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Introduction Complex Systems

Examples of Complex Systems
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Introduction Complex Systems

Some Characteristics of Complex Systems

interactions of particles/heterogeneous agents at micro level
create patterns and structure at aggregate level
(emergent macro behaviour); More is different
nonlinear and critical transitions:
small changes at micro-level may lead to large and irreversible
changes at macro level
complex economic systems: “the particles can think”
agents learn and adapt their behavior, thus changing the laws of
motion of the system
How to model (ir)rationality?
How to model expectations in a complex environment?
Behavioural Theory in this talk: learning of simple,
optimal heuristics in a complex, unknown environment

Cars Hommes Behavioral & Experimental Macro College de France, 2021 3 / 59



Introduction Complex Systems

This talk focuses on stylized ‘few types’ models

But large literature on detailed Agent-Based Models (ABMs)
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Key Feature Complex Systems: Critical Transitions
between Multiple Equilibria; Tipping points

state state

parameter parameter



Introduction Complex Systems

Plan of the Talk
Hommes, JEL 2020, forthcoming

Focus of the survey: boundedly rational expectations in stylized
complex systems.

Five behavioural take-aways
Complex/nonlinear systems exhibit critical transitions and
tipping points
Simple forecasting heuristics that make us smart

learning optimal homogeneous AR(1) rule
switching between heterogeneous anchor and adjustment rules

Empirical validation of expectations through laboratory macro
experiments
Policy insight: how to manage complex economic systems?
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Learning a simple AR(1) forecasting heuristic

Outline

1 Introduction Complex Systems

2 Learning a simple AR(1) forecasting heuristic

3 Laboratory Experiments on Expectations

4 Behavioral Heuristics Switching Model

5 GA model with smart heuristic

6 Policy insight: managing complex systems

7 Conclusions and Discussion
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Learning a simple AR(1) forecasting heuristic

Behavioral Learning Equilibrium (BLE)
Hommes and Zhu, JET 2014

simplest/parsimonious misspecification equilibrium
for each endogenous variable in the economy
perceived law of motion (PLM) ≡ AR1 process
6= actual law of motion (ALM)
consistency requirements: fixed point observable statistics

unconditional mean + autocorrelation of PLM ≡
unconditional mean + autocorrelation of ALM

simple learning mechanism for parameters through
sample autocorrelation learning to learn
the optimal AR(1) heuristic
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Learning a simple AR(1) forecasting heuristic

Simplest example: asset pricing model with AR(1)
driving dividends

1-D linear model driven by autocorrelated
shocks/fundamentals

pt: price
yt: driving dividends

 pt =
1

R

[
pet+1 + a+ ρyt

]
+ δt

yt = a+ ρyt−1 + εt,
(1)

δt, εt: i.i.d. noise

no noise case: δt ≡ 0
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Learning a simple AR(1) forecasting heuristic

Asset pricing model with linear AR(1) forecasts

Perceived law of motion (PLM) of agents:
AR(1) process

pt = α+ β(pt−1 − α) + vt

α is the mean; β is first-order autocorrelation
Actual law of motion (ALM):

 pt =
1

R

[
α+ β2(pt−1 − α) + a+ ρyt

]
+ δt

yt = a+ ρyt−1 + εt

(2)
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Learning a simple AR(1) forecasting heuristic

Rational Expectations Equilibrium

p∗t =
aR

(R− 1)(R− ρ)
+

ρ

R− ρ
yt. (3)

In special case when {yt} is i.i.d., i.e. a = ȳ and ρ = 0, then

p∗t =
a

R− 1
=

ȳ

R− 1

first order ACF under rational expectations:

Corr(p∗t , p
∗
t−1) = ρ
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Learning a simple AR(1) forecasting heuristic

Behavioral Learning Equilibrium (BLE)

Consistency requirements:
Mean and first order autocorrelation of price must satisfy

p̄ :=
α(1− β2) + ȳ

R− β2
= α,

F (β) :=
β2 +Rρ

ρβ2 +R
= β.

If 0 < ρ < 1 and no noise (δt ≡ 0) then there exists a unique
behavioural learning equilibrium (BLE) (α∗, β∗), given by

α∗ = ȳ
R−1 = p∗ (unbiased)

β∗ > ρ (persistence & volatility amplification)

no free parameters; optimal AR(1) rule
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Learning a simple AR(1) forecasting heuristic

Unique BLE in asset pricing model; near unit root
no noise case

(α∗, β∗) = (1.0, 0.997)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

α

p

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

β

F(β)

Figure: (a) α∗ where mean p̄ = α(1−β2)+ȳ
R−β2 intersects red diagonal α;

(b). β∗, where blue F (β) = β2+Rρ
ρβ2+R intersects red diagonal;

parameters R = 1.05, ρ = 0.9, a = 0.015.
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Learning a simple AR(1) forecasting heuristic

Sample Autocorrelation Learning (SAC-learning)

SAC-learning: Hommes and Sorger (1998)

αt =
1

t+ 1

t∑
i=0

pi, βt =

∑t−1
i=0(pi − αt)(pi+1 − αt)∑t

i=0(pi − αt)2

PLM under SAC-learning:

pt = αt−1 + βt−1(pt−1 − αt−1) + vt

ALM under SAC-learning

 pt =
1

R

[
αt−1 + β2

t−1(pt−1 − αt−1) + a+ ρyt
]
,

yt = a+ ρyt−1 + εt.
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Learning a simple AR(1) forecasting heuristic

unique BLE stable under SAC-learning

(α∗, β∗) = (1.0, 0.997)
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Figure: (a) α∗ where mean p̄ = α(1−β2)+ȳ
R−β2 intersects red diagonal α;

(b). β∗, where blue F (β) = β2+Rρ
ρβ2+R intersects red diagonal;

parameters R = 1.05, ρ = 0.9, a = 0.015.
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Learning a simple AR(1) forecasting heuristic

Simulation of SAC-learning
ρ = 0.9;, β∗ = 0.997

Learning to believe in near-unit root
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Figure: Time series of αt and βt under SAC learning.

Converging slowly to (unique) stable SCEE
(α∗, β∗) = (1.0, 0.997)
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Learning a simple AR(1) forecasting heuristic

Behavioral Learning Equilibrium
ρ = 0.9;, β∗ = 0.997 (no noise case)
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Figure: Time series of fundamental prices (red) and market prices (blue).

Market prices fluctuate around fundamental prices
Persistence & volatility amplification
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Learning a simple AR(1) forecasting heuristic

Persistence & Volatility Amplification in Behavioral
Learning Equilibrium
ρ = 0.9;, β∗ = 0.997 (no noise case)
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Figure: (a) SCEE β∗ as a function of ρ;
(b) ratio of variance of market prices and variance of RE fundamental prices
as a function of ρ.
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Learning a simple AR(1) forecasting heuristic

Behavioral Equilibria with low and high persistence
co-existence of stable equilibria β∗ = 0.3066 and β∗ = 0.9961 (with noise δt )
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Figure: Convergence to low or high persistence equilibria β∗

depending on initial states
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Learning a simple AR(1) forecasting heuristic

Critical Transitions of Equilibria β∗ depending on ρ
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Learning a simple AR(1) forecasting heuristic

High persistence BLE matches US inflation
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Figure: (a). Time series of inflation at stable SCEE (α∗, β∗) = (0.02, 0.995);
(b). Empirical time series of inflation: Tallman (Federal Reserve Bank of
Atlanta, ECONOMIC REVIEW, Third Quarter 2003).
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Learning a simple AR(1) forecasting heuristic

Recent and ongoing work
Hommes, Mavromatis, Özden and Zhu, (2020)

application and estimation of BLE in 3-Eq. NK-model
optimal AR(1) rules for both inflation and output
estimation of BLE in Smets-Wouters DSGE model
better fit and improved out-of-sample forecasting
Relevance: simple behavioral learning equilibria are
important, because coordination of expectations may be more
likely;
(different propagation mechanism of shocks than under RE)
future extensions: optimal AR(2) rule

pet = α+ β1pt−1 + β2(pt−1 − pt−2)

Is there trend-extrapolation and mean-reversion?
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Laboratory Experiments on Expectations

Why Macro Experiments?

If a theory does not work in the lab, why would it work in reality?
A macro experiment studies group behaviour in a (simple)
complex system in the lab, where aggregate behaviour depends
on all individual interactions and decisions
A learning-to-forecast experiment studies individual
expectations and aggregate macro behaviour in simple
expectations feedback systems
Main question: do agents coordinate on RE equilibrium or on
behavioural learning outcome?
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Laboratory Experiments on Expectations

Lucas, JPE, 1986 on Learning and Experiments

“Recent theoretical work is making it increasingly clear that the multiplicity
of equilibria ... can arise in a wide variety of situations involving sequential
trading, in competitive as well as finite agent games. All but a few of these
equilibria are, I believe, behaviorally uninteresting: They do not describe
behavior that collections of adaptively behaving people would ever hit
on. I think an appropriate stability theory can be useful in weeding out
these uninteresting equilibria ... But to be useful, stability theory must be
more than simply a fancy way of saying that one does not want to think
about certain equilibria. I prefer to view it as an experimentally testable
hypothesis, as a special instance of the adaptive laws that we believe govern
all human behavior.”
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Laboratory Experiments on Expectations

Heterogeneous Expectations & Deviations from
Rationality
Muth (1961) [emphasis added]

Allowing for cross-sectional differences in expectations is a simple matter,
because their aggregate affect is negligible as long as the deviation from
the rational forecast for an individual firm is not strongly correlated with
those of the others. Modifications are necessary only if the correlation of
the errors is large and depends systematically on other explanatory
variables.

key issues:

are individual expectations coordinated?

if so, do individuals coordinate on a rational or a
boundedly rational aggregate outcome?

This should be tested empirically and in laboratory experiments
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Laboratory Experiments on Expectations

Positive versus Negative Feedback Experiments
Heemeijer et al. (JEDC 2009); Bao et al. (JEDC 2012)

negative feedback (strategic substitute environment)

pt = 60− 20

21
[

6∑
h=1

1

6
peht]− 60] + εt

positive feedback (strategic complementarity environment)

pt = 60 +
20

21
[

6∑
h=1

1

6
peht − 60] + εt

common feature: same RE equilibrium 60

only difference: sign in the slope of linear map +0.95 vs −0.95
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Laboratory Experiments on Expectations

Feedback Mappings in LtFE

negative feedback positive feedback
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pt = 60− 20
21

(
pet − 60

)
+ εt pt = 60 + 20

21

(
pet − 60

)
+ εt

Concern with macroeconomic theory:
full information rational expectations ignores almost self-fulfilling
equilibria in (strong) positive feedback systems
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Laboratory Experiments on Expectations

Negative vs. Positive Feedback Experiments
Prices, Individual Predictions and Errors; (Heemeijer et al., JEDC 2009)
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coordination on almost self-fulfilling equilibria
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Laboratory Experiments on Expectations

Negative/Positive Feedback Experiment: Session 1
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Laboratory Experiments on Expectations

Prices in Experiments with Positive/Negative Feedback
(7/6 groups)

negative feedback positive feedback
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Laboratory Experiments on Expectations

Positive vs Negative Feedback; Small Shocks
Heuristics Switching Model Simulations

prices strategy frequencies
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positive feedback: trend-followers amplify fluctuations
policy implication: add negative feedback to the system to stabilize
trend-following behavior
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Laboratory Experiments on Expectations

Positive vs Negative Feedback; Large Shocks
Bao, Hommes, Sonnemans, Tuinstra, JEDC 2012

positive FB (8 groups) negative FB (8 groups)
coordination failures coordination on RE
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Laboratory Experiments on Expectations

Positive/Negative Feedback; Large Shocks

distance to RE price degree of heterogeneity
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positive feedback: quick coordination on ‘wrong’ price
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Behavioral Heuristics Switching Model

Outline
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Behavioral Heuristics Switching Model

Heuristics Switching Model
Brock and Hommes, ECMA 1997; Anufriev and Hommes, AEJ:Micro 2012

agents choose from a number of simple forecasting heuristics

performance based reinforcement learning:
agents evaluate the performances of all heuristics, and tend to
switch to more successful rules;

fractions of belief types are gradually updated in each period:
(discrete choice model with asynchronous updating)

nht = δnh,t−1 + (1− δ)e
βUh,t−1

Zt−1

where Zt−1 is normalization factor.
Uht fitness measure (e.g. utility, forecasting errors, etc.)
β is intensity of choice.
δ asynchronous updating
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Behavioral Heuristics Switching Model

Heuristic Switching Model: four forecasting heuristics
Anufriev and Hommes, AEJ:Micro 2012

adaptive expectations rule, [w = 0.65]

ADA pe1,t+1 = 0.65 pt−1 + 0.35 pe1,t

weak trend-following rule, [γ = 0.4]

WTR pe2,t+1 = pt−1 + 0.4 (pt−1 − pt−2)

strong trend-following rule, [γ = 1.3]

STR pe3,t+1 = pt−1 + 1.3 (pt−1 − pt−2)

anchoring and adjustment heuristic with learnable anchor

LAA pe4,t+1 = 1
2

(
pavt−1 + pt−1

)
+ (pt−1 − pt−2)

Problem: but where do these 4 rules and their coefficients come from?
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Behavioral Heuristics Switching Model

Positive vs Negative Feedback; Large Shocks
Heuristics Switching Model Simulations

prices strategy frequencies
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positive feedback: trend-followers amplify fluctuations
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GA model with smart heuristic

Outline

1 Introduction Complex Systems

2 Learning a simple AR(1) forecasting heuristic

3 Laboratory Experiments on Expectations

4 Behavioral Heuristics Switching Model

5 GA model with smart heuristic

6 Policy insight: managing complex systems

7 Conclusions and Discussion

Cars Hommes Behavioral & Experimental Macro College de France, 2021 38 / 59



GA model with smart heuristic

Learning First Order Forecasting Heuristic
Simple heuristics that make us smart (Anufriev et al., 2019)

Agents learn two parameters of linear heuristic?
Agent i uses a first order forecasting heuristic h to predict pt:

anchor and adjustment rule

pei,h,t = αi,h,tpt−1 + (1− αi,h,t)pei,t−1 + βi,h,t(pt−1 − pt−2).

The rule h requires two parameters: an anchor αi,h,t and a trend
βi,h,t

General constraint: α ∈ [0, 1], β ∈ [−1.1, 1.1].
The rule generalizes popular HSM heuristics: naive, adaptive
expectations and trend extrapolation.
RE: α = 0, β = 0, pei,t−1 = pf .
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GA model with smart heuristic

Learning by GA’s through simple heuristics
Simple heuristics that make us smart (Anufriev et al., 2019)

Every agent has a list of H = 20 different heuristics (α, β).
When agent i learns the last realized price pt−1, she tries to
re-optimize the rules with GA evolutionary operators:

1 sample (with replacement) 20 new heuristics from the old depending
on their hypothetical forecasting performance (reproduction);
(survival of the fittest)

2 mutation: with some small probability “mutate” them (modify
(α, β) of each heuristic);

3 election: compare the new and the old heuristics in terms of their
hypothetical forecasting performance – pick the better ones.

Process mimics natural selection: worse forecasting heuristics are
likely to be replaced by better; inefficient experimentation screened out.

Remark: agents learn independently.
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GA model with smart heuristic

Lab experiment (top) and 65-period simulations (bottom)
experimental data Bao et al. (2012)
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GA model with smart heuristic

65-period ahead Monte Carlo simulations (1000)
experimental data Bao et al. (2012)
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GA model with smart heuristic

Anchor αt (top) and trend βt (bottom) parameters
experimental data Bao et al. (2012)
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GA model with smart heuristic

Average Heuristics

Under negative feedback agents learn to use adaptive
expectations:

pei,t ≈ 0.5pt−1 + 0.5pei,t−1

Under positive feedback agents learn to become trend-follower:

pei,t ≈ 0.95pt−1 + 0.05pei,t−1 + 0.9(pt−1 − pt−2)
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Policy insight: managing complex systems
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Policy insight: managing complex systems

