Three Gases, O_2 , NO and H_2S

Meet in the Mitochondria

James P. Collman

Department of Chemistry Stanford University Stanford, California 94305

Acknowledgements

Abhishek Dey Spectroscopy, Electrochemistry, Mechanism

Richard Decreau Synthesis

Somdatta Ghosh Dey Spectroscopy, Kinetics, Mechanism

Neal Devaraj E-chem, Surface chemistry

Ying Yang Synthesis

Roman Boulatov

Roman Boulatov E-chem, Mechanism

Christopher Chidsey Edward Solomon E-chem, Surface chemistry EPR, Raman Spectroscopy

Multielectron Redox Processes

photosynthesis $H_2O \rightarrow Oxygen$

Oxygen \rightarrow H₂O

fuel cells

Oxygen \rightarrow H₂O

ammonia production $N_2 \rightarrow NH_3$

Redox Enzymes

- Often possess multiple metal centers
- Metals play multiple roles
 - 1. Bind substrate
 - 2. Increase reactivity of substrate
 - 3. Prevent side reaction
 - 4. Provide electrons quickly
- Couple a **multielectron** process to several **single** electron processes

Cytochrome c Oxidase (CcO)

A Metabolic Overview

Schematic View of CcO in the Mitochondrial Inner Membrane

Schematic Diagram of Cytochrome c Oxidase

Cytochrome c Oxidase Couples Diffusional *1e* Oxidation of Ferrocytochrome c to Rapid *4e* Reduction of O₂

 $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$

Catalytic heme/Cu site

Reduction level	Cu _A	Fea	Fe _{a3}
Oxidized:	+2	+3	+3
1e reduced:	mixed		+3
2e reduced:	+2	+3	+2
3e reduced:	mixed		+2
4e reduced:	+1	+2	+2

 $\begin{array}{c} Cu_{B} \\ +2 \\ +2 \end{array} \right\} \text{ Aerobically stable} \\ \begin{array}{c} +1 \\ +1 \\ +1 \\ +1 \end{array} \right\} \text{ Reduce } O_{2} \text{ by 4e} \end{array}$

Our Complexes Reproduce Key Structural Features of the Heme a_3/Cu_B Site

R = Pr, R' = Me

The Challenge of Using Oxygen

Organisms needed to develop a catalyst that can take oxygen to water without releasing reactive oxygen species

Difference in Electron Transfer Rates

CcO can accept electrons 1 at a time from cytochrome c slowly (1 every 5-20 msec)

Cytochrome c limits the turnover frequency

In contrast, the active site can reduce oxygen by four electrons in less than 200μ sec

CcO Active Site

Redox active groups

Iron: 2 electrons Copper: 1 electron Tyrosine: 1 electron

What are the roles of the redox centers?

Spectroscopic Evidence for a Heme-Superoxide/Cu(I) Intermediate

Collman, J. P.; Sunderland, C. J.; Berg, K.; Vance, M.; Solomon, E. I. J. Am. Chem. Soc. 2003, 125, 2649

Single Turnover Studies

Model reacts with oxygen in a manner similar to that of the native enzyme (reduces oxygen by four electrons)

Demonstrates that the phenol can donate an electron/proton to bound oxygen

Collman, J. P.; Decréau, R. A.; Yan, Y.-L.; Yoon, J.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 5794

Intramolecular Reaction in a Heme-Superoxide/Cu(I)

Collaboration with Ed. Solomon

Advantages of SAMs

- 1. Well-defined and "easily" characterized surface (IR, XPS, etc)
- 2. Isolation of redox molecules using diluents
- 3. Control over the rate of electron transfer
- 4. Monolayers passivate bare electrode (barrier)

Electrode

Post-coupling on Monolayers

Superior to Direct Absorption

Past methods suffer from

- 1. Incomplete coupling
- 2. Complexity
- 3. Harsh Conditions

Required a better method

"Click" Chemistry

Syntheses of Cytochrome c Oxidase Models

 $R_1 = CF_3, ----H : R_2 = H, Pr$

Collman, J. P.; Broring, M.; Fu, L.; Rapta, M.; Schwenninger, R.; Straumanis, A. J. Org. Chem. 1998, 63, 8082
Collman, J. P.; Broring, M.; Fu, L.; Rapta, M.; Schwenninger, R. J. Org. Chem., 1998, 63, 8084
Collman, J. P.; Decréau, R.A.; Zhang, C. J. Org. Chem., 2004, 69, 3546.
Decréau, R. A.; Collman, J. P.; Yang, Y.; Yan, Y.-L.; Devaraj, N. K. J. Org. Chem. 2007, 72, 2794

Syntheses of Cytochrome c Oxidase Models

 $R_1 = CF_3, ----H \in R_2 = H, Pr$

Collman, J. P.; Broring, M.; Fu, L.; Rapta, M.; Schwenninger, R. J. Org. Chem., **1998**, 63, 8084 Collman, J. P.; Decréau, R.A.; Zhang, C. J. Org. Chem., **2004**, 69, 3546. Decréau, R. A.; Collman, J. P.; Yang, Y.; Yan, Y.-L.; Devaraj, N. K. J. Org. Chem. **2007**, 72, 2794

Models of Cytochrome c Oxidase Bearing a Phenol (Tyr 244 mimic)

wash with acid to yield iron only model

Collman, J. P.; Devaraj, N. K.; Decréau, R. A.; Yang, Y.; Yan, Y.; Ebina, W.; Eberspacher, T. A.; Chidsey, C. E. D., *Science*, **2007**, *315*, 1565

CcO Mimics on SAMs

Slow SAM *k*⁰ = 6 sec⁻¹ Fast SAM *k*⁰ > 10⁴sec⁻¹ rapid electron transfer

sluggish electron transfer

pH 7 air-saturated 100mV vs. NHE use platinum ring to detect peroxide (PROS)

Collman, J. P.; Devaraj, N. K.; Decréau, R. A.; Yang, Y.; Yan, Y.; Ebina, W.; Eberspacher, T. A.; Chidsey, C. E. D., *J. Phys. Chem. B*, **2006**, *110*, 15955

Detection of side reactions: RRDE

If the catalyst produces partially reduced oxygen species, they can be detected using a rotating ring disc electrode:

The ratio of the working electrode current (I_{disc}) to the detector electrode current (I_{ring}) allows one to estimate the proportion of the 4-electron pathway at any potential of the working electrode (how the rate of the redox steps effects the efficiency of the catalysis)

Partially Reduced Oxygen Leakage

Collman, J. P.; Devaraj, N. K.; Decréau, R. A.; Yang, Y.; Yan, Y.; Ebina, W.; Eberspacher, T. A.; Chidsey, C. E. D., *Science*, **2007**, *315*, 1565

A Functional Model of CcO

Model reproduces structure of the CcO active site: active site contains four electron equivalents

Role of phenol during turnover is to lower release of partially reduced species under *rate-limiting electron flux*

~96% selectivity under rate-limiting electron-flux

Not Perfect: Why?

Redox Cooperativity

 in enzyme Fe/Cu are either both reduced or both oxidized. Short circuiting (Fe(II)Cu(II)) prevented

- Heterogeneity in the Film?
 - damaged catalyst? defects?
- Hydrolysis of the superoxide complex?

Improving Selectivity: toward >99%

Hydrophobic burying

Preliminary results demonstrate that this can reduce PROS leakage by a factor of 2-3

Raising the pH also can lower PROS

Catalytic Reduction of O₂ by Cytochrome c using the Functional CcO Model

 $\begin{array}{r} 2 \text{ mol\%} \\ \hline CcO \text{ model} \\ \hline \hline \end{array} \quad 4Cytc^{III} + 2H_2O \end{array}$

50:50 aqueous buffer, CH₃CN solvent

Collman, J. P.; Ghosh, S.; Dey, A.; Decreau, R. A.; Yang, Y.J. Am. Chem. Soc. 2009, 131, 5034.

How Does CcO Tolerate NO?

Nitric Oxide is beneficial to CcO: Lessons Learned from "Functional" Models

Nitric Oxide (NO)

A critical regulator and a unique messenger molecule Molecule of the year 1992 Nobel Prize in Chemistry 1998 Over 3000 publications a year

> Collman, J. P.; Dey, A.; Decréau, R. A.; Yang, Y.; Hosseini, A.; Solomon, E. I. S.; Eberspacher, T. A. *Proc. Natl. Acad. Sci. U. S. A.*, **2008**, *105*, 9892-9896

Nitric Oxide: Potent Inhibitor of CcO

Mitochondrial NO synthase (mNOS) \rightarrow produces a steady flux of NO

Involved in blood vessel modulation, neurotransmission, respiratory regulation

A stable but reactive free-radical, readily diffusible (50 μ s⁻¹ in biological systems)

 $[NO]/[O_2] = 0.001$ in mitochondria

NO is a competitive inhibitor of CcO (K₁ = 0.27 μ M)

Ferrous hemes strongly bind NO: Fe^{II} + NO \rightarrow Fe-NO K_{eq} = 10⁹ The dioxygen affinity is much lower: Fe^{II} + O₂ \rightarrow Fe-O₂ K_{eq} = 0.1

Comparable k_{on} rates for both 10⁷⁻⁸ M⁻¹s⁻¹

There's a conundrum: CcO should be permanently inhibited by NO in mitochondria

Ford, P. C.; Lorkovic, I. M. *Chem. Rev.* **2002**, *102*, 993 Stamler, J. S.; Singel, D. J.; Loscalzo, J. *Science*, **1992**, *258*, 1898

Nitrosyl Adducts: Spectroscopy FTIR/EPR

Reactivity of the Functional CcO Model with NO and O₂

 $2 \rightarrow Fe^{II}$ "picket fence" porphyrin with covalently attached imidazole tail and Cu^{I} in the "distal pocket" $2-NO \rightarrow NO$ adduct of 2; Addition of O₂ to 2-NO leads to 3 which is an Fe^{II} "picket fence" porphyrin with covalently attached imidazole tail and Cu^{II} in the "distal pocket"

Recovery from NO Inhibition by the Functional CcO Model

peroxynitrite?

NO₃*

NO Generated Near CcO by NOS can Replace CO and CN⁻

1-CO \rightarrow CO bound Fe^{II} "picket fence" porphyrin with covalently attached imidazole tail

1-CN → CN⁻ bound Fe^{II} "picket fence" porphyrin with covalently attached imidazole tail

4 → Results from NO addition to both 1-CN and 1-CO which is NO bound Fe^{II} "picket fence" porphyrin with covalently attached imidazole tail i.e. 1

A Proposed NO Assisted Defense Mechanism in CcO

Need NO \rightarrow Provided by mNOS which is present in mitochondria Need O₂ \rightarrow Substrate for CcO which is present in mitochondria Need Electrons to reduce Cu_B provided by the electron transfer chain

Amyl Nitrites: A Surrogate NO source for CcO

 $2-CN \qquad AmONO = 2-O^{NO} \qquad 3-NO$

2

A third gas, Hydrogen Sulfide (H₂S) may be encountered in the mitochondria

- H₂S is produced in mammals (including humans) from cysteine by two enzymes
- At 600 ppm H₂S is lethal
- At 80 ppm H₂S slows respiration and produces hypothermia inducing a state resembling hibernation. This is reversible.
- H_2S is said to reversibly inhibit CcO

Key Reference: E. Blackstone, M. