch 
and Evans (2011a) bubbles and crashes arise endogenously 
as self-fulfilling responses to fundamental shocks, arising 
from the adaptive learning of agents.
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bubble solutions, which are given by adding 
to the fundamental solution a rational bub-
ble term ​​β​​ −t​ ​η​t​​​, where ​​η​t​​​ is an arbitrary mar-
tingale, i.e., ​​E​t​​ ​η​t+1​​  = ​ η​t​​​. Since ​0  <  β  <  1​ 
the rational bubbles are explosive. Branch 
and Evans (2011a) show that the fundamen-
tal solution is E-stable under learning, while 
the rational bubble solutions are unstable 
under learning. 

In Branch and Evans (2011a) agents’ per-
ceived law of motion is of the simple linear 
AR(1) form

(12)	​​ p​t​​  =  k + c ​p​t−1​​ + ​ϵ​t​​,​

where ​​ϵ​t​​​ is an IID noise term. This linear 
specification coincides with the general form 
of the rational bubble solutions. Adaptive 
learning then consists of a recursive ordi-
nary least squares updating scheme for the 
two parameters ​k​ and ​c​ of the conditional 
mean forecast together with a recursive 
algorithm for the conditional variance ​​σ​ t​ 2​​ of 
excess returns. For both learning processes 
constant gains can be used. Recursive updat-
ing of both the conditional variance and 
the expected return implies several mecha-
nisms through which learning impacts stock 
prices. Extended periods of excess volatility, 
bubbles, and crashes arise with a frequency 
that depends on the extent to which past 
data is discounted. A central role is played 
by changes over time in agents’ estimates of 
risk. First, occasional shocks can lead agents 
to revise their estimates of risk in a dramatic 
fashion. A sudden decrease or increase in the 
estimated risk of stocks can propel the sys-
tem away from the fundamental equilibrium 
and into a bubble or crash. Second, along an 
explosive bubble path, risk estimates tend to 
increase and can become high enough to lead 
asset demand to collapse and stock prices 
to crash. Third, under learning, estimates 
for stock returns will occasionally escape to 
random walk beliefs that can be viewed as a 
bubble regime in which stock prices exhibit 

substantial excess volatility. In this regime, 
revisions of risk estimates play an important 
role in generating the movements of prices 
that sustain the random walk beliefs. In sum-
mary, risk in an adaptive learning with con-
stant gain setting plays a key role in triggering 
asset price bubbles and crashes. These intu-
itive and plausible results provide insights 
into the mechanisms by which expectations, 
learning, and bounded rationality generate 
large swings in asset prices.

2.1.3	 Misspecification Equilibria

Under adaptive learning the PLM will, in 
general, be misspecified, that is, the PLM 
is generally different from the ALM. This 
observation has lead to the study of misspeci-
fication equilibria under learning (Evans and 
Honkapohja 2001, Sargent 1999, Branch and 
McGough 2005, see especially the stimulat-
ing survey in Branch 2006). The idea here 
is that the representative agent uses a sim-
ple, parsimonious PLM to learn about the 
unknown ALM of the economy. These sim-
ple learning equilibria may be a more plau-
sible outcome of the learning process of a 
population of adaptive agents.

Different types of parsimonious misspeci-
fication equilibria have been proposed in the 
literature. An interesting class are the natural 
expectations (Fuster, Laibson, and Mendel 
2010; Fuster et al. 2012; and Beshears et al. 
2013), where agents use a simple parsimoni-
ous fixed (higher order) AR(p) rule in fore-
casting to explain the long-run persistence 
of economic shocks. Since the parameters 
are fixed, strictly speaking this does not fall 
under adaptive learning, but its parsimony 
makes natural expectations intuitive and 
plausible forecasting rules.

Branch (2006) considers adaptive learn-
ing where the PLM is underparametrized, 
because agents do not take all relevant exog-
enous shock processes into account in their 
PLM. These beliefs, however, satisfy a least 
squares orthogonality condition consistent 
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with John Muth’s original hypothesis. The 
least squares orthogonality condition in 
these models imposes that beliefs gener-
ate forecast errors that are orthogonal to an 
agent’s forecasting model; that is, there is no 
discernible correlation between these fore-
cast errors and an agent’s model. Under this 
interpretation, the orthogonality condition 
guarantees that agents perceive their beliefs 
as consistent with the real world. Thus, 
agents can have misspecified (i.e., not ratio-
nal expectations (RE)) beliefs, but within 
the context of their forecasting model they 
are unable to detect their misspecification. 
An equilibrium between optimally misspec-
ified beliefs and the stochastic process for 
the economy is called a restricted percep-
tions equilibrium (RPE).

Branch and Evans (2010) apply these 
ideas in a mean-variance asset pricing 
model, where both dividends and the supply 
of shares follow exogenous stochastic AR(1) 
processes. There are two types of agents, 
who have different types of misspecified 
underparametrized price forecasting mod-
els. One type has a price forecasting model 
only based on the AR(1) dividend process, 
while the other type forecasts prices only 
based on the AR(1) process for the supply 
of shares. The RPE requires that agents 
forecast in a statistically optimal manner. It 
is required that the forecast model param-
eters are optimal linear projections, that is, 
the belief parameters, satisfy least-squares 
orthogonality conditions. Within the con-
text of their forecasting model, agents are 
unable to detect their misspecification. Of 
course, if they step out of their model and 
run specification tests, they could detect 
the misspecification. But real-time simula-
tions show that the misspecification is hard 
to detect and, for finite time, agents may not 
be able to reject their underparameterized 
models. They then study a misspecification 
equilbrium with intrinsic heterogeneity, and 
fractions of the two types of agents based on 

their relative performance, as in Brock and 
Hommes (1997). The model exhibits multi-
ple misspecification equilibria (ME) and the 
real-time learning dynamics switch between 
these different equilibria mimicking clus-
tered volatility in asset returns.

Branch and Evans (2011b) use a similar 
approach in a new Keynesian macro model 
and study monetary policy under learning. 
There are two types of exogenous shocks to 
the economy: cost push shocks to the new 
Keynesian Phillips curve (NKPC) and supply 
shocks to the  investment–savings (IS) curve, 
both following exogenous stochastic AR(1) 
processes. The RE MSV solution of the 
economy is a linear function of both shocks. 
There are two types of agents in the econ-
omy, one type using forecasts based only on 
the demand shocks and a second type using 
forecasts based only on the supply shocks. 
Branch and Evans (2011b) demonstrate that, 
even when monetary policy rules satisfy the 
Taylor principle by adjusting nominal inter-
est rates more than one for one with infla-
tion, there may exist equilibria with intrinsic 
heterogeneity, where the two types of agents 
coexist. Under certain conditions, there may 
exist multiple misspecification equilibria. 
These findings have important implications 
for business cycle dynamics and for the 
design of monetary policy. Branch and Evans 
(2011b) then study the role that policy plays 
in determining the number and nature of 
misspecification equilibria.

2.1.4	 Behavioral Learning Equilibria

The most crucial aspect of adaptive learn-
ing is probably the choice of the PLM. For 
a large population of adaptive agents being 
able to coordinate their beliefs, the parsi-
mony of the PLM seems crucial. Hommes 
and Zhu (2014) introduced a particularly 
simple form of misspecification called 
behavioral learning equilibrium. The idea 
here is that for each variable to be fore-
casted in the economy agents use a simple 
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(misspecified) univariate AR(1) forecast-
ing rule. A behavioral learning equilibrium 
(BLE) arises when the sample average and 
the first-order autocorrelations of the AR(1) 
rule coincide with the observed realiza-
tions. Hence, along a BLE the parameters 
of the AR(1) rule are not free, but pinned 
down by two simple observable statistics, the 
sample average and the first-order sample 
autocorrelation.8 Agents thus use the optimal 
AR(1) forecasting heuristics. Such a simple, 
parsimonious learning equilibrium may be a 
more plausible outcome of the coordination 
process of individual expectations in large 
complex socioeconomic systems. The use 
of simple low-order autoregressive rules to 
forecast has also been documented in labora-
tory experiments with human subjects (e.g., 
Assenza et al. 2014).

Hommes and Zhu (2014) apply the BLE 
concept in the simplest class of models, 
where the actual law of motion of the econ-
omy is a one-dimensional linear stochastic 
process driven by exogenous AR(1) shocks.9 
Two important applications of this frame-
work are an asset pricing model driven by 
AR(1) dividends and an NKPC with infla-
tion driven by an AR(1) process for marginal 
costs.

The NKPC with inflation driven by an 
exogenous AR(1) process ​​y​t​​​ is given by 
(Woodford 2003)

(13)	​​ {​
​π​t​​  =  δ​π​ t+1​ e  ​ + γ ​y​t​​ + ​u​t​​,​  
​y​t​​  =  a + ρ ​y​t−1​​ + ​ε​t​​,

 ​​​

8 The idea behind BLE originates from the consistent 
expectations equilbria in Hommes and Sorger (1998), 
where the beliefs about sample average and all autocor-
relations ​​β​​ k​​, for all lags ​k​, coincide with the realizations. 
Lansing (2009, 2010), applies the idea of (first-order) con-
sistent expectations in a new Keynesian framework.

9 Hommes et al. (2019) recently extended the BLE con-
cept to higher dimensional linear stochastic models and 
estimated BLE in the Smets–Wouters DSGE model.

where ​​π​t​​​ is the inflation at time t, ​​π​ t+1​ e  ​​ is the 
subjective expected inflation at date ​t + 1​, 
​​y​t​​​ is the output gap or real marginal cost, 
​δ  ∈ ​ [0, 1)​​ is the representative agent’s sub-
jective time discount factor, ​γ  >  0​ is related 
to the degree of price stickiness in the econ-
omy, and ​ρ  ∈ ​ [0, 1)​​ describes the persistence 
of the AR(1) driving process. Variables ​​u​t​​​ 
and ​​ε​t​​​ are IID stochastic disturbances with 
zero mean and finite absolute moments with 
variances ​​σ​ u​ 2 ​​ and ​​σ​ ε​ 2​​, respectively. 

Under RE inflation ​​π​t​​​ is a linear function 
of the fundamental driving process ​​y​t​​​. The 
REE therefore has the same persistence and 
autocorrelations as the fundamental shocks. 
Assume instead that agents are boundedly 
rational and do not recognize or do not 
believe that inflation is driven by output gap 
or marginal costs, and therefore do not rec-
ognize that inflation should be a linear func-
tion of the exogenous shocks. Rather, agents 
believe that inflation follows a stochastic 
AR(1) process and simply forecast inflation 
by a (two-period ahead) univariate AR(1) 
rule, i.e., ​​π​ t+1​ e  ​  =  α + ​β​​ 2​​(​π​t−1​​ − α)​​. The 
implied ALM then becomes

(14) ​​{​​π​t​​  =  δ​[α + ​β​​ 2​​(​π​t−1​​ − α)​]​ + γ ​y​t​​ + ​u​t​​,​   
​y​t​​  =  a + ρ ​y​t−1​​ + ​ε​t​​.

 ​​ ​

Hommes and Zhu (2014) compute the cor-
responding first-order autocorrelation coef-
ficient ​F​(β)​​ of the implied ALM (14) as

(15) ​ F​(β)​ 

� =  δ​β​​ 2​ + ​ 
​γ​​ 2​ρ​(1 − ​δ​​ 2​ ​β​​ 4​)​

  __________________________   
​γ​​ 2​​(δ​β​​ 2​ ρ + 1)​ + ​(1 − ​ρ​​ 2​)​​(1 − δ​β​​ 2​ρ)​ ⋅ ​ ​σ​ u​ 2 ​ _ 

​σ​ ε​ 2​
 ​
 ​.​

and show that there exists at least one non-
zero BLE ​​(​α​​ ⁎​, ​β​​ ⁎​)​​ with ​​α​​ ⁎​  = ​    ​π​​ ⁎​​​ (i.e., the 
sample average equals REE inflation) and ​​β​​ ⁎​​ 
a fixed point of the autocorrelation map ​F​(β)​​ 
in (15).
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Hommes and Zhu (2014) also show that 
when ​​F ′ ​​(​β​​ ⁎​)​  <  1​ the E-stability principle 
holds for the sample autocorrelation (SAC) 
learning process to learn the optimal param-
eters ​​α​​ ⁎​​ and ​​β​​ ⁎​​. The time-varying parame-
ters are given by the sample average

(16)	​​ α​t​​  = ​   1 _ 
t + 1

 ​ ​ ∑ 
i=0

​ 
t

  ​​ ​x​i​​,​

and the first-order SAC coefficient10

(17) ​​ β​t​​  = ​ 
​∑ i=0​ t−1 ​​​(​x​i​​ − ​α​t​​)​​(​x​i+1​​ − ​α​t​​)​  _____________________  

​∑ i=0​ t  ​​​​(​x​i​​ − ​α​t​​)​​​ 2​
 ​ .​

Interestingly, for the NKPC multiple BLE 
may coexist, because the nonlinear autocor-
relation map ​F​(β)​​ may have multiple fixed 
points. Figure 2 illustrates the coexistence 
of a low- and a high-persistence BLE, 
which are both stable under SAC learning 
for appropriate initial states. The low-per-
sistence regime represents a rather stable 
economy with inflation close to target, while 
the high-persistence regime is rather unsta-
ble with long-lasting periods of high or low 
inflation. The high-persistence BLE is char-
acterized by ​​β​​ ⁎​  ≈  0.996​, very close to unit 
root, and thus exhibits persistence amplifi-
cation, with much more persistence in infla-
tion then under RE. Under SAC learning 
with constant gain, the economy may switch 
irregularly between phases of low and high 
persistence and volatility in inflation.

This example shows how a very simple 
form of misspecification may lead to mul-
tiple equilibria and tipping points or crit-
ical transitions (compare figure  1 in the 
introduction to figure 2, panel H) between 
different regimes of low volatility and 
low persistence to high volatility and high 

10 An important and convenient feature of this nat-
ural learning process is that ​− 1  ≤ ​ β​t​​  ≤  1​, since it is a 
(first-order) autocorrelation coefficient (Hommes and 
Sorger 1998).

persistence. For initial states close to the tar-
get, SAC learning converges to the low per-
sistence BLE. For initial states further away 
from the target, SAC learning converges 
to the high-persistence BLE. Under con-
stant gain learning, the system may switch 
between both BLE. These results are con-
sistent with the empirical finding in Adam 
(2007) that the restricted perception equi-
librium (RPE) describes subjects’ inflation 
expectations surprisingly well and provides 
a better explanation for the observed per-
sistence of inflation than REE. Multiplicity 
of learning equilibria leaves an important 
task for monetary policy to keep inflation 
and output in the low-volatility regime. This 
simple model also shows how a simple and 
plausible form of misspecification brings us 
from a perfect rational world with a unique 
equilibrium into a more realistic complex 
boundedly rational reality with multiple 
equilbria and critical transitions.

2.1.5	 Policy under Adaptive Learning

If coordination of a population of agents is 
better described by an adaptive learning pro-
cess than by a rational expectations equilib-
rium, this has important policy implications. 
This subsection discusses some examples 
of policy analysis under models of adaptive 
learning.

In rational expectations models one can 
distinguish between determinacy and inde-
terminacy of equilibria. An REE is deter-
minate when there exists a unique solution, 
typically a saddle-path solution converging 
to the rational steady state. An REE is inde-
terminate when multiple (typically a contin-
uum) of solutions converging to the steady 
state exist. In such a case, often additional 
sunspot equilibria exist. If an REE is deter-
minate, it is usually assumed that agents 
coordinate on the unique saddle-path solu-
tion. Such a saddle-path solution usually 
can only be computed by advanced compu-
tational software, such as the widely used 
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Dynare software, assuming that the equa-
tions of the economy are common knowl-
edge. A learning theory of coordination 
on a saddle-path equilibrium, without the 
demanding assumption of perfect knowl-

edge of the law of motion of the economy, 
is however lacking, and without an adaptive 
learning process, coordination of a popula-
tion of individuals on an equilibrium, even 
if it is unique, seems unlikely.
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Figure 2. Multiple Behavioral Learning Equilibria in the NK Model

Notes: Top panels: convergence of SAC learning to low-persistence BLE (​​α​​ ⁎​​, ​​β​ 1​ ⁎​​) = (0.03, 0.3066). Middle 
panels: convergence to high-persistence BLE (​​α​​ ⁎​​, ​​β​ 3​ ⁎​​) = (0.03, 0.9961) exhibiting persistence amplification 
(for REE autocorrelation is ρ = 0.9). Panel G: BLE ​​β​​ ⁎​​ correspond to the three fixed points of autocorrelation 
map F(β) in (15). Panel H: BLE as a function of autocorrelation parameter ρ of the shocks; more persistent 
shocks lead to critical transition to persistence amplification (Hommes and Zhu 2014).
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Bullard and Mitra (2002) study mone-
tary policy under adaptive learning of the 
MSV solution in the new Keyensian model 
and show that considering learning gener-
ally can alter the evaluation of alternative 
policy rules. The (log-linearized) NK model 
is given by Clarida, Galí, and Gertler (1999) 
and Woodford (2003)

(18) ​​ x​t​​  = ​​ E ̃ ​​t​​ ​x​t+1​​ + ​ 1 _ σ ​​(​​E ̃ ​​t​​ ​π​t+1​​ − ​i​t​​)​ + ​u​t​​​,

(19) ​​ π​t​​  =  κ ​x​t​​ + δ ​​E ̃ ​​t​​ ​π​t+1​​ + ​v​t​​,​

where ​​x​t​​​ is the output gap, ​​π​t​​​ inflation,  
​​i​t​​​ the nominal interest rate, ​​​E ̃ ​​t​​ ​x​t+1​​​, ​​​E ̃ ​​t​​ ​π​t+1​​​ 
are expectations about next period’s output 
gap and inflation, and ​​u​t​​​ and ​​v​t​​​ are exogenous 
shocks following AR(1) processes. Equations 
(18) and (19) represent the IS curve and the 
Phillips curve. Here ​δ​ is the discount factor, 
and

(20) ​ κ  = ​ 
​(σ + η)​​(1 − ω)​​(1 − δω)​  ____________________ ω  ​,​

with ​σ​ and ​η​ the inverses of, respectively, the 
elasticity of intertemporal substitution and 
the elasticity of labor supply, and ​​(1 − ω)​​ is 
the fraction of firms that can adjust their price 
in a given period. Expectation ​​​E ̃ ​​t​​​ follows an 
adaptive learning process of the MSV solution 
​​y​t​​ = a + b​y​t−1​​ + c ​w​t​​​, where ​​y​t​​ = ​​[​x​t​​, ​π​t​​]​​​ T​​ 
and ​​w​t​​  = ​​ [​u​t​​, ​v​t​​]​​​ T​​.

The nominal interest rate is set by the 
central bank and Bullard and Mitra (2002) 
consider three different specifications of the 
Taylor interest rate rule, where the interest 
rate is set in response to deviation of inflation 
and output gap from the targets:

(21)  ​​i​t​​ = ​ϕ​π​​ ​π​t​​ + ​ϕ​x​​ ​x​t​​	 (contemporaneous)​

(22)  ​​i​t​​ = ​ϕ​π​​ ​π​t−1​​ + ​ϕ​x​​ ​x​t−1​​	 (lagged)​

(23)  ​​i​t​​ = ​ϕ​π​​ ​​E ̃ ​​t​​​π​t+1​​ + ​ϕ​x​​​​E ̃ ​​t​​ ​x​t+1​​	 (forward looking)​

where the coefficients ​​ϕ​π​​, ​ϕ​x​​ > 0​ determine 
how strongly the central bank (CB) responds 
to inflation and output gap respectively.

Bullard and Mitra (2002) show that for 
the contemporaneous interest rate rule the 
determinacy (indeterminacy) region under 
RE coincides exactly with the E-stability 
(E-instability) region under learning. In 
this case, the policy analysis under RE and 
adaptive learning of the MSV solution are 
the same. For the forward-looking and the 
backward-looking Taylor rules, however, 
these regions do not coincide, and determi-
nacy under RE does not imply E-stability 
under learning. This stresses the fact that 
policy should be based on plausible and 
empirically relevant models of adaptive 
learning. For all policy rules the Taylor prin-
ciple holds under learning, that is, adjust-
ing the nominal interest rates more than 
one-for-one in response to inflation above 
target implies learnability. In subsection 3.2 
we will return to this issue and discuss some 
laboratory experiments to test the validity 
of the Taylor principle. Bullard and Mitra 
(2002) stress the general point that learn-
ability should be a necessary additional cri-
terion for evaluating alternative monetary 
policy rules.

Monetary and Fiscal Policy in a Non-
linear NK Model.—Evans, Guse, and 
Honkapohja (2008) and Benhabib, Evans, 
and Honkapohja (2014) study the a non-
linear NK model with a zero lower bound 
(ZLB) on the interest rate under adaptive 
learning of the steady state. In this nonlinear 
NK model, two steady states may coexist, the 
target steady state and a ZLB steady state, 
and liquidity traps or deflationary spirals may 
arise. The nonlinear equations describing 
aggregate dynamics are given by

(24)	​​ c​t​​  = ​ c​ t+1​ e  ​​​(​ 
​π​ t+1​ e  ​

 _ β ​R​t​​
 ​)​​​ 

1/σ

​​,
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(25) ​​ π​t​​​(​π​t​​ − 1)​  =  β ​π​ t+1​ e  ​​(​π​ t+1​ e  ​ − 1)​ 

	 + ​ υ _ αγ ​ ​​(​c​t​​ + ​g​t​​)​​​ ​ 
1+ϵ _ α  ​​ 

	 + ​ 1 − υ _ γ  ​​(​c​t​​ + ​g​t​​)​ ​c​ t​ −σ​​,

(26)  ​​R​t​​  =  ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​
1 + ​(​R​​ ⁎​ − 1)​ ​​(​ ​π​ t+1​ e  ​ _ ​π​​ ⁎​ ​)​​​ 

​ ​ϕ​π​​​R​​ ⁎​ _ ​R​​ ⁎​−1
 ​
​ ​​(​ ​c​ t+1​ e  ​ _ ​c​​ ⁎​ ​)​​​ 

​ 
​ϕ​y​​​R​​ ⁎​

 _ ​R​​ ⁎​−1
 ​
​
​     if  ​π​t​​  ≥  ​π ̃ ​​ 

​R ̃ ​
​ 

  if  ​π​t​​  <  ​π ̃ ​.

 ​​ ​

Equation (24) describes the dynamics of net 
output ​​c​t​​​ (i.e., output minus government 
spending) through a standard Euler equa-
tion, where ​​c​ t+1​ e  ​​ and ​​π​ t+1​ e  ​​ denote respectively 
expectations of future net output and infla-
tion, ​​R​t​​​ is the nominal gross interest set by 
the central bank, ​0  <  β  <  1​ is the discount 
factor, and ​σ  >  0​ refers to the intertempo-
ral elasticity of substitution.

Equation  (25) is an NKPC describ-
ing the dynamics of inflation ​​π​t​​​, 
where ​​g​t​​​ is government spending of the aggre-
gate good, ​ϵ  >  0​ refers to the marginal 
disutility of labor, ​0  <  α  <  1​ is the return 
of labor in the production function, ​γ  >  0​ 
is the cost of deviating from the inflation 
target under Rotemberg price adjustment 
costs, and ​υ  >  1​ is the elasticity of substi-
tution between differentiated goods. The 
term ​​π​t​​​(​π​t​​ − 1)​​ in equation (25) arises from 
the quadratic form of the adjustment costs. 
Let ​​Q​t​​  ≡ ​ π​t​​​(​π​t​​ − 1)​​. The appropriate root 
for given ​Q​ is ​π  ≥  1/ 2​, so one needs to 
impose ​Q  ≥  − 1 /4​ to have a meaningful 
definition of inflation.

Equation  (26) describes an aggressive 
monetary policy, where ​​R ̃ ​  =  1.0001​ corre-
sponds to the ZLB on the nominal interest 
rate.11 The forward-looking monetary policy 

11 ​​R ̃ ​  >  1​ so that the corresponding interest rate ​​R ̃ ​ − 1​ 
is small but positive at the ZLB. 

rule (26) is defined as aggressive since, while 
in “normal” times (​​π​t​​  ≥ ​ π ̃ ​​) it follows a stan-
dard forward-looking Taylor rule, it pre-
ventively cuts the nominal interest rate to 
the ZLB each time inflation drops below a 
given threshold ​​π ̃ ​​. The reaction coefficients 
in the interest rate rule are set to ​​ϕ​π​​  =  2​ 
and ​​ϕ​y​​  =  0.5​, which are in line with empir-
ical estimates. This parametrization ensures 
local determinacy of the targeted steady state ​​
(​π​​ ⁎​, ​c​​ ⁎​)​​ under RE. However, as emphasised 
by Benhabib, Schmitt-Grohé, and Uribe 
(2002), “active” Taylor rules imply the exis-
tence of a second low-inflation steady state ​​
(​π​L​​, ​c​L​​)​​, which is locally indeterminate under 
RE.

Fiscal policy is specified as

(27)	​​ g​t​​  = ​ g ¯ ​,​

where ​​g ¯ ​​ is fixed. Evans, Guse, and Honkapohja 
(2008) set ​​π​​ ⁎​  =  1.05​ which implies a net out-
put steady state value of ​​c​​ ⁎​  =  0.7454​. Under 
the aggressive monetary policy in equa-
tion (26), the low-inflation steady state is given 
by ​​(​π​L​​, ​c​L​​)​  = ​ (0.99, 0.7428)​​. The two equi-
libria of the model are depicted in figure 3. 
Evans, Guse, and Honkapohja (2008) con-
sider a fiscal switching rule that can prevent 
liquidity traps and deflationary spirals. The 
fiscal switching rule prescribes an increase in 
public expenditures ​​g​t​​​ each time monetary 
policy fails to achieve ​​π​t​​  > ​ π ̃ ​​. In model (24)–
(25), given expectations ​​π​ t+1​ e  ​​ and ​​c​ t+1​ e  ​​, any 
level of inflation ​​π​t​​​ can be achieved by set-
ting ​​g​t​​​ sufficiently high. The idea behind the 
monetary–fiscal policy mix is the following. 
If the inflation target is not achieved under a 
standard Taylor rule, monetary policy is first 
relaxed in order to stimulate the economy. 
If the ZLB constraints the effectiveness of 
monetary policy, aggressive fiscal policy is 
then activated. As shown by Evans, Guse, and 
Honkapohja (2008), setting ​​π​L​​  < ​ π ̃ ​  < ​ π​​ ⁎​​ 
ensures the uniqueness of the targeted steady 
state. The unique equilibrium of the system 
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Figure 3. Steady states in the NK model with ZLB.

Notes: Panel A: multiple equilibria with coexistence of low inflation steady state L and targeted steady state 
T under aggressive monetary policy. Panel B: unique equilibrium, that is, targeted steady state T under com-
bined monetary policy and fiscal switching rule (Evans, Guse, and Honkapohja 2008).
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Figure 4. Learning Dynamics under Aggressive Monetary Policy and Constant Fiscal Policy

Notes: Under adaptive learning the target steady state is locally stable, while the ZLB steady state is an unsta-
ble saddle point. Initial states below the stable manifold of the ZLB steady state fall into a liquidity trap or 
deflationary spiral under adaptive learning (Evans, Guse, and Honkapohja 2008).
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under combined monetary (26) and fiscal pol-
icy (27) is illustrated in figure 3  (panel B).

E-stability and Equilibrium Selection.—
The phase diagram of the dynamics under 
adaptive learning is given in figure 4. The 
solid black and the dashed black curves 
depict, respectively, the stable and unstable 
manifold of the low-inflation steady state 
saddle point ​​(​π​L​​, ​c​L​​)​​. The E-stability analy-
sis shows that, although the targeted steady 
state is locally stable under learning, the sad-
dle property of the low-inflation steady state 
creates a region in the phase space in which 
inflation and output decline over time. In par-
ticular, the stable manifold of the low inflation 
steady state divides the phase space in two 
regions: the stable region above the mani-
fold, characterized by convergence to the tar-
geted steady state ​​(​π​​ ⁎​, ​c​​ ⁎​)​​, and the unstable 
region below the manifold characterized by 
deflationary dynamics. This analysis shows 
that adverse expectational shocks may cause 
liquidity traps taking the form of deflationary 
spirals. Large pessimistic shocks may, in fact, 
push expectations into the unstable region, 
below the stable manifold of the low infla-
tion steady state, leading to a self-reinforcing 
process in which inflation and output decline 
over time. On the other hand, when the 
aggressive monetary policy is augmented 
with the fiscal switching rule described in 
equation  (27), the targeted steady state is 
globally stable under learning.

Evans, Guse, and Honkapohja (2008) thus 
show that an aggressive monetary policy rule 
alone can not recover the economy from a 
liquidity trap. Instead, an aggressive fiscal 
policy switching rule, in combination with 
an aggressive monetary policy that guaran-
tees a lower bound on inflation, can recover 
the economy from a liquidity trap. Hommes, 
Massaro, and Salle (2019) design a lab experi-
ment for empirically testing these predictions 
of the learning model in describing the occur-
rence of liquidity traps and monetary and 

fiscal policies to recover the economy (see 
subsection 3.2).

Benhabib, Evans, and Honkapohja (2014) 
study fiscal and monetary policies in this NK 
model with a ZLB under infinite horizon 
learning. Unstable deflationary spirals occur 
after large expectational shocks. For large 
expectational shocks that push the interest rate 
rule to the ZLB a temporary fiscal stimulus or, 
in some cases a policy of fiscal austerity, can 
recover the economy from a deflationary trap 
when the policy is tailored in magnitude and 
duration. A fiscal stimulus “switching rule,” 
which automatically kicks in without discre-
tionary fine-tuning, can be equally effective.

2.1.6	 Internal Rationality

Adam and Marcet (2011) introduce a rather 
sophisticated notion of bounded rationality 
called internal rationality. Agents are 
internally rational, that is, they maximize 
discounted expected utility under uncer-
tainty over an infinite horizon given dynam-
ically consistent subjective beliefs about the 
future. But agents may not be externally 
rational, that is, they may not know the 
true stochastic process for payoff relevant 
variables beyond their control. Adam and 
Marcet (2011) focus on near-rationality 
in the sense that the subjective beliefs of 
agents are not exactly equal to the objec-
tive density of external variables, but will 
be close to the beliefs under RE by giving 
agents a prior distribution centered around 
the correct RE. They show then that even 
though this is potentially a small deviation 
from RE beliefs (when the variance of the 
prior is small), the outcomes of the learning 
model can be quite different.

Internal rationality may be viewed as a 
(sophisticated) microfoundation of adaptive 
learning. Adam and Marcet (2011) demon-
strate how ordinary least squares—the most 
widely assumed learning rule in the adap-
tive-learning literature—arises as the optimal 
way to update conditional expectations from 
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a complete and dynamically consistent set of 
probability beliefs within a specific model. 
They also stress the point that microfoun-
dations of the model are informative about 
which beliefs matter for the equilibrium out-
comes in models of learning. In the general 
setting heterogeneous agents and market 
incompleteness are included to ensure that 
there is a distinction between the agent’s own 
decision problem, which is perfectly known, 
and market behavior, which is assumed to be 
known only imperfectly.

Adam and Marcet (2011) focus on an asset 
pricing model with infinitely lived risk-neutral 
investors, heterogeneous agents, and incom-
plete markets. It is remarkable that under 
internal rationality the competitive equilib-
rium price of this infinite horizon asset pricing 
model is not the discounted sum of expected 
future dividends, but rather reduces to the 
myopic one-period-ahead asset pricing model 
where the asset price equals the discounted 
sum of next period’s subjective belief of total 
stock payoff, that is, (cf. equation (23) in 
Adam and Marcet 2011)

(28)	​​ P​t​​  =  δ ​E​ t​ 
​​(​P​t+1​​ + ​Y​t+1​​)​.​

This gives rise to a self-referential model of 
learning about prices that leads to momen-
tum and mean-reversion behavior in asset 
prices. It is remarkable that this micro-
founded derivation of the asset pricing 
model with learning reduces to exactly the 
same pricing equation as in the boundedly 
rational mean-variance behavioral asset pric-
ing models that were introduced earlier.12

Adam, Marcet, and Nicolini (2016) esti-
mate an asset pricing model with inter-
nally rational agents using quarterly US 

12 For example, equation (28) coincides with the 
behavioral asset pricing model with heterogeneous beliefs 
(Brock and  Hommes 1998, equation 2.7), discussed in 
subsection 2.2.2 of this survey, as well as with the myopic 
mean-variance asset pricing model with adaptive learning 
of Branch and Evans (2011a) discussed in subsection 2.1.2.

price-to-dividend (PD) ratios 1927:II to 
2012:II. Their learning model replicates a 
number of asset pricing stylized facts such as 
high volatility in PD ratios, high persistence 
in PD ratios, excess volatility in returns, and 
excess return predictability at longer horizons 
(e.g., five years). They stress that agents are 
nearly rational. The perceived distribution 
of price behavior, although different from 
the true distribution, is nevertheless close to 
it and the discrepancies are hard to detect. 
Adam, Marcet, and Beutel (2017) show that 
the subjective beliefs are also consistent with 
survey data on expected capital gains.

Whether or not learning matters has 
important policy implications, as the desir-
ability of policy responding to asset price 
fluctuations will depend to a large extent on 
whether asset price fluctuations are funda-
mentally justified.

2.1.7	 Anticipated Utility Approach

Modeling bounded rationality in an 
infinite horizon dynamic optimization set-
ting is challenging.13 In an infinite horizon 
dynamic optimization setting, a departure 
from rational expectations requires an 
assumption about whether agents take into 
account that beliefs are updated over time. 
To do so requires that agents anticipate 
their updating of parameters under adaptive 
learning or their switching between rules in 
a heterogeneous expectations setting over an 
infinite time horizon. Such strong cognitive 
capabilities seem highly unlikely in the real 
economy. The behavioral assumption that 
beliefs are coming from a completed learn-
ing process and are perceived to be fixed 
is called the anticipated utility approach 
and forms the benchmark of the adaptive 

13 A finite horizon approach is perfectly feasible in 
overlapping generations and life cycle models. Bullard 
and  Duffy (2001), for example, study learning equilibria 
and excess volatility in a life cycle economy with capital 
accumulation.



Journal of Economic Literature, Vol. LIX (March 2021)168

learning literature. Branch and  McGough 
(2018) survey behavioral implementations 
of the anticipated utility approach. A first 
model is shadow price learning (Evans 
and  McGough 2018), where agents do not 
know the value function and the transition 
dynamics, but instead make linear fore-
casts of the shadow price and the state. The 
shadow price approach provides behavioral 
rules consistent with two-period intertem-
poral optimization, but does not require the 
full sophistication needed for agents to solve 
the complete dynamic programming prob-
lem. Interestingly, the shadow price learn-
ing approach may sometimes converge to 
the fully optimal and rational solution, but 
may also lead to rich learning dynamics. An 
alternative approach is Euler equation learn-
ing (Honkapohja, Mitra, and Evans 2013), 
where agents make decisions based on their 
perceived Euler equation derived from 
intertemporal optimization, that is, agents 
make choices by equating expected marginal 
benefits with expected marginal costs. 

The shadow price and the Euler equation 
approaches are based on one-step-ahead 
forecasts. Branch, Evans, and McGough 
(2013) develop an N-step-ahead Euler 
equation learning approach, where agents 
forecast their terminal asset position to solve 
their N-period consumption–savings prob-
lem.14 Letting the planning horizon ​N​ go 
to infinity (and imposing the transversality 
condition) leads to the infinite horizon learn-
ing approach, recently surveyed in Eusepi 
and  Preston (2017). In the infinity horizon 
learning approach agents are optimizing 
anticipated utility maximizers. It is interest-
ing to note that these bounded rationality 
approaches to adaptive learning ultimately 
yield very similar asset pricing and macro 
dynamics as the internal rationality approach 
discussed before.

14 See also Woodford (2019) for a recent analysis of 
monetary policy when planning horizons are finite.

2.2	 Heterogeneous Expectations

In the last two decades a large behav-
ioral literature on heterogeneous agents 
models (HAMs) with boundedly rational 
agents having heterogeneous expectations 
has developed; see, for example, the exten-
sive survey by Hommes (2006) and, more 
recently, the survey by Dieci and He (2018). 
The main learning mechanism here is a form 
of evolutionary selection among different 
forecasting models with agents gradually 
switching to better-performing rules (Brock 
and  Hommes 1997).15 This approach has 
been inspired by more complex genetic algo-
rithm (GA) simulation models, but focuses 
on more stylized, partly analytically tractable 
models. These switching models generate 
endogenous boom and bust cycles mimick-
ing stylized facts from real macro-financial 
data, such as bubbles and crashes, high per-
sistence, clustered volatility, and fat tails.

The HAM literature has also been inspired 
by the noise trader literature in finance, pio-
neered by DeLong et  al. (1990a, b), who 
introduced models where one type of agents 
has rational expectations, while another 
type, the noise traders, have nonrational 
expectations. In the model of DeLong et al. 
(1990b) noise traders have a mispercep-
tion of their expectation about next period’s 
price of a risky asset. They show that noise 
traders can survive in the market and earn 
a higher expected return than rational trad-
ers. DeLong et al. (1990a) consider a noise 
trader model with positive feedback traders 
and show that, in the presence of positive 
feedback traders, rational speculation can be 
destabilizing. These examples go against the 
Friedman hypothesis that nonrational trad-
ers will be driven out of the market because 

15 There is also a related literature on learning in 
dynamic games, for example, reinforcement learning 
(Erev and Roth 1998) and experiences weighted attraction 
(EWA) learning (Camerer and Ho 1999).
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they lose money against rational traders. 
Instead, these examples show that in a het-
erogeneous world nonrational traders can 
survive competition with rational agents.

A lucid early critique on the representative 
agent approach in macroeconomics is given 
in Kirman’s paper “Whom or What Does 
the Representative Individual Represent?” 
As an alternative, Kirman (1992) stressed 
the importance of agents’ interactions for 
the emerging aggregate behavior. Kirman 
(1993) proposed a stochastic model of 
recruitment through local interactions, 
based on Föllmer (1974) and more recently 
extended in Föllmer, Horst, and Kirman 
(2005). This “ant-model” is motivated from 
biology, describing how local interactions 
of ants may lead to an asymmetric distribu-
tion over two identical food sources. Kirman 
(1991) applied the “ant-model” to financial 
markets, where investors are either opti-
mistic or pessimistic and form their opin-
ions through local interactions. This leads to 
herding and bubble and crash dynamics in 
a financial market model with fundamental-
ists and chartists.

2.2.1	 Costly Rational versus Free Rule-of-
Thumb Expectations

In an influential paper, Brock and Hommes 
(1997) introduced a simple cobweb model 
with costly rational versus free naive expecta-
tions. A novel feature compared to the noise 
trader literature is an endogenous switching 
mechanism between strategies based upon 
their relative performance as measured by 
utility, profits, or forecasting performance. 
Agents switch between cheap but destabi-
lizing naive expectations with prices mov-
ing away from steady-state equilibrium, and 
costly stabilizing rational expectations with 
prices converging back to (a neighborhood 
of) the steady-state equilibrium. This leads 
to highly irregular, chaotic price fluctuations, 
with the market switching back and forth 
between close to fundamental stable price 

fluctuations and unstable price fluctuations 
with high volatility.

It is useful to discuss this example in some 
detail. Producers can either buy the rational 
expectations price forecast ​​p​ 1,t​ e  ​  = ​ p​t​​​, at pos-
itive information gathering costs ​C​, or freely 
obtain the simple naive forecast ​​p​ 2,t​ e  ​  = ​ p​t−1​​​. 
In a cobweb economy with rational versus 
naive expectations, the market equilibrium 
price is determined by demand and aggre-
gate supply of both groups, that is,

(29)	​ D​(​p​t​​)​  = ​ n​1t​​ S​(​p​t​​)​ + ​n​2t​​ S​(​p​t−1​​)​,​

where ​​n​1t​​​ and ​​n​2t​​​ represent the fractions of 
producers holding rational respectively naive 
expectations. Notice that rational agents 
have perfect foresight and therefore perfect 
knowledge about the market equilibrium 
equation (29). Hence, rational agents not only 
have exact knowledge about prices and their 
own beliefs, but in a heterogeneous world 
they must also have perfect knowledge about 
expectations or beliefs of all other agents. For 
linear demand and supply market clearing in 
this two-type cobweb economy gives

(30)	​ a − d ​p​t​​  = ​ n​1t​​ c ​p​t​​ + ​n​2t​​ c ​p​t−1​​.​

Fractions of rational and naive producers are 
endogenously updated over time according 
to evolutionary fitness. Agents tend to switch 
to strategies that have performed better in 
the recent past. The fractions of rational 
and naive producers are given by a discrete 
choice or multinomial logit model (Brock 
1993, Blume and Easley 1993)

(31)	​​ n​ht​​  = ​  ​e​​ β​U​h,t−1​​​ _ 
​Z​t−1​​

 ​ ,​

where ​​Z​t−1​​  =  ∑ ​e​​ β​U​h,t−1​​​​ is a normalization 
factor so that the fractions add up to ​1​ and ​β​ 
is the intensity of choice parameter, inversely 
related to the noise level, measuring how 
quickly agents switch to better performing 
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strategies. There are two extreme cases: 
(i) ​β = 0​: random choice, all fractions have 
equal weight; and (ii) ​β = ∞​: the “neoclas-
sical limit,” all agents switch immediately 
to the best strategy according to realized 
fitness. The discrete choice model (31) thus 
reflects the idea that agents switch to bet-
ter-performing strategies. The intensity of 
choice measures how fast agents switch to 
these better-performing strategies.

The discrete choice probabilities (31) 
are obtained from a random utility model 
(Anderson, Arrow, and Pines 1988; Manski 
and McFadden 1981) of the general form

(32)	​​ U​ht​​  = ​ π​ht​​ + ​S​ht​​ + ​P​ht​​ + ​ϵ​iht​​,​

where ​​π​ht​​​ is private utility (e.g., utility, 
profits, wealth, forecasting performance, 
etc.), ​​S​ht​​​ is social utility (e.g., utility from 
social interactions, herding effects, mean 
opinion index, etc.), ​​P​ht​​​ represents sensitiv-
ity to policy variables (e.g., policy shocks or 
policy announcements, etc.), and ​​ϵ​iht​​​ is idio-
syncratic noise. When the noise term has an 
extreme value distribution and the number 
of agents tends to infinity, the probability of 
selecting strategy ​h​ tends to the multinomial 
logit probabilities (31).

Brock and Hommes (1997) have stressed 
that the performance measure should 
consist of observable quantities. The gen-
eral form of (32) includes social interaction 
effects as emphasized by Brock and Durlauf 
(2001a, b).16 In the general representation of 
utility (32), we have also included a term for 
policy effects to stress the potential to take 
forward-looking behavior into account of 
how strategies respond to (observable) pol-
icy announcements.

16 Brock and Durlauf (2001a, b) have written extensive 
surveys on social interaction models in economics. A key 
feature of these models is that the social interaction effects 
lead to multiple steady states. Their approach leads to ana-
lytically tractable models that can be used in estimating 
social interaction effects in real data.

2.2.2	 A Behavioral Asset Pricing Model

A large literature on behavioral 
fundamentalists’/chartists’ asset pricing 
models in finance has developed, pio-
neered by early contributions by Zeeman 
(1974) and Day and Huang (1990), empir-
ically supported by survey data studies of 
Frankel and Froot (1986; 1987a, b). At the 
Santa Fe Institute an artificial agent-based 
stock market model has been developed in 
Arthur et  al. (1997) and LeBaron, Arthur, 
and Palmer (1999). Brock and  Hommes 
(1998) developed a simple, more tracta-
ble version of this type of model. In their 
behavioral asset pricing model with het-
erogeneous beliefs, agents switch between 
fundamentalists’ versus chartists’ strategies 
based upon relative profitability (cf. also Lux 
1995). An important motivation for hetero-
geneous agents is the observed high trading 
volume in real markets, which is at odds with 
no-trade theorems in the standard represen-
tative rational agent models. HAMs mimic 
many stylized facts observed in real financial 
data, for example, excess volatility, boom–
bust cycles, fat tails, clustered volatility, high 
trading volume correlated with volatility, etc. 
(see, e.g., the survey in LeBaron 2006).17

Here we discuss a stylized version of a 
behavioral asset pricing model with het-
erogeneous beliefs and the estimation of a 
two-type model on stock market S&P 500 
data. A detailed derivation may be found in 
Brock and Hommes (1998) and Hommes 
(2013).

Investors can choose between a risk-free 
asset paying a fixed return ​r​ and a risky 
asset (say a stock) paying stochastic divi-
dends. Denote ​​y​t​​​ as the dividend payoff, ​​p​t​​​ 

17 See also Adam et al. (2015) for a recent HAM with 
extrapolative beliefs that replicates the joint behavior of 
stock prices, trading volume, and investors’ expectations. 
They also study in how far a transaction tax may prevent 
stock price booms.



171Hommes: Behavioral and Experimental Macroeconomics and Policy Analysis

as the asset price, and ​​z​h,t​​​ as the number of 
shares bought by investor type ​h​. Agents are 
assumed to be myopic mean-variance maxi-
mizers. Let ​​E​ht​​​ and ​​V​ht​​​ denote the “beliefs” 
or forecasts of trader type ​h​ about condi-
tional expectation and conditional variance. 
The mean-variance demand ​​z​ht​​​ of type ​h​ is

(33) ​​ z​ht​​  = ​ 
​E​ht​​​[​p​t+1​​ + ​y​t+1​​ − ​(1 + r)​ ​p​t​​]​

   _______________________   
a​V​ht​​​[​p​t+1​​ + ​y​t+1​​ − ​(1 + r)​ ​p​t​​]​

 ​ 

	 = ​ 
​E​ht​​​[​p​t+1​​ + ​y​t+1​​ − ​(1 + r)​ ​p​t​​]​

   ______________________  
a​σ​​ 2​

 ​ ,​

where ​a​ is the risk aversion and, for sim-
plicity, the conditional variance ​​V​ht​​  = ​ σ​​ 2​​ 
is assumed to be equal and constant for all 
types. In the case of zero supply of outside 
shares the market clearing price is given by

(34) ​​ p​t​​  = ​   1 _ 
1 + r

 ​ ​ ∑ 
h=1

​ 
H

  ​​ ​n​ht​​ ​E​ht​​​[​p​t+1​​ + ​y​t+1​​]​,​

where ​​n​ht​​​ denotes the time-varying fraction 
of trader type ​h​ and ​​E​ht​​​[​p​t+1​​ + ​y​t+1​​]​​ denotes 
the beliefs about the future price and the 
future dividend by investor type ​h​.18 Recall 
that the rational, fundamental price of the 
risky asset is the discounted sum of expected 
future dividends. Assume for the moment 
that the dividend process is IID, with mean ​​
y ¯ ​​, then the fundamental value ​​p​​ ⁎​  = ​ y ¯ ​ / r​ is 
constant. Brock and Hommes (1998) assume 
that all agents have correct beliefs about 
the exogenous dividend process, but hetero-
geneous beliefs about endogenous prices. 
Agents can compute the fundamental price 
based on dividends, but nevertheless believe, 
for example, because of strategic uncertainty 

18 Notice that in the homogeneous case, ​H  =  1,​ 
and discount factor ​δ  =  1 /​(1 + r)​​ this mean-variance 
asset pricing equation is exactly the same as the internal 
rationality pricing equation (28) of Adam and  Marcet 
(2011) in subsection 2.1.6.

or idiosyncratic reasons, that price may devi-
ate from its fundamental value. A conve-
nient feature of these assumptions is that the 
model can be reformulated in terms of the 
deviation ​​x​t​​  = ​ p​t​​ − ​p​ t​ ⁎​​ from the fundamen-
tal benchmark as

(35)	​​ x​t​​  = ​  1 _ 
R

 ​ ​ ∑ 
h=1

​ 
H

  ​​​n​ht​​ ​E​ht​​ ​x​t+1​​.​

The fractions of type ​h​ are given by the dis-
crete choice model (31), as before, with the 
fitness measure equal to realized profits in 
period ​t​, that is,

(36) ​​ π​ht​​ = ​(​p​t​​ + ​y​t​​ − R ​p​t−1​​)​ ​ 
​E​h,t−1​​​[​p​t​​ + ​y​t​​ − R ​p​t−1​​]​

  ________________ 
a ​σ​​ 2​

 ​  

	 = ​(​x​t​​ − R ​x​t−1​​ + ​ϵ​t​​)​ ​ 
​E​h,t−1​​​[​x​t​​ − R ​x​t−1​​]​

  ____________ 
a ​σ​​ 2​

 ​ ,​

with ​​y​t​​  = ​ y ¯ ​ + ​ϵ​t​​​ and ​​ϵ​t​​​ is IID noise. Due 
to its simplicity the Brock–Hommes (1998) 
model can be handled (partly) analytically 
and it has been shown that the market 
becomes unstable when performance-based 
switching (driven by short run profitability) 
is sufficiently fast (i.e., when the intensity of 
choice is high). The behavioral model exhibits 
irregular bubble and crash dynamics with the 
market switching between unstable phases 
where trend-following strategies dominate 
and stable phases where fundamentalists 
dominate (see figure  5). This is a counter-
example to the Friedman hypothesis, as 
fundamentalists, who believe in the rational 
fundamental price, are unable to drive out 
chartists from the market. Hence, when strat-
egy switching behavior is driven by (short run) 
profitability, chartists are able to survive in the 
market. More generally, this type of simple 
heterogeneous agent asset pricing model is 
able to generate stylized facts of asset prices, 
such as bubbles and crashes, fat tails, and 
clustered volatility (Lux and Marchesi 1999, 
see also the survey in Lux 2009).
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More Hedging Instruments May Destabilize 
Markets.—Under the assumption of ratio-
nal expectations futures markets or hedging 
instruments are usually stabilizing and welfare 
enhancing. Very little work has been done to 
study the role of futures and hedging instru-
ments under bounded rationality. Brock, 
Hommes, and Wagener (2009) extended the 
behavioral asset pricing model to include 
hedging instruments in the form of Arrow 
securities. There are ​S​ states of the world 
arising with commonly known probabilities. 
There are ​n​ Arrow securities paying ​1​ if the 
corresponding state arises and ​0​ otherwise. 
For a sufficiently large number of Arrow secu-
rities, ​n  =  S − 1​, the market is complete; for ​
n  <  S − 1​ the market is incomplete. Agents 

are myopic mean-variance maximizers in this 
multi-asset world and have correct expecta-
tions on all stochastic dividends. Moreover, 
agents hold a common fundamental risk 
perception based on the variance–covari-
ance matrix ​​V​n​​​ of the dividend payoffs of 
the risky asset and the ​n​ Arrow securities. 
Brock, Hommes, and Wagener (2009) show 
that increasing the number of Arrow securi-
ties decreases the perceived fundamental risk 
and therefore boundedly rational agents take 
more leveraged positions, thus destabilizing 
the market, increasing price volatility, and 
decreasing average welfare. Figure 6 illustrates 
that adding more Arrow securities destabi-
lizes the market and decreases average wel-
fare. These destabilizing effects are relevant  

100 200

Panel A Panel B

Panel C Panel D

−0.75

−0.5

0 0

1

−0.25

0.25

0.5

0.75

−0.75

−0.75 −0.5 −0.05 0.05−0.25 0 0 0.10.25 0.5 0.75

−0.5

0

−0.25

0.25

0.5

0.75

−0.05

0

0.05

0.1

−0.5

0.5

−1

300 400 500 100 200 300 400 500

Figure 5. Bubble and Crash Dynamics in the Behavioral Asset Pricing Model with Heterogeneous Beliefs

Notes: Panel A: bubbles and crashes in deviations from the fundamental benchmark. Panel B: noisy bubble 
and crash dynamics. Panels C and D: strange attractors with chaotic dynamics in the phase space (​​x​t​​​, ​​x​t−1​​​
).(Brock and Hommes 1998.)



173Hommes: Behavioral and Experimental Macroeconomics and Policy Analysis

to markets exposed to speculative trading and 
populated by boundedly rational agents.

2.2.3	 Empirical Validation of Behavioral 
	 Asset Pricing Models

A large literature on empirical testing of 
behavioral heterogeneous agents models 
has developed, recently surveyed by Franke 
and Westerhoff (2017) and Lux and Zwinkels 
(2018). Here we discuss the estimation of a 
two-type model in Hommes and  in ’t Veld 
(2017) and Boswijk, Hommes, and Manzan 
(2007); see also Lof (2015) and Chiarella, He, 
and Zwinkels (2014) for similar models. In the  
behavioral asset pricing model, first a bench-
mark fundamental needs to be adopted. 
Empirically the dividend process is not IID, 
but the dividend data are well described by a 
geometric random walk with drift:

(37)	​ log ​Y​t+1​​  =  μ + log ​Y​t​​ + ​ν​t+1​​,

	 ​ ν​t+1​​  ∼  IID​(0, ​σ​ ν​ 2​)​.​

The behavioral model then can be reformu-
lated in price-to-cash flows. Investors have 
correct beliefs about dividends and estimate 
the constant growth rate ​g  ≡ ​ e​​ μ+(1/2)​σ​ ν​ 2​​​  
by averaging over ​log​(​Y​t+1​​/​Y​t​​)​​. Agents 
thus have model-consistent beliefs about 
the exogenous dividend process: ​​E​i,t​​​[​Y​t+1​​]​  
= ​ (1 + g)​​Y​t​​​. The RE fundamental price 
given by the discounted sum of expected 
future dividends, known as the Gordon 
model, is then given by

(38)	​​ P​ t​ ⁎​  = ​ 
1 + g

 _ r − g ​ ​Y​t​​.​

Hence, under RE the PD ratio is constant 
and given by

(39)	​​  ​P​ t​ ⁎​ _ 
​Y​t​​

 ​  = ​ 
1 + g

 _ r − g ​  ≡ ​ δ​​ ⁎​.​

Figure 7 illustrates the S&P 500 stock mar-
ket index, the fundamental value ​​P​ t​ ⁎​​, the PD 
ratio ​​δ​t​​  ≡ ​ P​t​​ /​Y​t​​​ and the fundamental PD 
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ratio ​​δ​ t​ ⁎​​.19 The S&P 500 index clearly exhibits 
excess volatility, with much more volatility 
in asset prices than in the underlying funda-
mentals, a point already emphasized in the 
seminal paper of Shiller (1981).

Hommes and  in ’t Veld (2017) estimated 
the two-type model using quarterly data 
1950: I–2016: IV. In deviations from the fun-
damental value ​​x​t​​  ≡ ​ δ​t​​ − ​δ​​ ⁎​​, the two-type 
model can be rewritten as:

(40) ​​ x​t​​ = ​ 1 _ 
​R​​ ⁎​

 ​​(​n​1,t​​ ​E​1,t​​​[​x​t+1​​]​ + ​n​2,t​​ ​E​2,t​​​[​x​t+1​​]​)​,

	​ R​​ ⁎​ ≡ ​ 1 + r _ 
1 + g

 ​.​

The simplest form of heterogeneity occurs 
when belief types are linear in the last 
observation:

(41)	​​ E​h,t​​​[​x​t+1​​]​  = ​ ϕ​h​​ ​x​t−1​​.​

These two types capture the only two pos-
sibilities in agents’ beliefs: fundamentalists 
believe that the price will mean-revert back 
to its fundamental value (​0  ≤ ​ ϕ​1​​  <  1​) and 
chartists believe that the price (in the short 
run) will move further away from the funda-
mental value (​​ϕ​2​​  >  1​).

The fractions of the two types are updated 
with a multinomial logit model as in Brock 
and Hommes (1997), with intensity of 
choice ​β​:

(42)	​​ n​h,t+1​​  = ​   ​e​​ β​U​h,t​​​ ________ 
​∑ j=1​ H  ​​​e​​ β​U​j,t​​​

 ​.​

19 Boswijk, Hommes, and Manzan (2007) and Hommes 
and in ’t Veld (2017) use the dynamic Gordon model with 
time variation in the interest rate and the growth rate of 
dividends. This dynamic approach is more flexible and 
allows for time variation in the fundamental PD ratio ​​δ​ t​ ⁎​​. 
As can be seen in figure 7 the time variation in the funda-
mental PD ratio of the dynamic Gordon model is relatively 
small. Notice that the dynamic Gordon model presupposes 
a fixed risk premium.

The performance measure ​​U​h,t​​​ is a weighted 
average of past profits ​​π​h,t​​​ and past fit-
ness ​​U​h,t−1​​​, with memory parameter ​ω​:

(43)	​​ U​h,t​​  = ​ (1 − ω)​ ​π​h,t​​ + ω ​U​h,t−1​​,​

with profits, up to a constant factor, given by

(44)  ​​ π​h,t​​  = ​ z​h,t−1​​​R​t​​

= ​(​ϕ​h​​ ​x​t−2​​ − ​R​​ ⁎​​x​t−1​​)​​(​x​t​​ − ​R​​ ⁎​ ​x​t−1​​)​,​

where ​​R​​ ⁎​  = ​ (1 + r)​/​(1 + g)​​. The econo-
metric form of the endogenous strategy 
switching model is an AR(1) model with a 
time-varying coefficient:

(45)� ​​R​​ ⁎​​x​t​​ = ​n​1,t​​ ​ϕ​1​​ ​x​t−1​​ + ​(1 − ​n​1,t​​)​​ϕ​2​​ ​x​t−1​​ + ​ϵ​t​​,

	​ R​​ ⁎​  = ​  1 + r _ 
1 + g

 ​,​

where ​​ϵ​t​​​ is an IID error term. Combining 
equations (42), (43), and (44), fractions 
depend nonlinearly on past realizations:

(46) ​​ n​1,t​​ = ​​(1 + exp​[β​(​ϕ​1​​ − ​ϕ​2​​)​

	 × ​ ∑ 
j=0

​ 
t−4

​​​[​ω​​ i​​(1 − ω)​ ​x​t−3−j​​

	 × ​(​x​t−1−j​​ − ​R​​ ⁎​ ​x​t−2−j​​)​]​]​)​​​ 
−1

​,​

(47)	​​ n​2,t​​  =  1 − ​n​1,t​​.​

The estimated parameter values in Hommes 
and in ’t Veld (2017) are:

• �​​ ϕ​1​​  =  0.948​: type ​1​ therefore are fun-
damentalists, expecting mean reversion 
of the price toward its fundamental 
value by ​5.2​ percent per quarter;

• �​​ ϕ​2​​  =  1.018​: type ​2​ are trend extrapola-
tors, expecting the price deviation from 
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fundamental to increase by 1.8 percent 
per quarter;

• �​ β  ≈  3.171​;20

• �​ ω  =  0.824​: implying almost 20 percent 
weight is given to the most recent profit 
observation and about 80 percent to 
past profitability.

Define the market sentiment as

(48)   ​​   ϕ​t​​  = ​ 
​n​t​​ ​ϕ​1​​ + ​(1 − ​n​t​​)​ ​ϕ​2​​  _______________ 

​R​​ ⁎​
 ​​ .

Figure 7 (panels D and E) shows time series 
of estimated fractions of fundamentalists and 
the market sentiment. The fraction of fun-
damentalists varies considerably but gradu-
ally (due to memory) over time, with values 
between ​25​ percent and ​90​ percent until 
the 1990s, and more extreme values ranging 
from close to ​0​ to almost ​100​ percent after 
the dotcom bubble. The switching model 
offers an intuitive explanation of the dotcom 
bubble as being triggered by economic fun-
damentals (good news about a new internet 
technology) subsequently strongly amplified 
by trend-following behavior. Estimates of 
the market sentiment ​​ϕ​t​​​ vary between ​0.96​ 
and ​1​ until the 1990s, showing near–unit 
root behavior. During the dotcom bubble 
the market sentiment ​​ϕ​t​​​ exceeds ​1​ for several 
quarters and therefore the market is tempo-
rarily in an explosive bubble state. During 
the financial crisis the market is mainly dom-
inated by fundamentalists indicating that the 
financial crisis has been reinforced by funda-
mentalists who expected a correction of asset 
prices back to fundamentals. 

20 Estimating the ​β​-parameter is hard, because of 
the highly nonlinear switching mechanism, and yields 
nonsignificant results due to the relatively small sam-
ple size. At the same time the coefficients ​​ϕ​1​​​ and ​​ϕ​2​​​ are 
significantly different from each other and therefore ​β​ is 
nonzero. See Hommes and in ’t Veld (2017) for bootstrap 
analyses and an extensive discussion.

In this behavioral asset pricing model 
with heterogeneous beliefs, agents 
switch between a mean-reversion and a 
trend-following strategy based upon realized 
profitability. Strategy switching driven by 
profitability leads to an almost self-fulfilling 
equilibrium with bubbles and crashes trig-
gered by shocks (“news”) to economic funda-
mentals amplified by endogenous switching 
between trend-following and fundamental-
ists’ strategies.

Empirical Validation for Other Data 
Sets.—There is by now a large empirical lit-
erature estimating this type of heterogeneous 
agents model using various data sets, includ-
ing stock prices, exchange rates, housing 
prices, and macro data (e.g. inflation); see, for 
example, Franke and Westerhoff (2017) and 
Lux and Zwinkels (2018) for up-to-date sur-
veys. A common finding is that bubbles are 
triggered by shocks to economic fundamen-
tals (e.g., the dotcom bubble is triggered by a 
new internet technology) and strongly ampli-
fied by switching to (almost) self-fulfilling 
trend-following or chartists strategies. These 
trend-following strategies are profitable as 
long as the majority believes in them.

Heuristics switching models have also been 
applied to the housing market. Theoretical 
models for house price dynamics with het-
erogeneous expectations have been consid-
ered, for instance, by Dieci and Westerhoff 
(2012, 2013). Geanakoplos et al. (2012) 
develop an agent-based model to explain the 
housing boom and crash, 1997–2009, in the 
Washington DC area. Baptista et al. (2016) 
develop an agent-based model (ABM) of 
the UK housing market to study the impact 
of macro-prudential policies on key hous-
ing market indicators. Adam and Woodford 
(2012) consider a housing market model 
with Bayesian learning of an internally ratio-
nal representative agent; Ascari et al. (2018) 
extend this model to the case of heteroge-
neous expectations with fundamentalists 
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versus chartists. Burnside, Eichenbaum, and 
Rebelo (2016) consider an epidemiological 
housing market model where agents disagree 
about the fundamental value of housing and 
infect each other.

Kouwenberg and Zwinkels (2014) esti-
mated a HAM model specifically for the US 
housing market using quarterly data from 
1960 until 2012. Ambrose, Eichholz, and 
Lindenthal (2013) examined a long time 
series of house price data of Amsterdam 
from 1650 to 2005 and found that sub-
stantial deviations from fundamentals per-
sisted for decades and are corrected mainly 
through price adjustments and to a lesser 
extent through rent adjustments. Based 
on the same data set, Eichholtz, Huisman, 
and Zwinkels (2015) found that there is evi-
dence for switching in expectation formation 
between fundamental and trend-following 
beliefs.

Bolt et  al. (2019) estimate a two-type 
model—with fundamentalists versus trend- 
followers—to housing prices in deviations 
from a benchmark fundamental given by 
housing rents for eight different coun-
tries (United States, United Kingdom, the 
Netherlands, Japan, Spain, Switzerland, 
Sweden, and Belgium). Figure 8 illustrates 
some of the results for the United States, 
Japan, and the Netherlands. For all countries 
they find long-lasting and persistent explo-
sive bubbles, with bubbles lasting sometimes 
more than a decade.

2.3	 Behavioral New Keynesian Models

Behavioral asset pricing models originated 
more than two decades ago, as discussed in 
subsection  2.2.2. Behavioral macro mod-
els are of more recent date. For example, 
Gabaix (2017, 2020) recently introduced 
behavioral new Keynesian macro models, 
where full information infinite horizon opti-
mization is replaced by sparse dynamic opti-
mization, with agents ignoring or putting less 
weight on information in the distant future. 

Gabaix (2017, 2020) mainly focuses on mod-
els where, given these informational restric-
tions, agents’ behavior remains fully rational. 
This approach is similar in spirit to the ratio-
nal inattention literature, surveyed in Sims 
(2010), where agents also partly ignore infor-
mation or give less weight to some informa-
tion but otherwise remain fully rational. The 
aggregate equations from Gabaix’s (2020)
behavioral NK model are:

(49)	​​ x​t​​  =  M​E​t​​ ​x​t+1​​ + ​ 1 _ σ ​​(​E​t​​​π​t+1​​ − ​i​t​​)​ + ​u​t​​,

	�  (IS curve)​

(50)	​​ π​t​​  =  δ ​M​​ f​ ​E​t​​ ​π​t+1​​ + κ ​x​t​​ + ​v​t​​,

� (Phillips curve)​

(51)	​​ i​t​​  =  max​{​π​​ T​ + ​ϕ​π​​ ​π​t​​ + ​ϕ​x​​ ​x​t​​, 0}​,

	 (Taylor rule)​

where ​​x​t​​​ is the output gap, ​​π​t​​​ inflation, and ​​i​t​​​ 
is the (contemporaneous) nominal interest 
rate rule. Compared to the NK  bench-
mark model the crucial difference lies in 
the attention parameters ​M, ​M  ​​ f​  ∈ ​ [0, 1]​​. 
The NK benchmark arises as a special case 
for ​M  = ​ M  ​​ f​  =  1​. In the behavioral NK 
model agents are boundedly rational and are 
not fully forward looking, but less reactive 
to the future putting less weight on the far 
distant future. This is a form of cognitive dis-
counting. Gabaix (2020) derives several pol-
icy implications within the behavioral model. 
For example, in the standard model, indeter-
minacy and multiplicity of equilibria arises 
when the Taylor principle does not hold. 
In contrast, in the behavioral model, when-
ever monetary policy is passive equilibrium 
is unique, even when the Taylor principle 
does not apply. The reason is that boundedly 
rational agents discount the future more and 
are thus less responsive to future events, 
lowering the complementarity between 
agents’ actions. This force is stabilizing and 
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dampens the possibility of multiple equilib-
ria in Gabaix’s (2020) behavioral NK model.

In this survey our focus is on the behav-
ioral new Keynesian model with nonrational 
heterogeneous expectations. Even for linear-
ized NK models, nonrational expectations 
and learning adds strong nonlinearities to the 
system giving rise for complex dynamics. It is 
interesting to note that, in contrast to Gabaix’s 
behavioral model, nonrational expectations 
and learning introduce backward-looking 
expectations and typically add more com-
plementarities and positive feedback to the 
NK framework making the dynamics of the 
model generally more unstable and allowing 
more easily for multiple equilibria and per-
sistent deviations from the target steady state.

The heterogeneous expectations frame-
work originates from Brock and Hommes 
(1997) with agents switching between dif-
ferent forecasting rules based upon their 
(recent) past relative performance. The 
learning mechanism here is thus charac-
terized by “survival of the fittest,” with 
agents gradually switching to better per-
forming rules. Early applications of this 
heterogeneous expectations framework 
include Branch and McGough (2009, 2010), 
De Grauwe (2011, 2012), and Anufriev et al. 
(2013).

2.3.1	 Heterogeneous Expectations

Branch and McGough (2009, 2010) 
are among the first papers to study new 
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Figure 8. Estimation of 2-Type Switching Model on Housing Prices

Notes: Housing prices in the United States (left panels), Japan (middle panels), and the Netherlands (right 
panels). Top panels: relative house price deviations ​​X​t​​​ from housing rent fundamentals; middle panels: esti-
mated time-varying fractions of agents of type 1, that is, fundamental mean-reverting agents (middle panels); 
and bottom panels: estimated market sentiment as the time-varying AR(1) coefficient in equation (48). All 
countries show long and persistent temporary bubbles (Bolt et al. 2019).
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Keynesian models with heterogeneous 
expectations, applying the framework of 
Brock and Hommes (1997) with agents 
switching between different forecasting 
rules based upon their (recent) past relative 
performance. Branch and McGough (2009, 
2010) provide a micro-foundation for bound-
edly rational heterogeneous expectations at 
the agent level in the NK framework. They 
show that under Euler equation learning 
and a number of axioms about the individ-
ual forecasting rules, the aggregate IS and 
NKPC curves have the same functional form 
as under rational expectations. They con-
sider an NK model with costly rational (per-
fect foresight) versus free naive expectations 
and show that instability and complicated 
dynamics may arise even if the model under 
rational expectations is determinate with a 
unique equilibrium path. When agents are 
allowed to switch between rules based upon 
their relative performance, complex dynam-
ics (cycles and chaos) may arise even if the 
Taylor principle holds. Anufriev et al. (2013) 
consider a simple frictionless NK model with 
fundamentalists, optimists, and pessimists 
and show that multiple stable steady states 
coexist. They also consider a model with 
infinitely many different types and study the 
dynamics with a large type limit approxima-
tion (Brock, Hommes, and Wagener 2005). A 
12-type model is shown to closely mimic US 
inflation time series, with large and highly 
persistent departures from target inflation. 
They also show that a more aggressive mon-
etary policy Taylor rule reduces the number 
of steady states and can stabilize inflation.

Other early papers in this area are by De 
Grauwe (2011, 2012), who develops a behav-
ioral NK macroeconomic model in which 
agents have cognitive limitations. Agents use 
simple but biased rules (heuristics) to forecast 
future output and inflation. Although the rules 
are biased, agents learn from their mistakes 
in an adaptive way, switching to better-per-
forming strategies, as in Brock and Hommes 

(1997). The model produces endogenous 
waves of optimism and pessimism (“animal 
spirits”) that are generated by the correlation 
of biased beliefs and match the stylized facts 
of inflation and output, such as persistence 
and fat tails. De Grauwe contrasts the dynam-
ics of this model with a stylized DSGE version 
of the model and studies the implications for 
monetary policies. Strict inflation targeting is 
suboptimal, because it gives more scope for 
waves of optimism and pessimism to emerge, 
thereby destabilizing output and inflation. 

Hommes and  Lustenhouwer (2019b) 
analyze this NK model with optimists and 
pessimists in detail and also study the role 
of a ZLB on the interest rate. They show 
that multiple steady states exist, including 
a self-reinforcing liquidity trap steady state 
where the pessimistic agents dominate. 
They also consider a model with infinitely 
many types, using the concept of large type 
limit and show that self-fulfilling waves of 
optimism and pessimism may occur. More 
aggressive monetary policy and/or a higher 
inflation target reduce the number of steady 
states and make self-fulfilling animal spirits 
less likely.

The micro-foundations of heterogeneous 
expectations in the NK model have been 
discussed and studied in several papers. 
Branch and  McGough (2009, 2010) used a 
one-step-ahead Euler equation approach to 
derive the aggregate IS and NKPC under 
heterogeneous expectations, after imposing 
restrictive assumptions about the individ-
ual forecasting rules. Massaro (2013) uses 
an infinite horizon optimization frame-
work and derives aggregate IS and NKPC 
under heterogeneous expectations, with the 
homogeneous rational agent benchmark 
nested as a a special case. Mauersberger 
(forthcoming) develops a micro-founded 
NK model where agents form forecasts of 
household relevant variables, as opposed 
to economy-wide aggregates, and test this 
model in the laboratory.
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Kurz, Piccillo, and Wu (2013) explore an 
NK model with diverse beliefs and show that 
the aggregate IS and NKPC depend on an 
aggregate state variable named “mean mar-
ket state of belief.” Diverse beliefs alter the 
problem faced by a central bank since the 
source of fluctuations is not only exogenous 
shocks but also market expectations. They 
show that due to diverse beliefs the effects 
of policy instruments are not monotonic 
and the trade-off between inflation and out-
put volatility is complex. Monetary policy 
can counter the effects of market belief by 
aggressive anti-inflation policy, but at the 
cost of increased volatility of financial mar-
kets and individual consumption.

Hommes and  Lustenhouwer (2019a) 
simplify the aggregate equations of Kurz, 
Piccillo, and Wu (2013) using a property of 
the discrete choice model for strategy switch-
ing of Brock and  Hommes (1997). Under 
this model it is implicitly assumed that the 
probability to follow a particular heuristic 
next period is the same across agents, that 
is, independent of the heuristic they fol-
lowed in the past. This reflects the fact that 
agents are not inherently different, but face 
the same trade-off between heterogeneous 
forecasting rules. They assume agents know 
(have learned) that all agents have the same 
probability to follow a particular heuristic 
in the future, and that they know that con-
sumption decisions only differ between 
households in so far as their expectations 
are different. In that case households expec-
tations about their own future consump-
tion coincide with their expectations about 
the future consumption of any other agent. 
Agents therefore realize they should base 
their current period consumption decision  
on expectations about future aggregate con-
sumption and, therefore, Kurz’s mean mar-
ket state of belief reduces to ​0​. Under these 
assumptions aggregate equations of the 
NK model with switching among heteroge-
neous expectations rules are equivalent to 

replacing conditional expectations by aver-
age expectations.

2.3.2	 Individual and Social Learning

Another, closely related approach to learn-
ing with heterogeneous forecasting rules 
is called individual or social learning and 
uses genetic algorithm learning based on 
evolutionary selection, mutation, and cross-
over. The evolutionary approaches may be 
viewed as a more descriptive form of actual 
learning behavior in complex market econo-
mies. The notion of individual evolutionary 
learning (IEL) was introduced in Arifovic 
and  Ledyard (2011), building on the work 
of Arifovic (1994), as a way of modeling 
heterogeneous strategies in large strategy 
spaces with a continuum of decision choices 
(as opposed to reinforcement learning (Erev 
and Roth 1998) and EWA learning (Camerer 
and  Ho 1999) in game theoretic settings, 
where the strategy space is finite). Individual 
learning refers to agents evolving their own 
set of successful strategies, as opposed to a 
social learning process where the population 
of strategies evolves and each agent is repre-
sented by a single strategy.

Arifovic et  al. (2010) apply IEL in an 
agent-based dynamic extension of the 
Kydland and Prescott (1977) model and study 
the role of cheap talk announcements by 
the policy maker. Private agents can choose 
between two strategies: believe, that is, act as 
if the policy announcement was true; or not 
believe and compute the best possible fore-
cast of the policy maker’s next action. In each 
period word-of-mouth information exchange 
allows a fraction of agents to compare their 
last-period payoffs with the ones obtained by 
agents who followed the other strategy. Each 
agent then adopts the strategy that provided 
the highest payoff and uses it until a new 
comparison motivates it to switch strategies 
again. The proportion of believers thus may 
change over time and can be interpreted as 
a measure of the policy maker’s credibility. 
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Simulations show that the policy maker is 
able to learn how to reach an outcome that 
is Pareto-superior compared to the one that 
would be attained without adequate cheap 
talk. This outcome is characterized by a suc-
cession of trust building phases, where the 
announcement and the true inflation are 
chosen in order to increase the proportion 
of believers; and trust exploitation phases, 
where the policy maker uses the existence 
of a large fraction of believers to achieve for 
itself high payoffs at the cost of a decrease of 
the fraction of believers.

Arifovic, Bullard, and Kostyshyna (2013) 
analyze the effects of social learning in a 
new Keynesian monetary policy context. 
Social learning may be viewed as a more 
descriptive and realistic form of actual 
learning behavior in complex market econ-
omies. In this NK framework the Taylor 
principle governs uniqueness and expec-
tational stability of REE under adaptive 
learning. Surprisingly, they find that the 
Taylor Principle is not necessary for con-
vergence to REE MSV equilibrium under 
social learning. Under social learning for all 
policy parameters the system seems to con-
verge to the REE. Sunspot equilibria also 
exist in the indeterminate region. Under 
social learning agents cannot coordinate 
on a sunspot equilibrium in general form 
specification, however, they can coordinate 
on common factor specifications. It remains 
unclear how general these stability results 
under social learning are and whether they 
are, for example, robust with respect to 
some of the underlying assumptions, such 
as the correct specification of the perceived 
law of motion as the MSV (no misspecifi-
cation), the mutation rate is assumed to 
decrease over time (favoring the REE fore-
cast) and there is no ZLB.

Hommes et al. (2017) study a GA model in 
the new Keynesian framework with an infla-
tion targeting interest rate rule (with a ZLB), 
where the GA optimizes a simple first-order 

forecasting heuristic as in Heemeijer et  al. 
(2009). This means that the PLM is misspec-
ified and in particular takes a trend-following 
coefficient into account. The stability of GA 
learning coincides with the Taylor principle; 
when the Taylor principle is not satisfied, the 
NK model is unstable under GA learning 
and may yield explosive inflationary or defla-
tionary spirals and persistent fluctuations 
in inflation and output. When the Taylor 
principle holds GA learning is more stable, 
although some endogenous fluctuations and 
oscillatory behavior may arise. The GA sim-
ulations fit the different types of observed 
behavior—monotonic convergence, oscilla-
tory behavior, and deflationary spirals (when 
the Taylor principle does not hold) in the 
NK laboratory experiments of Assenza et al. 
(2021) (see subsection 3.2).

Arifovic, Schmitt-Grohé, and Uribe (2018) 
study social learning in the NK model with a 
ZLB. There are three REE: the normal target 
steady state, the always binding ZLB steady 
state, and an occasionally binding ZLB steady 
state following a Markov process. Agents’ 
PLM is a correctly specified rule captur-
ing the three REE steady states. Mutation 
and crossover probabilities are assumed to 
be constant (10 percent) over time. It is also 
assumed that the current realizations of the 
stochastic process for the shocks to the nat-
ural rate can be observed. The ZLB steady 
state is unstable under adaptive learning, but 
interestingly it is stable under social learning, 
where agents learn the optimal coefficients of 
the PLM. Agents can learn to have pessimis-
tic sentiments about the central bank’s ability 
to generate price growth, giving rise to a sto-
chastically stable envirnoment characterized 
by deflation and stagnation.

2.3.3	 The Two-Type Switching Model and 
	 Forward Guidance

Heterogeneous expectations provide a 
natural framework to study the role of the 
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ZLB and the credibility of the central bank 
to prevent or recover the economy from 
liquidity traps. Hommes and Lustenhouwer 
(2019a) introduce endogenous credibility of 
the central bank in an NK framework with 
heterogeneous expectations.

There are two types of agents, credibility 
believers and naive expectations. The first 
forecasting heuristic can be described as 
“trust the central bank.” Followers of this heu-
ristic are called fundamentalists or credibil-
ity believers, and expect future inflation and 
output gap to be equal to the targets of the 
central bank. The fraction of fundamentalists 
can be interpreted as the credibility of the 
central bank. In contrast with rational expec-
tations models, this model therefore involves 
endogenous credibility. The fundamentalists 
compete with naive expectations, which uses 
the last observation as a best guess for future 
realizations of inflation and output. Notice 
that the naive heuristic coincides with rational 
expectations when inflation or output follows 
a random walk. If inflation or output follows 
a near–unit root process, the naive forecast 
is therefore nearly rational. Naive agents 
furthermore add persistence in inflation and 
output gap to the model in a very simple and 
intuitive manner, without the need to assume 
heavily serially correlated shocks. There is 
empirical evidence matching the type of het-
erogeneity in the two-type model, both in sur-
vey data and lab experimental data, as will be 
further discussed in subsections 2.3.4 and  3.2.

The model is given by an NKPC describ-
ing inflation ​​π​t​​​, an IS curve describing out-
put gap ​​x​t​​​, and a policy rule for the nominal 
interest rate ​​i​t​​​ with a ZLB:

(52)  ​​ x​t​​  = ​​ E ̃ ​​t​​ ​x​t+1​​ + ​ 1 _ σ ​​(​​E ̃ ​​t​​ ​π​t+1​​ − ​i​t​​)​ + ​u​t​​​,

(53) ​​ π​t​​  =  δ ​​E ̃ ​​t​​ ​π​t+1​​ + κ ​x​t​​ + ​v​t​​​,

(54)    ​​ i​t​​  =  max​{​π​​ T​ + ​ϕ​1​​​(​​E ̃ ​​t​​ ​π​t+1​​ − ​π​​ T​)​ 

	 + ​ϕ​2​​​(​​E ̃ ​​t​​ ​x​t+1​​ − ​x​​ T​)​, 0}​,​

where ​​​E ̃ ​​t​​​ denotes aggregate expectations of 
all agents in the economy. Expectations are 
formed using the two simple heuristics, fun-
damentalists (type 1) and naive expectations 
(type 2), as

(55) ​​ E​1t​​ ​x​t+1​​  = ​ x​​ T​  and ​ E​1t​​ ​π​t+1​​  = ​ π​​ T​,

� (fundamentalists)

 ​ E​2t​​ ​x​t+1​​  = ​ x​t−1​​  and ​ E​2t​​ ​π​t+1​​  = ​ π​t−1​​​

�​ (naive)​.

Agents switch between these rules, and the 
fractions ​​n​1t​​​ and ​​n​2t​​​ of the two types are 
given by the discrete choice probabilities 
(31), with fitness based on the squared pre-
diction errors. Aggregate expectations about 
inflation and output are then given by

(56)	​​​ E ̃ ​​t​​ ​π​t+1​​  = ​ n​ 1t​ π ​ ​π​​ T​ + ​n​ 2t​ π ​ ​π​t−1​​,​

(57)	​​​ E ̃ ​​t​​ ​x​t+1​​  = ​ n​ 1t​ x ​ ​x​​ T​ + ​n​ 2t​ x ​ ​x​t−1​​.​

The fraction of fundamentalists is then 
the endogenous credibility of the CB and 
depends on how well the CB achieved its 
targets.

Hommes and  Lustenhouwer (2019a) 
derive policy implications for an inflation 
targeting central bank, who’s credibility is 
endogenous and depends on its past ability to 
achieve its targets. Interestingly, the region 
of allowed policy parameters is strictly larger 
under heterogeneous expectations than 
under rational expectations. Furthermore, 
with theoretically optimal monetary policy 
(with coefficients minimizing a quadratic loss 
function), global stability of the fundamental 
steady state can be achieved, implying that 
the system always converges to the targets 
of the central bank. This result, however, no 
longer holds when the ZLB on the nominal 
interest rate is accounted for. Self-fulfilling 
deflationary spirals can then occur, even 
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under optimal policy. The occurrence of 
these liquidity traps crucially depends on the 
credibility of the central bank. Deflationary 
spirals can be prevented with a high infla-
tion target, aggressive monetary easing (i.e., 
cutting the interest rate to ​0​ when inflation 
falls below a threshold), or a more aggressive 
response to inflation (a higher coefficient in 
the Taylor rule). All these deviations from 
optimal policy have their costs, and may, for 
example, lead to higher output volatility, so a 
well balanced combination may be the best 
way to go.

Forward Guidance.—Goy, Hommes, and 
Mavromatis (2020) use the two-type switch-
ing model to study the macroeconomic 
effects of central bank forward guidance 
when central bank credibility is endoge-
nous. In particular, they take a stylized new 
Keynesian model with an occasionally bind-
ing ZLB constraint on nominal interest rates 
and heterogeneous and boundedly rational 
households. The central bank uses a bivar-
iate vector autoregression (VAR) model to 
forecast inflation and output gap. But their 
VAR model is misspecified, because it does 
not take into account the time variation in 
the distribution of aggregate expectations. In 
this framework, they introduce forward guid-
ance by allowing the central bank to publish 
its own forecasts (Delphic guidance) and to 
commit to a future path of the nominal inter-
est rate (Odyssean guidance). Both Delphic 
and Odyssean forward guidance increase the 
likelihood of recovery from a liquidity trap. 
While Odyssean guidance alone can increase 
ex post macroeconomic volatility and thus 
reduce welfare, it still appears to be more 
powerful.

To study forward guidance in a bounded 
rationality framework, Goy, Hommes, 
and Mavromatis (2020) use ​N​-step-ahead 
Euler equation learning and heterogeneous 
expectations, so that future interest rate 
expectations matter. The NK model with 

N-step-ahead Euler equation learning can 
be summarized as

(58)�​ ​x​t​​  =  ​​E​t​​ ̃ ​ ​x​t+N​​ − ​ 1 _ σ ​​​E​t​​ ̃ ​​ ∑ 
j=0

​ 
N−1

​​​(​i​t+j​​ − ​π​t+j+1​​ − ​r ¯ ​)​ + ​u​t​​,​

(59)	 ​​π​t​​  =  ​δ​​ N​​​E​t​​ ̃ ​ ​π​t+N​​ + ​​E​t​​ ̃ ​​ ∑ 
j=0

​ 
N−1

​​​δ​​  j​κ ​x​t+j​​ + ​v​t​​,​

where ​​​E​t​​ ̃ ​​ denotes the heterogeneous expec-
tations operator to be specified below. The IS 
curve (58) and Phillips curve (59) pin down 
output ​​x​t​​​ and inflation ​​π​t​​​, given a nominal 
interest rate ​​i​t​​​ and N-step-ahead forecasts 
of the interest rate, inflation, and output 
gap. The term ​δ​ is the discount factor,  ​​r ¯ ​​ is 
the steady state real interest rate, given by ​​
r ¯ ​  =  (1/δ) − 1​, and ​​u​t​​​ and ​​v​t​​​ represent exoge-
nous shocks. The model is closed using a con-
temporaneous Taylor-type rule with a ZLB:

(60) ​​ i​ t​ 
mp​ = max​{0, ​r ¯ ​ + ​π ¯ ​ + ϕ​(​π​ t|t​ 

e,cb​ − ​π ¯ ​)​}​,​

where ​​π​ t|t​ 
e,cb​​ denotes the central bank’s 

real-time inflation projection, made at the 
beginning of period ​t​. For the unconven-
tional policy, we equip the central bank with 
two additional policy tools:

•  �Delphic guidance: to publish the  
CB forecasts ​​π​ t+j|t​ 

e,cb ​, ​i​ t+j|t​ 
e,cb ​​, and ​​x​ t+j|t​ 

e,cb ​​ for 
​j  =  1, … , ​q​​ D​​, or

• � Odyssean guidance: commit to set inter-
est rates ​​i​t+j​​  =  0, ∀ j  =  1, … , ​q​​ O​​.

There are two types of agents, credibil-
ity believers versus naive expectations. 
Let ​​z​t​​  = ​ x​t​​, ​π​t​​​ (i.e. output gap or inflation). 
Then expectations are given by:

(61) ​​​ E ̃ ​​1,t​​ ​z​t+j​​ = ​
{

​
​z​ t+j|t​ 

e,cb ​,
​ 

∀ j = 1, … , ​q​​ D​;
​  

​z ¯ ​,
​ 

∀ j = ​q​​ D​ + 1, … , N;
​​​

and of naive expectations

(62) ​​​ E ̃ ​​2,t​​ ​z​t+j​​  = ​ z​t−1​​,  ∀ j  =  1, … , N​.
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Notice that under forward guidance the 
credibility believers trust the central bank 
and use their forecast. The credibility of 
the central bank, however, depends on the 
fraction of credibility believers, which var-
ies endogenously over time. Agents switch 
between credibility believers and naive 
expectation based on the relative forecasting 
performance, with fractions given by the dis-
crete choice model (31).

It is assumed that households know the 
policy rule of the central bank and form 
expectations about the nominal interest rate 
using their own inflation expectations:

(63)  ​​​E ̃ ​​1,t​​ ​i​t+j​​ = ​

⎧

 
⎪

 ⎨ 

⎪
 

⎩

​

​i​ t+j|t​ e,cb ​ = max​{0, ​r –​ + ​π – ​ + ϕ​(​π​ t+j|t​ e,cb ​ − ​π – ​)​}​,

​   

  ∀ j = 1, … , ​q​​ D​;

​ 0,​ 
  ∀ j = 1, … , ​q​​ O​;

​ 

​ i –​,

​ 

  ∀ j = ​q​​ k​ + 1, … , N;

 ​​ ​

where Odyssean guidance is dominant in 
case of both, and

(64) ​​​ E ̃ ​​2,t​​ ​i​t+j​​ = max​{0, ​r ¯ ​ + ​π ¯ ​ + ϕ​(​π​t−1​​ − ​π ¯ ​)​}​,

         ∀ j  =  1, … , N​.

Finally, the central bank forms expectations 
by adaptive learning of a bivariate VAR(1) 
model

(PLM) ​​ y​ t​ 
e,cb​  = ​ A​0​​ + ​A​1​​ ​y​t−1​​  ≡ ​ A ′ ​ ​w​t−1​​​

where ​​y​ t​ 
e,cb​  ≡ ​​ [​x​ t|t​ 

e,cb​, ​π​ t|t​ 
e,cb​]​ ′ ​​ and ​​w​t−1​​  

≡ ​​ [1, ​x​t−1​​, ​π​t−1​​]​ ′ ​​. If the fractions of the two 
agent types were constant, the CB would 
have a correctly specified PLM. Since these 
fractions are time varying, the CB uses a 
misspecified model and we have an RPE 
(Branch 2006; see subsection 2.1.3).

Goy, Hommes, and Mavromatis (2020) 
show that the model has two steady states, 

the target steady state, which is stable under 
learning, and the ZLB steady state, which 
is a saddle (see figure 9). Without forward 
guidance (FG) all initial states below the 
stable manifold of the ZLB steady state fall 
into a liquidity trap and exhibit a deflationary 
spiral. FG, however, enlarges the recovery 
region of the economy, as illustrated in fig-
ure 9. How much FG enlarges the recovery 
region of the economy depends critically on 
the credibility of the CB as measured by the 
fraction of credibility believers. When the 
fraction of credibility believers is small, FG 
is ineffective. On the other hand, when the 
fraction of credibility believers is large, FG 
has a large effect. This resolves the FG puz-
zle under rational expectations (Del  Negro 
et al. 2012). In our model the effectiveness 
of FG depends critically on the credibility 
of the CB. Extensive Monte Carlo simula-
tions show that without FG the probability 
of deflationary spirals is about ​28.8 percent​ 
and with FG about ​14.5 percent​ (Delphic 
FG), ​10.8 percent​ (Odyssean FG), 
and ​12.1 percent​ (both).

2.3.4	 Empirical Validation of the Two-Type 
	 Switching Model

Both surveys of consumers and profes-
sional forecasters and laboratory experi-
ments with human subjects show that there 
is considerable heterogeneity in inflation 
forecasts consistent with the two-type model 
discussed above.

The case study of the Volcker disinflation 
by Mankiw et al. (2004) nicely illustrates the 
presence of two types of heuristics in survey 
data. In figure 10 (Mankiw et al. 2003, p. 237) 
the evolution of inflation expectations as 
measured by the Michigan Survey from 1979 
up to and including 1982 is plotted. They 
show that at the start of 1979 expectations 
were centered around a high inflation value. 
Over the next eight quarters (during which 
Paul Volcker was appointed chairmen of the 
Board of Governors of the Federal Reserve 



185Hommes: Behavioral and Experimental Macroeconomics and Policy Analysis

Board) the distribution of expectations 
clearly becomes bimodal, with a fraction of 
agents still expecting the same high values 
of inflation and another fraction expecting 
lower inflation. In terms of our model, we 
can interpret this as follows. Before Volcker 
was appointed the Federal Reserve System 
(Fed) had very little credibility and most 
agents expected inflation to remain at the 
high values that it had been in the recent past 

(they used the naive heuristic). In the follow-
ing quarters the Fed gained more credibility 
and an increasing fraction of agents started 
to believe that Volcker would be able to drive 
down inflation toward its target level (more 
agents started to follow the fundamental/
credibility heuristic). Furthermore, when in 
1982 actual inflation started to decline, the 
mass on high inflation expectations slowly 
started to move toward lower inflation. We 

Panel A. Scenario I: All naive in t and t + 1 Panel B. Scenario II: 50% naive in t and t + 1
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Figure 9. Recovery Regions under FG

Notes: The effectiveness of FG depends crucially on the credibility of the CB. The figure shows the basin of 
attraction of the target steady state (right black dot at (​​π​​ ⁎​​, ​​x​​ ⁎​​) = (​​π – ​​, ​​x –​​)). For scenario I (panel A), we assumed 
all households to be naive in periods t and t + 1, while for scenario II (panel B), the fractions are equal.  
The (left) black dot at (​​π​​ ⁎​​, ​​x​​ ⁎​​) = ​​(−​r –​, (−(1 − δ)/κ) ​r –​)​​ indicates the ZLB saddle point. The black line with 
crosses is the ZLB condition, to the left of which initial conditions are such that the ZLB binds in period t. 
The solid red line is the stable manifold corresponding to the ZLB saddle point in the case without forward 
guidance. The region above this line can be interpreted as the immediate recovery region. Under forward 
guidance, this line becomes  flatter and the blue dashed line results. Forward guidance thus has an effect on 
the immediate recovery region. Assuming that the intensity of choice β = ∞, households switch from naive 
expectations to credibility believers in period t + 2 for all initial conditions above the blue dotted (forward 
guidance) and red dash-dotted (no forward guidance) lines, respectively, therefore inducing convergence 
back to the target steady state. Forward guidance successfully increases this region for which households 
become credibility believers in period t + 2 (indicated by the gray shaded area in panel B), if the credibility 
of central bank was high enough in the previous periods.
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can interpret this as backward looking, naive 
agents believing that lower observed inflation 
would also mean lower inflation in the future. 
Toward the end of the sample in 1982 both 
heuristics thus predict lower inflation, consis-
tent with the distribution of the survey data.

Branch (2004, 2007) fit a heuristic switch-
ing model with, amongst others, a naive 
heuristic and a fundamentalistic VAR heu-
ristic to data from the Michigan Survey of 
Consumer Attitudes and Behavior. Both of 
these papers find clear evidence of switch-
ing between heuristics based on past perfor-
mance. Branch (2004) furthermore finds that 

both our heuristics are present in the survey 
data, and Branch (2007) shows that the heu-
ristic switching model better fits the survey 
data than a static sticky information model.21

Pfajfar and  Žakelj (2016, 2018) and 
Assenza et al. (2021) show that in their lab-
oratory experiments in the NK framework, 

21 Lux (2009) estimated the parameters of a dynamic 
opinion formation process with social interactions based 
on survey data on business expectations (sentiment index 
data). Madeira and Zafar (2015) use the Michigan Survey  
data to estimate a learning model of inflation expectations, 
allowing for heterogeneous use of both private information 
and lifetime inflation experience.
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expectations of subjects can quite accurately 
(both qualitatively and quantitatively) be 
described as switching between simple het-
erogeneous forecasting heuristics based on 
their relative past performance; see subsec-
tion 3.2 for further details.

Cornea-Madeira, Hommes, and Massaro 
(2019) estimate an NKPC assuming expec-
tations are formed by a heuristic switching 
model with fundamentalist and naive agents. 
Fundamentalists here make use of the for-
ward-looking relation between inflation 
and marginal cost and use a VAR model to 
make inflation forecasts. Cornea-Madeira, 
Hommes, and Massaro (2019) find that their 
model fits the data well and that the endog-
enous mechanism of switching between the 
two heuristics based on past performance is 
supported by the data.

The NKPC with inflation driven by mar-
ginal costs and fundamentalists versus naive 
expectations is given by:

(65) ​​ π​t​​ = δ​(​n​f,t​​ ​E​ t​ 
f ​ ​π​t+1​​ + ​(1 − ​n​f,t​​)​ ​E​ t​ n​ ​π​t+1​​)​ 

	 + γm​c​t​​ + ​ξ​t​​,​

where the fundamental and naive forecasts 
are given by

(66)	​​ E​ t​ 
f ​ ​π​t+1​​  =  γ ​e​ 1​ ′ ​ ​​(I − δA)​​​ −1​ A ​Z​t​​​,

(67)	​​ E​ t​ n​ ​π​t+1​​  = ​ π​t−1​​​.

Fundamentalists estimate a VAR model and 
their fraction is given by

(68) ​​ n​f,t​​  = ​   1 _____________________  
1 + exp​(β​(​ F​E​ t−1​ 

f  ​ − F​E​ t−1​ n  ​ ___________ 
F​E​ t−1​ 

f  ​ + F​E​ t−1​ n  ​
 ​)​)​

 ​​,

(69) ​ F​E​ t−1​ i  ​  = ​  ∑ 
k=1

​ 
K

  ​​|​E​ t−k−1​ 
i  ​ ​π​t−k​​ − ​π​t−k​​|, 

	 with i  =  f, n​.

Figure  11 shows that the one-period-ahead 
forecast of the heuristics switching model 
closely matches US inflation. Figure 12 shows 
the evolution of the fraction of fundamental-
ists ​​n​f,t​​​, the distance of actual inflation from 
the fundamental, the forecast errors of the 
naive heuristic, and a scatterplot of the frac-
tion of fundamentalists against the relative 
forecast error of the naive rule. It is clear 
from this figure that the fraction of funda-
mentalists varies considerably over time with 
periods in which it is close to 0.5 and other 
phases in which it is close to either one of the 
extremes 0 or 1. For example, immediately 
after the oil crisis of 1973, the proportion of 
fundamentalists drops almost to 0 and the 
naive forecasting rule dominates. Soon after 
the difference between inflation and fun-
damental value reaches its peak in 1974:IV, 
the estimated weight of the forward-looking 
component shoots back up to about 0.6. 
During the second oil crisis, inflation was far 
above the fundamental, causing more agents 
to adopt a simple backward-looking rule to 
forecast inflation. Our findings suggest that, 
in reaction to large shocks pushing inflation 
away from the fundamental, a large share of 
agents adopt random walk beliefs causing 
self-fulfilling high inflation persistence. This 
result is in line with the analysis of Branch 
and  Evans (2017) showing that innovations 
to inflation can lead agents adaptively learn-
ing in the economy to temporarily believe 
that inflation follows a random walk. The 
two-type switching model can also explain a 
liquidity trap with highly persistent low infla-
tion, as shown in Hommes and Lustenhouwer 
(2019a) (see subsection 2.3.3).

Cornea-Madeira, Hommes, and Massaro 
(2019) also estimate the model using sur-
vey of professional forecasters (SPF) data. 
Figure 13 shows the SPF forecasts together 
with the heuristics switching expectations 
estimated from the model. Interestingly the 
behavioral heuristics switching model (HSM) 
forecasts better match the high peaks of 
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inflation than do the professional forecasters. 
Cornea-Madeira, Hommes, and Massaro 
(2019) also estimated structural breaks and 
figure 13 (right plot) shows that these struc-
tural breaks match well with the endogenous 
switching between fundamentalists and naive 
expectations for inflation and SPF.

3.  Experimental Macroeconomics

In the previous section several behavioral 
models of learning have been discussed. 
Which learning model is the most relevant? 
A concern with learning theory is that, 
“anything goes,” that is, for any equilibrium 
one can design a suitable theory or learn-
ing algorithm that makes that equilibrium 

stable under learning. As suggested by 
Lucas (1986) (see the earlier quote in the 
introduction), laboratory experiments 
can provide empirical evidence about 
the collective behavior and coordination 
process of a population of adaptive learn-
ing agents. Laboratory experiments thus 
provide a complementary tool to test the 
empirical relevance of different theories of  
learning.

Macroeconomists have long been skepti-
cal about the relevance of lab experiments 
for macro. Nevertheless, aggregate market 
behavior has been studied in the lab since the 
early days of experimental economics. Smith 
(1962), for example, showed the stability of 
equilibrium in double auction laboratory 
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markets. At the other extreme, the semi-
nal contribution of Smith, Suchanek, and 
Williams (1988) and many follow-up papers 
have shown the emergence and prevalence 
of bubbles and crashes in experimental asset 
markets; see, for example, the survey by 
Noussair and Tucker (2013).

Following Duffy (2016, p. 4) a macro-
economic experiment can be defined as 
“one that tests the predictions of a mac-
roeconomic model or its assumptions.” 
Experimental macroeconmics thus provides 
complementary tools to falsify or test macro 

models in a controlled environment. This 
seems particularly relevant for behavioral 
macroeconomics, because lab experiments 
can provide empirical guidance for which 
individual decision rules are most relevant 
in behavioral macro modeling. A rapidly 
increasing interest in experimental mac-
roeconomics is witnessed, for example, in 
the extensive handbook survey chapters of 
Duffy (2016), Arifovic and Duffy (2018), and 
Mauersberger and Nagel (2018).

The most important characteristic of 
a macro experiment is that it is a group 
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experiment, where individual decisions 
affect aggregate outcomes, which then feed 
back into individual behavior, etc. In a con-
trolled macro experiment one can therefore 
simultaneously test individual (micro) 
decision rules, their interactions, and the 
emergent aggregate (macro) behavior they 
cocreate. An important issue is the size of 
the group, which, for a macro experiment is 
often taken to be between ​five​ and ​ten​ to dis-
tinguish it from game theoretic experiments 
of group size two or three. With group size 
larger than three individual strategic behav-
ior already becomes very complex. See for 
example the collection of papers in Duffy 
(2014) and the discussions about macro 
experiments therein.

In this section we discuss broadly 
two types of macro experiments. First, 
learning-to-forecast (LtF) experiments 
focusing on how individuals form expecta-
tions and how these expectations aggregate. 
LtF experiments provide a laboratory test 
of the expectations hypothesis in a given 

macro environment. The second type of 
experiments are policy experiments study-
ing the effectiveness of different policy 
scenarios in macroeconomic environments. 
Here we will focus on monetary and fiscal 
policies. 

3.1	 Learning-to-Forecast Experiments

Learning-to-forecast (LtF) experiments 
were pioneered by Marimon and  Sunder 
(1993, 1994, 1995) and Marimon, Spear, and 
Sunder (1993). Their design is tailor-made 
to study individual expectations and learn-
ing in standard macroeconomic frameworks. 
In LtF experiments subjects’ only task is 
to forecast future variables, while all other 
agents’ actions (consumption, production, 
investment, trading, etc.) are computerized 
typically following rational assumptions from 
an underlying benchmark macro model 
or theory. LtF experiments are thus anal-
ogous to most of the learning literature in 
that agents are only boundedly rational in 
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terms of forecasting, not optimizing.22 LtF 
experiments may be viewed as an empir-
ical test of coordination of expectations 
within a given modeling framework. We 
will also briefly discuss differences with the 
learning-to-optimize experiments, where 
subjects directly engage in quantity deci-
sions (e.g. consumption, production, trade, 
etc.).23 Hommes (2011); Hommes (2013, 
chap. 8); and Assenza et al. (2014) provide 
earlier surveys on learning-to-forecast (LtF) 
experiments.

LtF experiments provide insights into the 
following questions:

• � How do individuals form expectations 
and learn and adapt their behavior?

• � What is the aggregate outcome or emer-
gent macro behavior of individual inter-
actions and learning?

• � Will coordination occur or will hetero-
geneity persist?

• � Will adaptive behavior enforce conver-
gence to REE or can nonrational equi-
libria arise at the macro level?

3.1.1	 Asset Pricing Experiments

In the asset pricing LtF experiments 
in Hommes et al. (2005) there are two 
assets: a risk free asset paying a fixed rate of 
return ​r​; and a risky asset, with price ​​p​t​​​, pay-
ing an uncertain dividend ​​y​t​​​. The asset mar-
ket is populated by six large pension funds 
and a small fraction of fundamentalist robot 
traders. Six subjects are forecast advisers to 
each of the pension funds. Subjects’ only 
task is to forecast the price ​​p​t+1​​​ of the risky 

22 An exception is Evans and McGough (2018), where 
agents must also learn to optimize.

23 Bernasconi and Kirchkamp (2000) combine the 
learning-to-forecast and learning-to-optimize designs in 
an overlapping generations (OLG) model experiment; 
see also Arifovic, Hommes, and Salle (2019) who study 
learning-to-forecast and learning-to-optimize experiments 
in a complex OLG environment with infinitely many 
equilibria.

asset for ​50​ periods and, based on this fore-
cast, the pension fund then computes how 
much to invest in the risky asset according 
to a standard mean-variance demand func-
tion. The fundamentalist robot trader always 
predicts the fundamental price ​​p​​ f​​ and trades 
based upon this prediction. The realized 
asset price in the experiment is derived by 
market clearing and given by:

(70)	​​ p​t​​  = ​   1 _ 
1 + r

 ​​(​(1 − ​n​t​​)​ ​​p – ​​ t+1​ e ​  

	 + ​n​t​​ ​p​​ f​ + ​y – ​ + ​ε​t​​)​,​

where ​​​p – ​​ t+1​ e ​   = ​ (​∑ h=1​ 
6 ​​​ p​ h,t+1​ 

e  ​)​ / 6​ is the 
average two-period-ahead price forecast, 
​​p ​​ f​  = ​ y – ​ /r​ is the fundamental price, and ​​ε​t​​​ 
are small shocks. Subjects do not know the 
underlying law of motion (70), but they do 
know the mean-dividend ​​y – ​​ and the interest 
rate ​r​, so they could use these to compute 
the fundamental price and use it in their 
forecast. The fraction ​​n​t​​​ in (70) is the share 
of computerized fundamental robot traders, 
increasing as the price moves away from the 
fundamental benchmark according to

(71) ​​ n​t​​  =  1 − exp​(− ​  1 _ 
200

 ​ |​p​t−1​​ − ​p ​​ f​|)​.​

The fundamental trader thus acts as a “far 
from equilibrium” stabilizing force in the 
market, adding negative feedback when 
the asset price becomes overvalued. The 
negative feedback becomes stronger the 
more price moves away from fundamental. 
The overall expectations feedback system 
(70) has positive feedback, but the positive 
feedback becomes less strong (i.e., stronger 
mean-reverting) when price moves away 
from fundamental value.

Figure 14 shows time series of prices, indi-
vidual predictions, and forecasting errors in 
three different groups with a robot trader. A 
striking feature of aggregate price behavior 
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is that three different qualitative patterns 
emerge. The price in group ​5​ converges 
slowly and almost monotonically to the fun-
damental price level ​​p ​​ f​  =  60​. In group ​6​ 
persistent oscillations are observed during 

the entire experiment, while in group ​7​ prices 
fluctuate but the amplitude is decreasing.

A second striking result is that in all 
groups participants were able to coordinate 
their forecasts. The forecasts, as shown in 
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Notes: Asset pricing experiments (Hommes et al. 2005) realized market prices (upper part each panel), six 
individual predictions (middle part each panel), and individual errors (bottom part of each panel). Three asset 
markets with robot traders (panels A, B, and C)  and one asset market without robot traders (bottom right). 
Prices do not converge to the RE fundamental benchmark 60, but rather fluctuate. In the market without 
fundamental robot trader (panel D, as in Hommes et al. 2008) a long-lasting bubble arises. Individual expec-
tations coordinate on almost self-fulfilling equilibria.



193Hommes: Behavioral and Experimental Macroeconomics and Policy Analysis

the lower parts of the panels, are dispersed 
in the first periods but then, within three–
five periods, move close to each other. The 
coordination of individual forecasts has 
been achieved in the absence of any com-
munication between subjects, other than 
through the realized market price, and 
without any knowledge of past and present 
predictions of other participants.

The fourth group in figure 14 shows a time 
series of prices, in a market without funda-
mental traders (Hommes et al. 2008). In the 
absence of a far-from-equilibrium stabilizing 
force due to negative feedback from the fun-
damental robot traders, a long-lasting asset 
price bubble occurs with asset prices rising 
above ​900​, that is, more than ​15​ times the 
fundamental price, before reaching an exog-
enously imposed upper-bound of ​1,000​ and 
a subsequent market crash. Similar large and 
long-lasting bubbles have been observed 
in larger groups of 20–32 (Bao et  al. 2020) 
and even for groups up to 100 (Hommes, 
Kopányi-Peuker, and Sonne-mans forth-
coming; see figure 15). Coordination 

on bubbles is thus robust against group  
size.24

These asset market laboratory experiments 
exhibit a strong degree of coordination on 
price fluctuations. Markets do not converge 
to the unique perfectly self-fulfilling RE fun-
damental price of ​60​, but rather fluctuate 
persistently and exhibit expectations driven 
bubbles and crashes. Subjects therefore do 
not coordinate on the unique RE equilib-
rium, but rather coordinate on an almost 
self-fulfilling equilibrium with temporary 
bubbles, where forecasting errors are rela-
tively small.

3.1.2	 Coordination Failures in Positive 
	 Feedback Systems

In his classical paper introducing ratio-
nal expectations Muth already noted that a 

24 Recent work in Kopányi-Peuker and  Weber (forth-
coming) and Hennequin (2019) shows that bubbles are 
also robust with respect to experience, as bubbles repeat-
edly appear when subjects gain experience in repeated 
markets.
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crucial feature for aggregation of individual 
expectation is whether the deviations of indi-
vidual expectations from the rational forecast 
are correlated or not. To quote Muth (1961, 
p. 321, emphasis added):

Allowing for cross-sectional differences in 
expectations is a simple matter, because their 
aggregate affect is negligible as long as the 
deviation from the rational forecast for an 
individual firm is not strongly correlated with 
those of the others. Modifications are necessary 
only if the correlation of the errors is large and 
depends systematically on other explanatory 
variables.

Laboratory experiments are well suited 
to study correlation of individual expecta-
tions in a controlled environment. It turns 
out that the type of expectations feedback, 
positive or negative, is crucial. In the case 
of positive (negative) feedback, an increase 
(decrease) of the average forecast, causes 
the realized market price to rise (fall). 
Positive and negative feedback are closely 
related to strategic complementarity and 
substitutability (Haltiwanger and Waldman 
1985; Fehr and Tyran 2001, 2005, 2008).25 

Under negative feedback, when the average 
forecast goes up, realized price goes down, 
so it is better to go against the majority 
(strategic substitutability). Under positive 
feedback, in contrast, when average fore-
cast goes up, the realized price goes up, so 
it is better to go with the majority (strategic 
complementarity). Positive feedback seems 
particularly relevant in speculative asset 

25 Fehr and Tyran (2001, 2005, 2008) study the role of 
money illusion and show that differences in the strategic 
environments (complementarity versus substitutabil-
ity) has an impact on individual rationality and aggregate 
outcomes. Fehr and Tyran (2008) study the adjustment 
of nominal prices after an anticipated nominal shock in a 
price setting game with positive (complements) and neg-
ative (substitutes) reaction curves, and find much faster 
convergence in the case of substitutes. They argue that 
differences in the stickiness of price expectations are key 
for the understanding of these differences in aggregate 
outcomes.

markets. If many agents expect the price 
of an asset to rise they will start buying the 
asset, aggregate demand will increase and 
so, by the law of supply and demand, the 
asset price will increase. High price expec-
tations then become self-fulfilling leading 
to high realized asset prices. In markets 
where the role of speculative demand is 
less important, for example, in markets for 
non-storable commodities, negative feed-
back may play a more prominent role. For 
example in a supply-driven commodity 
market, if many producers expect future 
prices to be high they will increase produc-
tion which, according to the law of supply 
and demand, will lead to a lower realized 
market price.

Heemeijer et  al. (2009) investigate how 
the expectations feedback structure affects 
individual forecasting behavior and aggre-
gate market outcomes by considering market 
environments that only differ in the sign of 
the expectations feedback, but are equiva-
lent along all other dimensions. The realized 
price is a linear map of the average of the 
individual price forecasts ​​p​ i,t​ e ​​ of six subjects. 
The (unknown) price-generating rules in the 
negative and positive feedback systems were 
respectively:26

26 This LtF experiment may be viewed as a repeated 
guessing game as in Nagel (1995), where subjects pre-
dict a number between ​0​ and ​100​ and the winner is she 
whose guess is closest to ​two-thirds​ of the average. This is 
a repeated Keynes’ beauty contest, where one has to guess 
the average opinion of other subjects. The Nash equi-
librium of the guessing game is ​0​, but in the laboratory 
experiment first- and second-order rationality (where the 
subject guesses ​2/3 ⋅ 50​ respectively ​​​(2/3)​​​ 2​ ⋅ 50​) are most 
common. The key difference here is that subjects do not 
know the best response function, but only have qualitative 
information about the market. Such limited knowledge 
seems particularly relevant in macroeconomic systems. 
Sutan and Willinger (2009) investigate a new version of 
the beauty contest games (BCG) in which players’ actions 
are strategic substitutes (negative feedback) versus strate-
gic compliments (positive feedback) and find that chosen 
numbers are closer to rational play in the case of strategic 
substitutes. See Mauersberger and  Nagel (2018) for an 
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(72) ​​ p​t​​ = 60 − ​ 20 _ 
21

 ​​[​(​ ∑ 
i=1

​ 
6

 ​​ ​  1 _ 
6
 ​ ​p​ i,t​ e ​)​ − 60]​ + ​ϵ​t​​,

(negative feedback)​

(73) ​​ p​t​​ = 60 + ​ 20 _ 
21

 ​​[​(​ ∑ 
i=1

​ 
6

 ​​ ​  1 _ 
6
 ​ ​p​ i,t​ e ​)​ − 60]​ + ​ϵ​t​​,

(positive feedback)​

where ​​ϵ​t​​​ is an exogenous random shock 
to the pricing rule. The only difference 
between (72) and (73) is the sign of the 
slope of the linear map, ​20 / 21  ≈  + 0.95​ 
resp. ​− 20/21  ≈  − 0.95​.27 Heemeijer 
et  al. (2009) consider positive and negative 
feedback systems with small IID shocks 
​​ϵ​t​​  ∼  N​(0, 0.25)​​. Negative feedback markets 
are rather stable and converge quickly to 
equilibrium, while positive feedback markets 
are rather unstable and fluctuate around 
equilibrium, as illustrated in figure 16.

Here we focus on the experiments of Bao 
et al. (2012), with large permanent shocks to 
the fundamental price level. More precisely, 
these shocks have been chosen such that, 
both in the negative and positive feedback 
treatments, the fundamental equilibrium 
price ​​p​ t​ ⁎​​ changes over time according to:

(74)	​​ p​ t​ ⁎​ = 56,	 0  ≤  t  ≤  21,

	​ p​ t​ ⁎​ = 41,  22  ≤  t  ≤  43,

	​ p​ t​ ⁎​ = 62,  44  ≤  t  ≤  65.​

The purpose of these experiments was to 
investigate how the type of expectations 

extensive overview of experimental coordination games 
and their importance for macroeconomics.

27 In both treatments, the absolute value of the slopes 
is ​0.95​, implying in both cases that the feedback system is 
stable under naive expectations.

feedback may affect the speed of learning of 
a new steady-state equilibrium price, after 
a relatively large unanticipated shock to the 
economy.

Figure 17 shows for positive and negative 
feedback the average price behavior (top 
panels), realized prices in all groups (mid-
dle panels), and an example of individual 
forecasts in a positive as well as a negative 
feedback group (bottom panels). Aggregate 
behaviors under positive and negative 
feedback are strikingly different. Negative 
feedback markets tend to be rather stable, 
with price converging quickly to the new 
(unknown) equilibrium level after each 
unanticipated large shock. In contrast, under 
positive feedback prices are sluggish, con-
verging only slowly into the direction of the 
fundamental value and subsequently over-
shooting it by large amounts.

Figure 18 reveals some other striking fea-
tures of aggregate price behavior and indi-
vidual forecasts. The left panel shows the 
time variation of the median distance to the 
RE benchmark price over all (eight) groups 
in both treatments. For the negative feed-
back treatment, after each large shock the 
distance spikes, but converges quickly back 
(within five–six periods) to almost ​0​. In the 
positive feedback treatment after each shock 
the distance to the RE benchmark shows a 
similar spike, but falls back only slowly and 
does not converge to ​0​. The right panel 
shows how the degree of heterogeneity, that 
is, the median standard deviation of indi-
vidual forecasts, changes over time. For 
the positive feedback treatment after each 
large shock heterogeneity decreases very 
quickly and converges to (almost) ​0​ within 
3–4 periods. Under positive feedback, indi-
viduals thus coordinate expectations quickly, 
but they all coordinate on the “wrong,” that 
is, a non-RE price. In the negative feed-
back treatment heterogeneity is more per-
sistent for about ​ten​ periods after each large 
shock. Persistent heterogeneity stabilizes 
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price fluctuations and after convergence of 
the price to its RE fundamental individual 
expectations coordinate on the correct RE 
price.

One may summarize these results in say-
ing that in the positive feedback treatment 
individuals quickly coordinate on a common 
prediction, but that coordination on the 
“wrong” non-fundamental price occurs. As a 
result price behavior is very different from 

the perfect, homogeneous rational expecta-
tions equilibrium price. On the other hand, 
in the negative feedback treatment coordi-
nation is much slower, heterogeneity is more 
persistent, but price convergence is quick.

Stated differently, positive feedback sys-
tems are characterized by quick and per-
sistent coordination failures, while negative 
feedback markets are characterized by slow 
coordination, more persistent heterogeneity, 
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Figure 16. Positive versus Negative Feedback Experiments.

Notes: Laboratory experiments with negative feedback (left panels) and positive feedback (right panels). 
Upper panels show negative feedback map, with RE steady state 60 clearly visible, and positive feedback 
map where the unique RE equilibrium is 60, but every other point is almost an equilibrium. Other panels 
show realized market prices (middle panels), six individual predictions (bottom panels), and individual errors 
(small bottom panels). In the negative expectations feedback market (left panels) the realized price quickly 
converges to the RE benchmark 60. In positive feedback markets a coordination failure arises and individuals 
coordinate on the “wrong” price forecast and as a result the realized market price persistently deviates from 
the RE benchmark 60.



197Hommes: Behavioral and Experimental Macroeconomics and Policy Analysis

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 p
ri

ce

10

20

30

40

50

60

70

80

90

100

Negative Feedback
Fundamental

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Period

M
ar

ke
t p

ri
ce

A
ve

ra
ge

 p
ri

ce
M

ar
ke

t p
ri

ce

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Period

0 10 20 30 40 50 60 70
0

10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60

0 10 20 30 40 50 60 70
Period

0 10 20 30 40 50 60 70
Period

70
0

10
20
30
40
50
60
70
80
90

100

N81
N82
N83

N84
N85
N86

FundamentalP81
P82
P83

P84
P85
P86

Fundamental

P1
P2
P3

P4
P5
P6

P7
P8
Fundamental

N1
N2
N3

N4
N5
N6

N7
N8
Fundamental

Positive Feedback
Fundamental

Figure 17. Experiments with Large Shocks

Notes: Positive feedback (left panels) and negative feedback (right panels) experiments with large shocks. Top 
panels: the average realized price averaged over all eight groups. Middle panels: the market prices for eight 
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and quick price discovery. Notice also that 
under positive feedback, coordination on 
a non-RE-fundamental price is almost 
self-fulfilling, with small individual fore-
casting errors. The positive feedback mar-
ket is thus characterized by coordination on 
almost self-fulfilling equilibria with prices 
very different from the perfectly rational 
self-fulfilling equilibrium.28 Similar results 
have been obtained in laboratory experi-
ments in other market settings, including 
a new Keynesian macro framework (Adam 
2007, Pfajfar and Zakelj 2016, Assenza et al. 
2014) and in a Lucas asset pricing model 
(Asparouhova et al. 2016).

28 Wagener (2014) uses the same experimental data and 
shows weak individual rationality (i.e., unbiased forecast 
errors without autocorrelations) for both the negative and 
positive feedback treatments, but strong rationality (i.e., 
prices converge to the homogeneous REE price) only 
under negative feedback.

3.1.3	 Heuristics Switching Model

The fact that qualitatively different aggre-
gate outcomes arise suggests that heteroge-
neous expectations must play a key role to 
explain these experimental data. Anufriev 
and  Hommes (2012b), extending the 
model of Brock and Hommes (1997), fit-
ted a behavioral heuristics switching model 
(HSM) to explain individual forecasting as 
well as aggregate price behavior.

Agents choose from a number of simple 
forecasting heuristics. The forecasting heu-
ristics are similar to those obtained from esti-
mating linear models on individual forecasting 
experimental data. Evolutionary selection or 
performance-based reinforcement learning 
based upon relative performance disciplines 
the individual choice of heuristics. Hence, 
the impact of each of the rules is evolving 
over time and agents tend to switch to more 
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RE fundamental price, while the right panel shows the median standard deviation of individual predictions. 
In positive feedback markets coordination is quick, but on the “wrong,” that is, non-RE, price.
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successful rules. The four forecasting heuris-
tics are:

(75)  ​​p​ 1,t+1​ e  ​  =  0.65 ​p​t−1​​ + 0.35 ​p​ 1,t​ e  ​​,	 (ADA)

(76)  ​​p​ 2,t+1​ e  ​  =  ​p​t−1​​ + 0.4​(​p​t−1​​ − ​p​t−2​​)​​,	 (WTR)

(77)  ​​p​ 3,t+1​ e  ​  =  ​p​t−1​​ + 1.3​(​p​t−1​​ − ​p​t−2​​)​​,	 (STR)

(78)  ​​p​ 4,t+1​ e  ​  =  ​ 
​p​ t−1​ av  ​ + ​p​t−1​​ _ 

2
 ​  + ​(​p​t−1​​ − ​p​t−2​​)​,​� (LAA)

were ​​p​ t−1​ av  ​  = ​ ∑ j=0​ t−1 ​​​p​j​​​ is the sample average 
of past prices. Adaptive expectations (ADA) 
predicts that the price is a weighted average 
of the last observed price ​​p​t−1​​​ and the last 
price forecast ​​p​ t​ e​​. The trend-following rules 
extrapolate the last price change, either with 
a weak-trend rule (WTR) or with a strong-
trend rule (STR) parameter. The fourth rule 
is a learning anchor and adjustment (LAA)
rule (Tversky and Kahneman 1974), extrap-
olating a price change from a more flexible 
anchor.

These four rules have been chosen in line 
with the estimated linear rules for individ-
ual forecasts and correspond to the different 
types of behavior observed in the experi-
ment. ADA leads to monotonic convergence 
to the fundamental price. The WTR also 
leads to convergence, possibly after some 
overshooting and/or oscillatory behavior. 
The STR leads to instability and a large asset 
price bubble. Finally, the LAA rule leads to 
oscillatory behavior. While the strong-trend 
rule can not predict a price reversal, as it 
always predicts a price trend to continue, 
the LAA rule predicts a price reversal when 
the price moves too far away from the fun-
damental equilibrium price due to its more 
flexible anchor that gives 50 percent weight 
to the average price ​​p​ t−1​ av  ​​, which may be seen 
as a proxy for the fundamental equilibrium 
level.

The fractions of the four forecasting heu-
ristics are time-varying and evolve according 

to a discrete choice model with asynchro-
nous updating:

(79) ​​ n​i,t​​ = δ ​n​i,t−1​​ + ​(1 − δ)​ ​ 
exp​(β​U​i,t−1​​)​

 ____________  
​∑ i=1​ 4 ​​ exp​(β​U​i,t−1​​)​

 ​.​

The fitness or performance measure of fore-
casting heuristic ​i​ is based upon quadratic 
forecasting errors, consistent with the earn-
ings in the experiments:

(80) ​​ U​i,t−1​​  =  − ​​(​p​t−1​​ − ​p​ i,t−1​ e  ​)​​​ 2​ + η​U​i,t−2​​,​

where ​η ∈ ​[0, 1]​​ measures the strength of the 
agents’ memory. In the special case ​δ = 0​, 
(79) reduces to the the discrete choice model 
with synchronous updating; ​δ​ represents 
inertia in switching as subjects change strat-
egies only occasionally. The parameter ​β ≥ 0​ 
represents the intensity of choice measuring 
how sensitive individuals are to differences 
in strategy performance.29

Figure 19 compares the experimental data 
with the one-step-ahead predictions made 
by the HSM. The one-step-ahead simula-
tions use exactly the same information avail-
able to participants in the experiments. The 
one-period-ahead forecasts easily follow the 
different patterns in aggregate price behavior 
in all groups. The second and bottom panels 
show the corresponding fractions of the four 
heuristics for each group. In different groups, 
different heuristics are dominating the market 
after starting off from an equal distribution.

In the monotonically converging group, 
the impact of the different rules stays more 
or less equal, although the impact of adaptive 
expectations gradually increases and slightly 
dominates the other rules in the last ​25​ peri-
ods. In the oscillatory group the LAA rule 
dominates the market from the start and its 
impact increases to about ​90 percent​ toward 
the end of the experiment. For the group with 

29 In the simulations below the parameters are fixed at 
the benchmark values ​β  =  0.4, η  =  0.7, δ  =  0.9​, as in 
Anufriev and Hommes (2012b).
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time series of fractions of each of the four heuristics—adaptive expectations (ADA, purple), weak trend fol-
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feedback groups. In the negative feedback market the ADA rule dominates and enforces quick convergence 
to the RE fundamental price 60. In the positive expectations feedback market, the strong (STR) and the weak 
(WTR) trend-following rules perform well and reinforce price oscillations. In all positive feedback groups 
individual expectations coordinate on a non-RE almost self-fulfilling equilibrium.
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the dampened oscillations, one-step-ahead 
forecast produces rich evolutionary selection 
dynamics, with three different phases where 
the STR, the LAA, and the ADA heuristics 
subsequently dominate. The STR dominates 
during the initial phase of a strong trend in 
prices, but starts declining after it misses the 
first turning point of the trend. The LAA does 
a better job in predicting the trend rever-
sal, because of its more slowly time-varying 
anchor and its impact starts increasing. The 
LAA takes the lead in the second phase of the 
experiment, with oscillating prices, and its 
share increases to almost 90 percent after 35 
periods. But the oscillations slowly dampen 
and therefore, after period 35, the impact 
of adaptive expectations, which has been 
the worst-performing rule until that point, 
starts increasing and adaptive expectations 
dominates the group in the last nine periods. 
In the asset market without a fundamental 
trader, subjects coordinate on the strong 
trend-following strategy, thus explaining the 
large bubble in the experiment. 

The HSM also matches aggregate price 
behavior in both the negative and positive 
feedback experiments very well (see the 
two bottom right panels in figure 19). The 
time series of the fractions of the differ-
ent forecasting heuristics provide an intui-
tive explanation of how individual learning 
leads to different aggregate price behavior. 
In the negative feedback treatment, the 
adaptive expectations strategy performs 
best and within 20 periods it captures more 
than ​90 percent​ of the market, thus enforc-
ing convergence toward the RE fundamental 
equilibrium price. In contrast, in the positive 
feedback treatment the strong and weak 
trend-following rules dominate the market, 
amplifying price fluctuations. The difference 
in aggregate behavior is thus explained by 
the fact that trend-following rules are suc-
cessful in a positive feedback environment 
reinforcing price oscillations and persistent 
deviations from the fundamental equilibrium 

benchmark price, while the trend-following 
rules are driven out by adaptive expectations 
in the case of negative feedback (Anufriev 
and Hommes 2012a). Self-confirming coor-
dination on trend-following rules in a posi-
tive expectations feedback environment has 
an aggregate effect with realized market 
prices deviating significantly and persistently 
from the RE benchmark.

3.1.4	 Simple Heuristics That Make Us 
	 Smart

The HSM provides an intuitive explana-
tion of the laboratory LtF experiments. But 
an important question remains unanswered: 
where exactly do the forecasting heuristics 
with these coefficients come from? Anufriev, 
Hommes, and Makarewicz (2019) develop a 
model where agents use a genetic algorithm 
to optimize the parameters of an anchor and 
adjustment heuristic. The two-parameter 
forecasting heuristic is given by

(81) ​​ p​ i,h,t​ 
e  ​  = ​ α​i,h,t​​ ​p​t−1​​ + ​(1 − ​α​i,h,t​​)​ ​p​ i,t−1​ e  ​ 

	 + ​β​i,h,t​​​(​p​t−1​​ − ​p​t−2​​)​.​

Here, ​α  ∈ ​ [0, 1]​​ represents the anchor, 
determining how much weight is given to 
the last observed price versus the last fore-
cast, while ​β​ represents the trend extrap-
olation parameter. Each agent ​i​ has a set 
of ​H = 20​ heuristics, which are updated over 
time by a genetic algorithm through repro-
duction, mutation, and election, with rules 
being selected with a probability propor-
tional to its relative performance. Anufriev, 
Hommes, and Makarewicz (2019) show that 
this GA model outperforms the HSM and 
adaptive learning benchmarks in explain-
ing and forecasting different laboratory 
experimental data sets. What makes the GA 
model work particularly well is the use of an 
appropriate forecasting heuristic that takes 
the trend extrapolation in positive feedback 
systems into account. The LAA heuristic 
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makes the GA learning “smart” in the sense 
that it fits well with the observed behavior 
of human subjects in the experiments; cf. 
Gigerenzer,  Todd, and the ABC Research 
Group (1999).

Figure 20 illustrates which heuristics were 
learned by the GA agents in the lab experi-
ment of Bao et al. (2012). The figure shows 
the median and the mean (with ​95 percent​ 
and ​90 percent​ CI) for 1,000 runs in a Monte 
Carlo simulation of the price weight ​α​ and 
the trend extrapolation coefficient ​β​, which 
were selected by the six GA agents. A first 
observation is that large heterogeneity of 
individual rules persists, consistent with the 

estimated rules in Bao et al. (2012). Secondly, 
there are clear differences between the two 
treatments. Under positive feedback the 
median GA agent quickly converges toward 
an approximate rule

(82)	​​ p​ i,t+1​ e  ​  ≈  0.95 ​p​t​​ + 0.05 ​p​ i,t​ e ​ 

	 + 0.9​(​p​t​​ − ​p​t−1​​)​.​

This median rule is close to a pure trend- 
following rule (i.e., with anchor ​​p​t​​​). 
The ​95 percent​ CI for the trend extrapola-
tion coefficient ​β​ becomes significantly pos-
itive toward the end of the experiment. 
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Hence, in the positive feedback environ-
ment with large shocks, GA agents learn to 
become strong trend followers.

These results show how agents learn a par-
simonious two-parameter forecasting heuris-
tic that makes them smart and fits well with 
human behavior in laboratory experiments. 
Hommes et al. (2017) apply this GA-model 
to the NK environment with similar results.

3.1.5	 Learning to Optimize

LtF experiments are analogous to most 
of the adaptive learning literature in that 
agents are only boundedly rational in terms 
of forecasting, but are fully rational in terms 
of optimizing. In LtF experiments these 
optimization decisions are computerized. 
Experiments that directly solicit consump-
tion, production, investment, etc., decisions 
are called learning-to-optimize (LtO) exper-
iments in the literature (Marimon, Spear, 
and Sunder 1993). In such LtO experiments 
there are (at least) two degrees of freedom, 
namely forecasting and quantity decisions. 
There are a few papers studying whether 
the results of LtF experiments are robust 
with respect to an LtO design. Bao, Duffy, 
and Hommes (2013) compare LtF and LtO 
experiments under negative feedback in a 
cobweb model framework and conclude that 
the coordination and convergence to the sta-
ble REE arising in the LtF design is robust 
in the LtO experiments, but the convergence 
speed under LtO is slower than under LtF.

Bao, Hommes, and Makarewicz (2017) 
compare LtF and LtO in positive feedback 
asset markets. Under positive feedback, LtO 
does not lead to convergence to the REE, 
but leads to large and persistent fluctuations 
around the fundamental benchmark, with 
large repeated bubbles of similar magni-
tude (as measured by price-to-fundamental 
ratios) as the dotcom stock market or the 
US housing bubble. These bubbles become 
even larger under LtO than under LtF, sug-
gesting that LtO is even harder than LtF. 

These experimental results suggest that 
we need more behavioral models that not 
only replace rational expectations by learn-
ing, but also replace optimization by simple 
and more plausible decision heuristics; see 
subsection  2.1.7 on the anticipated utility 
approach and the recent survey Branch and 
McGough (2018). This remains an important 
area for future work.

3.2	 Policy Experiments in the NK 
Framework

This subsection discusses macro policy 
experiments. Cornand and  Heinemann 
(2014) give a recent survey on experiments 
on monetary policy and central banking. Our 
main focus here is experiments where the 
interactions between individual expectations 
and different policy rules play an important 
role. A central question then is how differ-
ent policies may affect the coordination pro-
cess in standard macroeconomic settings. 
Learning-to-forecast experiments allow us to 
reproduce a stylized artificial macroeconomy 
working along the lines of standard macro 
models used by academic and policy institu-
tions, with the important difference that no a 
priori assumptions are made regarding expec-
tations, but instead expectations are directly 
elicited from incentivized human subjects.

In an early LtF experiment with an expec-
tational Phillips curve, Arifovic and Sargent 
(2003) use an environment to study the 
time consistency problem of Kydland 
and Prescott (1977). One subject acts as pol-
icy maker, setting inflation up to a random 
error term, while a group of three, four, or 
five subjects forecasts the inflation rate. The 
experimental results show heterogeneity of 
expectations across subjects and estimation 
of an adaptive expectations rule indicates 
that most subjects formed their forecast by 
heavily overweighting the recent past. From 
the monetary policy perspective, Arifovic 
and Sargent’s findings show that in 9 out of 
12 experimental economies the policy maker 
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pushes inflation near the Ramsey value for 
many periods. Moreover, backsliding, that 
is, inflation drifting back toward the Nash 
value, occurs in 4 out 12 economies.

Adam (2007) implements a sticky price 
environment where inflation and output 
depend on expected inflation. The results 
show cyclical patterns of inflation around 
its steady state. Adam finds that in most of 
the experimental sessions, the average fore-
cast of subjects is well described by a sim-
ple AR(1) model consistent with a restricted 
perception equilibrium.

A number of laboratory experiments have 
studied the stabilizing effects of a Taylor-type 
interest rate rule within a new Keynesian 
framework, for example, Pfajfar and  Žakelj 
(2016, 2018), Kryvtsov and Petersen (2013), 
and Assenza et al. (2019). These laboratory 
experiments provide empirical support to 
the Taylor principle, that a more aggressive 
interest rate rule can stabilize inflation and 
output. All these experiments are similar in 
spirit, but have important differences in the 
experimental designs.

Pfajfar and Žakelj (2016) focus on expecta-
tion formation in an NK environment. They 
find that for 30–45 percent of subjects it is 
not possible to reject rationality. Moreover, 
20–25 percent of subjects’ forecasting strat-
egies are well described by adaptive learning 
algorithms. The authors also find evidence 
for simple heuristics. Roughly 25–35 percent 
of subjects can be described by trend extrap-
olation rules and an additional 10–15 per-
cent by adaptive expectations or by a sticky 
information type of model. Pfajfar and Žakelj 
(2016) also find evidence for switching 
between forecasting models.

Kryvtsov and  Petersen (2013) provide 
subjects with full information about an exog-
enous shock process. This setup allows esti-
mating forecasts as a function of the observed 
shock history, which is then used to quantify 
the contribution of expectations to macro-
economic stabilization via counterfactual 

analysis. They show that a model with a weak 
form of adaptive expectations, attributing 
a significant weight on ​t − 1​ realizations of 
inflation and the output gap, fits best both 
the magnitude and the timing of aggregate 
fluctuations observed in the experiment. 

In the NKPC framework Assenza et al. 
(2021) show that simple first-order forecast-
ing heuristics describe individual forecasting 
behavior well. A behavioral HSM, with agents 
switching between ADA, STR, WTR, and 
LAA rules based upon relative performance 
provides a good description of individual and 
aggregate behavior. Using the HSM, Assenza 
et al. (2019) provide a behavioral explanation 
of why the Taylor principle works. A more 
aggressive Taylor interest rate rule adds neg-
ative feedback to the macro system, thus 
weakening the positive feedback and making 
coordination on destabilizing trend-following 
behavior less likely, thus dampening inflation 
and output fluctuations. More aggressive 
monetary policy thus influences the coordi-
nation and self-organization of the NK macro 
system in favor of more stabilizing forecast-
ing heuristics such as adaptive expectations. 
Hommes, Massaro, and Weber (2019) study 
the stabilizing effect of a Taylor rule that tar-
gets both inflation and the output gap and 
show that output stabilization can lead to less 
volatility in inflation. These results are in line 
with a behavioral HSM.

Survey data on expectations have received 
much attention in recent years; see the exten-
sive overview of Coibion, Gorodnichenko, 
and Kamdar (2018). Cornand and  Hubert 
(2020) discuss the external validity of expec-
tations inflation forecasts in the lab. They 
conclude that overall inflation forecast data 
from lab experiments and surveys share 
common features: lagged inflation positively 
affects the determination of inflation expec-
tations, forecast errors are comparably large 
and autocorrelated, and forecast errors and 
forecast revisions are predictable from past 
information, suggesting the presence of 
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some form of bounded rationality or infor-
mation imperfections.

The ZLB and Recovery from Liquidity 
Traps.—Two recent experimental papers 
(Arifovic and Petersen 2015; and Hommes, 
Massaro, and Salle 2019) focus on the effec-
tiveness of monetary and fiscal policies in 
the new Keynesian framework with a ZLB 
on the interest rate. In both experiments 
liquidity traps with inflation and output 
jointly falling arise in the laboratory, either 
triggered by shocks to fundamentals as in 
Arifovic and  Petersen (2015), or purely 
expectations driven as in Hommes, Massaro, 
and Salle (2019). A fiscal switching rule can 
recover the economy from the liquidity trap, 
although recovery may be very slow.

The design in Hommes, Massaro, and Salle 
(2019) is based on the nonlinear new 
Keynesian model with multiple RE equilib-
ria, a target steady state, and a ZLB saddle 
steady state (Evans, Guse, and Honkapohja 
2008, see subsection  2.1.5 of this paper). 
Recall from figure 4 that for initial states 
below the stable manifold of the ZLB steady 
state the economy under adaptive learn-
ing falls into a liquidity trap in the form of 
a deflationary spiral. The purpose of the lab 
experiment is to test whether such defla-
tionary spirals occur in the lab, and whether 
monetary and/or fiscal policy can recover the 
economy when expectations are formed by 
subjects in the lab. They design four (2 × 2) 
treatments, with two different policies and 
two different expectations treatments. The 
policies are (M) an aggressive monetary pol-
icy only, that cuts the interest rate if inflation 
falls below a threshold of ​1.6​ percent, and 
(F) a fiscal switching rule such that, when 
inflation falls below its threshold even with a 
ZLB, government spending is increased until 
inflation reaches the threshold again. The 
two expectations treatments are: (P) a pessi-
mistic expectations treatment (such that the 
midpoint of the interval of expectations lies 

in the unstable region), and (S) an optimistic 
expectations treatment (with the midpoint of 
expectations in the stable region) followed 
by a number of negative expectational shocks 
(in periods 8, 9, and 10). Figure 21 shows the 
results of the four treatments:

• � in the MP treatment, five out of seven 
economies fall into a deflationary spiral;

• � in the MS treatment, after the expec-
tations shocks four out of seven econo-
mies fall into a deflationary spiral;

• � in the FP treatment, the fiscal switching 
rule keeps all seven economies stable, 
converging to the target;

• � in the FS treatment, despite the expec-
tational shocks all seven economies 
recover and converge to target.

Figure 22 illustrates the behavior of the MP 
and MS treatments in the inflation-output 
phase space. In the MP treatment the 
position of the initial average expectations 
exactly determines the outcome: only the 
five  economies whose initial expectations 
are in the unstable region, below the stable 
manifold of the ZLB saddle steady state, fall 
into liquidity traps. For the MS treatment 
the behavior is similar: only the economies 
for which, after the bad expectational shocks, 
the state moves into the unstable region 
below the stable saddle path of the ZLB fall 
into deflationary spirals. These laboratory 
outcomes are strikingly similar to what the 
theory of adaptive learning predicts. Notice 
that the lab outcomes are very different from 
what RE predicts, namely that the system 
will jump to the target steady state or to the 
ZLB. In this standard nonlinear NK macro 
framework the lab experiments are more in 
line with adaptive learning.

Laboratory experiments should become 
a complimentary testing bed for new pol-
icies. After all, one may raise the question 
that if a policy does not work in a simple 
laboratory macro environment, why would 
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Figure 21. Inflation and Output in ZLB Experiments

Notes: Overview of experimental results of the four treatments, seven groups each, in Hommes, Massaro, 
and Salle (2019). Left panels: realized inflation. Right panels: realized net output. Dashed lines depict tar-
geted equilibrium levels. Shaded areas indicate expectational bad news shocks.
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it work in reality? Testing the effectiveness 
of policies in the lab thus seems a necessary 
step to validate policies. The effectiveness 
of unconventional macroeconomic policies 
have recently been studied in laboratory 
experiments. The results on the effect of 
forward guidance on economic stability in 
new Keynesian learning-to-forecast exper-
iments are mixed. Cornand and  M’baye 
(2018a, b) find that communication of the 
central bank’s inflation target can reduce the 
volatility of the economy in normal times, 

while Arifovic and Petersen (2015) find that 
it does not provide a stabilizing anchor in cri-
sis times or in a liquidity trap. Mokhtarzadeh 
and Petersen (2020) find that providing the 
economy with the central bank’s projections 
for inflation and the output gap stabilizes 
the economy, while Kryvtsov and  Petersen 
(2013) find that providing the expected 
future interest rate path diminishes the 
effectiveness of monetary policy in stabiliz-
ing the economy. Ahrens, Lustenhouwer, 
and Tettamanzi (2017) show that the central 

0.8

0.7

0.75

0.65

0.6

0.5

0.55

0.8

0.7

0.75

0.65

0.6

0.5

0.55

0.8

0.7

0.75

0.65

0.6

0.5

0.55

0.8

0.7

0.75

0.65

0.6

0.5

0.55

0.8

0.7

0.75

0.65

0.6

0.5

0.55

0.8

0.7

0.75

0.65

0.6

0.5

0.55

0.95 1 1.05 0.95 1 1.05 0.95 1 1.05

0.95 1 1.05 0.95 1 1.05 0.95 1 1.05

UNSTABLE

STABLE

Panel D. Initial expectations Panel E. Expectations after news Panel F. Liquidity trap

Panel C. ConvergencePanel A. Initial expectations Panel B. Liquidity trap

STABLE STABLE

STABLESTABLESTABLE

UNSTABLE UNSTABLE

UNSTABLE UNSTABLE UNSTABLE

ce

πe πe πe

πe πe πe
ce ce

ce ce ce

L

L T T T

TTT

L L

L L

Figure 22. Learning in ZLB Experiments

Notes: Inflation-output dynamics in the seven laboratory groups in the MP (top panels) and the MS (bottom 
panels) treatments in Hommes, Massaro, and Salle (2019). The black curve is the stable manifold of the ZLB 
saddle steady state L and marks the boundary between the stable region converging to the target steady state 
T and the unstable inflationary spirals. The dots refer to the initial average expectations of each group. The 
predictions of the theory of adaptive learning exactly coincide with the group behavior in the lab.
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bank can significantly manage market expec-
tations through forward guidance and that 
this management strongly supports mon-
etary policy in stabilizing the economy and 
reducing forecast errors. Moreover, strategi-
cally optimistic forward guidance drastically 
reduces the probability of a deflationary spi-
ral after strong negative shocks to the econ-
omy. However, pessimistic forward guidance 
announcements after negative shocks can 
instead initiate coordination on a deflationary 
spiral. Although the credibility of the central 
banks’ forecasts depends on both the central 
banks’ forecasts errors and on credibility in 
earlier periods, they do not find evidence 
that a central bank with a better forecasting 
track record is better able to mitigate reces-
sions than a central bank with less credible 
past forecasts.

Penalver et  al. (forthcoming) report the 
results of a repeated laboratory experiment 
in which a central bank buys bonds for cash 
in a quantitative easing (QE) operation in an 
otherwise standard asset market setting. The 
experiment is designed so that bonds have 
a constant fundamental value which is not 
affected by QE under rational expectations. 
By repeating the same experience three 
times, they investigate whether participants 
learn that prices should not rise above the 
fundamental price in the presence of QE. 
Some groups do learn the fundamental price 
but most do not, instead learning to believe 
that QE boosts bond prices. In future work, 
more laboratory policy experiments are 
needed to investigate the robustness of these 
results and these complimentary laboratory 
methodologies should become part of the 
standard tools for policy analysis.

4.   Discussion and Future Outlook

Modern macroeconomics is built on 
elegant and rigorous axiomatic micro- 
foundations and rational expectations. But 
are these assumptions empirically relevant? 

Laboratory macro-experiments show that 
coordination of a collection of adaptive 
agents is better described by a behavioral 
learning process than by rational expec-
tations equilibrium. In particular, macro 
systems with strong positive feedback (i.e., 
near–unit root systems) typically exhibit 
coordination failures in the lab. A collection 
of individuals does not coordinate on the 
perfect rational equilibrium, even when it 
is unique, but rather coordinates on almost 
self-fulfilling equilibria characterized by 
correlated trend-following behavior and 
booms and bust price fluctuations around 
the rational fundamental benchmark. This 
behavior has been observed in many lab 
experiments within different environments, 
including asset markets and new Keynesian 
macro frameworks, and such aggregate 
behavior is robust for larger group sizes up 
to ​100​ subjects. What are the policy implica-
tions of these empirically and experimentally 
observed coordination failures? 

Before discussing the policy implications 
of these empirical and experimental results, 
it is useful to recall some features of what 
has become the standard and widely used 
model for policy analysis in central banks, 
the RE new Keynesian DSGE model. 
Estimation of DSGE models based on a 
Bayesian likelihood approach has been pio-
neered by Smets and Wouters (2003, 2007). 
Their model has seven endogeneous mac-
roeconomic variables, incorporates many 
types of real and nominal frictions, and uses 
seven structural exogenous shock processes, 
all autocorrelated AR(1) or autoregressive 
moving average (ARMA) (1,1) processes, to 
match the number of observables. Under 
these assumptions the model has a unique, 
determinate REE saddle-path equilibrium 
solution. Smets and Wouters (2003) estimate 
19 structural parameters of the model using 
the Dynare advanced computational soft-
ware, together with 17 parameters for the 
structural shocks. The estimated coefficients 
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of the shock AR(1) processes exhibit highly 
persistent autocorrelation including three 
estimated coefficients in the range ​0.95–0.97​. 
Many central banks and financial institutions 
use similar estimated DSGE models as an 
important input for policy analysis. Yet, coor-
dination on a saddle-path equilibrium seems 
highly unlikely and has rarely been observed 
in laboratory macro experiments.30

In order to further discuss rational versus 
behavioral approaches for policy analysis, 
consider the following thought experiment 
using the time series of a single observed 
macro variable obtained from the aggregate 
price series in the positive feedback labora-
tory experiments of Heemeijer et al. (2009) 
(see subsection 3.1.2, figure 16, right panel). 
The experimenter knows that the price series 
has been generated by

(83) ​​ p​t​​  = ​ p​​ ⁎​ + ​  1 _ 
1 + r

 ​​(​​p – ​​ t​ e​ − ​p​​ ⁎​)​ + ​ϵ​t​​,​

where ​​p​​ ⁎​ ​ (= ​ y ¯ ​/r  =  60)​​ is the REE fun-
damental price, ​r ​ (=  0.05)​​ is the risk free 
interest rate, ​​​p – ​​ t​ e​​ is the average forecast of a 
group of six individuals, and ​​ϵ​t​​​ is an IID exog-
enous stochastic process. A standard REE 
full information approach would assume that 

30 A simple example of a saddle point steady state 
arises in the ZLB lab experiment in Hommes, Massaro, 
and  Salle (2019), as discussed in subsection 3.2. None 
of the 28  groups of 6 subjects were able to coordinate 
expectations on the ZLB steady state, nor did any group 
converge to a neighborhood of the ZLB steady state. In a 
hyperinflation model with two RE steady states, Marimon 
and Sunder (1993) find coordination on the low-inflation 
determinate REE steady state, which is consistent with 
adaptive learning. In an NK experiment, Adam (2007) 
finds coordination on the determinate REE steady state in 
some sessions, but coordination on a restricted perception 
equilibrium in other sessions. Pfajfar and  Žakelj (2016, 
2018) and Assenza et al. (2019) find in NK experiments 
that the Taylor principle is not sufficient to enforce coor-
dination on the unique determinate REE steady state, but 
almost self-fulfilling fluctuations in output and inflation 
may arise when monetary policy satisfies the Taylor prin-
ciple, but is not aggressive enough.

expectations are rational, i.e., coincide with 
the fundamental steady-state equilibrium ​​p​​ ⁎​​, 
and that prices are driven by exogenous auto-
correlated shocks ​​ϵ​t​​​, say by a stochastic AR(1) 
process. Such an REE model driven by a 
persistent AR(1) process would give a very 
reasonable fit to the observed aggregate time 
series. However, from the individual labora-
tory forecasting data we know that expecta-
tions are very different from homogeneous 
rational expectations and fundamental 
price, but rather subjects coordinated on 
a simple trend-following rule. The behav-
ioral HSM, as discussed in subsection 3.1.3, 
buffeted with small IID shocks explains 
both individual forecasting behavior and 
observed macro fluctuations in prices. Both 
models, the REE model driven by (large) 
autocorrelated shocks and the behavioral 
heterogeneous expectations model driven by 
small IID shocks, give a good description of 
aggregate data. Both models, however, have 
very different policy implications about how 
the macro system might respond to policy 
parameters, such as the interest rate ​r​. In 
the REE model price fluctuations are driven 
by autocorrelated exogenous shocks, and the 
policy implication would be that the interest 
rate only affects the equilibrium price level 
​​p​​ ⁎​  = ​ y – ​/r​, but does not affect the price vol-
atility. In contrast, in the behavioral model 
the interest rate affects both the price level 
and the price volatility, because an increase 
of the interest rate leads to stronger mean 
reversion of the price process. An increase 
of the interest rate weakens the positive 
feedback of the system (83) and thus makes 
coordination on trend-following behavior 
less likely and the macro system more sta-
ble. This simple example is an illustration 
of the fact that behavioral models may have 
very different policy recommendations than 
RE models. The effect upon the steady 
state price levels is the same, but in behav-
ioral models policy parameters typically 
have a strong effect upon the strength of the 
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mean-reversion of the system. In behavioral 
models policy often affects the (in)stability 
and convergence speed of the model.

How general are these results? Hommes 
(2013) stresses an important generic fea-
ture of (higher-dimensional) near–unit root 
macro systems. Many macro-finance mod-
els, such as asset pricing and new Keynesian 
models, are near–unit root systems. Since 
any linear system with a unit root has a 
continuum (say a line) of steady states, any 
near–unit root system (i.e., whose Jacobian 
has an eigenvalue close to ​+ 1​) has a contin-
uum of almost self-fulfilling equilibria. What 
the laboratory macro experiments show is 
that in such an environment, coordination 
on the unique perfectly self-fulfilling ratio-
nal equilibrium is unlikely and at best only 
very slow, but coordination of expectations 
on almost self-fulfilling equilibria fluctuating 
around the RE fundamental benchmark is 
likely to emerge. Coordination failures sim-
ilar to those observed in the simple labora-
tory experiments are therefore likely to be 
generic for near–unit root macro systems. 
Policy analysis should take these almost 
self-fulfilling equilibria into account. This 
observation may be seen as a widening of the 
solution to the Lucas critique. Policy analy-
sis should not only be based on the perfect 
rational solution, but take these empirically 
relevant almost self-fulfilling learning equi-
libria into account.31 The laboratory macro 
experiments also suggest an immediate way 
to stabilize the economy: policy can stabilize 
the economy by adding negative feedback 
to the system, or equivalently, by weakening 
the positive feedback.

In recent learning-to-forecast experiments 
of the housing market, Bao and  Hommes 

31 This relates to recent work on robust policy design 
as it explicitly seeks to design policies that are robust to 
deviation from rational expectations. Adam and Woodford 
(2018), for instance, find that such robustness consider-
ations make it optimal for monetary policy to condition on 
asset prices (housing prices in their setup).

(2019) studied the role of negative feedback 
policies in the housing market. There is pos-
itive feedback from speculation and negative 
feedback from housing construction. The 
equilibrium housing price is determined by:

(84) ​​ p​t​​ = ​  1 ____ 1 + r ​​(​​   p ​​ h,t+1​ 
e  ​ + ​   y ​ − c ​​   p ​​ i,t+1​ e  ​)​ + ​ν​t​​,​

where ​​​   p ​​ h,t+1​ 
e  ​​ is the average forecast made 

by the speculators, ​​​   p ​​ i,t+1​ e  ​​ the average fore-
cast by the constructors, ​r ​ (= 0.05)​​ is the 
interest rate, ​​   y ​​ is the mean housing rent, 
and ​​ν​t​​  ∼  N​(0, 1)​​ represents small demand 
or supply shocks. As can be seen from 
(84), the housing price will increase when 
the average price prediction ​​​   p ​​ h,t+1​ 

e  ​​ made 
by the speculators goes up and, because 
of the negative feedback, decrease when 
the average price prediction ​​​   p ​​ i,t+1​ e  ​​ by the 
constructors goes up. Therefore the hous-
ing market exhibits positive expectations 
feedback from the speculative investors, 
and negative expectation feedback from 
the constructors. The overall feedback 
strength is determined by the eigenvalue 
​λ  = ​ (1 − c)​ / ​(1 + r)​​. Bao and  Hommes 
(2019) consider three different treat-
ments: strong positive feedback with low 
housing supply elasticity (​c  =  0​; eigen-
value ​λ  =  0.95​), medium positive feed-
back with intermediate supply elasticity 
(​c  =  0.1​; eigenvalue ​λ  =  0.85​) and weak 
positive feedback with high supply elasticity 
(​c  =  0.25​; eigenvalue ​λ  =  0.71​). Figure 23 
shows the simulated housing prices by the 
HSM model against the experimental hous-
ing prices in the three treatments. The sim-
ulated prices fit the experimental data well. 
The fractions of the different forecasting 
heuristics show different patterns in the 
three different treatments. A typical market 
in treatment without housing construction 
and only speculation is dominated by the 
strong-trend rule, which leads to large bub-
bles and unstable price fluctuations. A typical 
market in the medium treatment with some 



211Hommes: Behavioral and Experimental Macroeconomics and Policy Analysis

housing construction is initially dominated 
by the strong-trend rule, but after the rever-
sal of the price trend the LAA rule increases 
its share and becomes dominating in later 
periods, which leads to persistent price oscil-
lations. Finally, in the treatment with larger 
housing supply the market is firstly domi-
nated by the LAA rule, but after period 30 
the adaptive rule becomes more popular 
toward the end of the experiment, which 
eventually leads to dampening of the oscil-
lations and convergence to the fundamental 

price. The HSM thus provides simple and 
intuitive explanations of this experiment. 
The large housing bubbles are explained 
by coordination on a strong trend-following 
rule; the oscillations in the medium treat-
ment are explained by coordination on an 
LAA rule, and the stable price behavior in 
the last treatment is explained by coordi-
nation on adaptive expectations. Negative 
feedback policies in the form of more hous-
ing construction thus prevent the strong 
trend-following strategy to survive and favor 
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stabilizing adaptive behavior. Policy changes 
thus affect the self-organization and learning 
process in the market in favor of stabilizing 
adaptive expectations in line with the Lucas 
critique.

Which behavioral models and which form 
of learning to use then for policy analysis? 
Parsimonious learning rules and simple fore-
casting heuristics are natural candidates to 
start with. The real economy is too complex 
to fully understand and agents use simple 
decision heuristics. This is nicely illustrated 
by the example of the dog and the Frisbee 
(Haldane 2012). It does not require a PhD in 
physics and perfect knowledge of Newton’s 
law of motion to catch a Frisbee. A dog can 
do the job by following a simple adaptive 
heuristic—run at a speed so that the angle 
of gaze to the Frisbee remains roughly con-
stant—and humans are likely to follow a 
similar heuristic when catching a Frisbee on 
the beach.32 Many simple models of learning 
have been developed in recent years where 
agents use simple rules, for example, an opti-
mal AR(1) rule,33 or choose from a number 

32 Haldane’s dog and the Frisbee example bears some 
analogy with Friedman’s famous “as if” hypothesis of a bil-
liard player making his shots as if he knew the complicated 
mathematical formulas that would give the optimum direc-
tions of travel, could estimate accurately by eye the angles, 
etc., describing the location of the balls, could make light-
ning calculations from the formulas, and could then make 
the balls travel in the direction indicated by the formulas 
(Friedman 1953). There are some important differences 
however. Friedman’s example applies to a one-shot game, 
where with perfect knowledge about the mathematical 
equations the billiard player plays as if he takes an optimal 
shot. Haldane’s dog and the Frisbee example corresponds 
to a complex evolving system—the Frisbee in the air—and 
how a simple adaptive heuristic—keeping the angle of 
gaze roughly constant—describes the adaptive behavior. 
Importantly, this adaptive heuristic does not assume per-
fect knowledge of the underlying laws of motion, but sim-
ply adapts to observations of the system.

33 Examples in which DSGE models have taken first 
steps into the research direction proposed here include 
Slobodyan and Wouters (2012b, a), who introduce adaptive 
learning of an AR(2) rule into the Smets–Wouters DSGE 
model, and Hommes et al. (2021), who consider the NK 
DSGE model where agents learn an optimal AR(1) fore-
casting rule for all endogenous variables. The adaptive 

of simple forecasting heuristics based upon 
their relative performance. These behavioral 
models fit well with empirical data and lab 
experiments. Future work should focus on 
parsimonious learning models and include 
almost self-fulfilling equilibria in the analysis. 
An empirical micro-foundation, using labo-
ratory experiments, survey data, and other 
micro decision data, should play a key role 
in developing behavioral agent-based macro 
models, stylized as well as computationally 
more advanced, for more realistic policy 
analysis in the near future.
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