What happens without fundamental robot traders?
Hommes, Sonnemans, Tuinstra, vd Velden, JEBO 2008; Bao et al, 2016
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Policy insight: managing complex systems

Coordination on bubbles in even larger groups
IBSEN Horizon 2020; Hommes, Kopanyi-Peuker, Sonnemans, 2021
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Policy insight: managing complex systems

Housing market experiment with positive versus
negative feedback
Bao and Hommes, 2019

pt =
1

1 + r
[(1− c)pet+1 + y] + νt, λ =

1− c
1 + r

Behavioural intuition: an increase of housing supply (parameter c)
adds negative feedback to the system, weakening the overall
positive feedback (through speculators) making the system more
stable
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Policy insight: managing complex systems

Managing Positive Feedback through Negative FB Policy
Housing Market Experiments, Bao and Hommes, 2019
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large bubble
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Policy insight: managing complex systems

Simulated 1-period ahead forecasts HSM

strong positive FB medium positive FB weak positive FB
λ = 0.95 λ = 0.85 λ = 0.7
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Policy insight: managing complex systems

Average simulated 1-period ahead forecasts HSM

strong positive FB medium positive FB weak positive FB
λ = 0.95 λ = 0.85 λ = 0.7
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Policy Implication: negative FB policies that weaken the overall
positive feedback may stabilize markets by preventing coordination on
trend-following behaviour
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Conclusions and Discussion

Five Behavioral Take-aways

complex systems (non-linearity, heterogeneity, etc.) exhibit
critical transitions between multiple equilibria
adaptive learning of optimal AR(1) rule generates near-unit root
and excess volatility and persistence amplification
parsimonious heterogeneous expectations switching model
based on relative performance
heuristics switching between anchor and adjustment rules fits
experimental & empirical data well
‘negative feedback’ policies can affect the self-organisation process,
prevent coordination on trend-following behaviour and
stabilize complex markets
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Conclusions and Discussion

Open Questions

optimal AR(1) versus optimal AR(2)
short-run trend-extrapolation versus average mean-reversion
Which data are better explained by learning AR(2)?
homogeneous versus heterogeneous expectations
homogeneous AR(2) versus heterogeneous switching
between mean-reverting rule and trend-extrapolating rule
Are bubbles and crashes better explained by heterogeneous
agents model?
optimal policy under simple behavioral forecasting heuristics

Thank you very much!
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Conclusions and Discussion

Survey of Professional Forecasters: bimodal distribution
Mankiw, Reis and Wolfers, 2003
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Conclusions and Discussion

NK model with fundamentalists versus naive
Cornea-Madeira, Hommes and Massaro, JBES 2017

Figure: Actual vs. predicted inflation
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Conclusions and Discussion

NK model with fundamentalists versus naive
Cornea-Madeira, Hommes and Massaro, JBES 2017

Evolution of weight of fundamentalists nf,t

on average more back-
ward looking agents

Mean 0.353
Median 0.276
Maximum 0.924
Minimum 0.019
Std. Dev. 0.282
Skewness 0.418
Kurtosis 1.720
Auto-corr. Q(-1) 0.887

Top panel: Time series of the fraction of fundamentalists nf,t

Second panel: Distance between actual and fundamental inflation
Third panel: Distance between inflation and naive forecast
Bottom: Scatter plot nf,t vs relative forecast error naive rule
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Conclusions and Discussion

NK model with fundamentalists versus naive expectations
estimated on survey data professional forecasters
Cornea-Madeira, Hommes and Massaro, JBES 2017
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Figure: SPF forecasts vs. HSM expectations and estimated structural breaks
with fractions of fundamentalists for inflation and SPF. SPF switch slower
than inflation expectations
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Conclusions and Discussion

Switching model estimated on housing markets
Bolt et al., JEDC 2019
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Figure: Top panels: relative house price deviations Xt from fundamentals;
Middle panels: time-varying fractions of mean-reverting fundamentalists;
Bottom: estimated market sentiment as time-varying AR(1) coefficient.
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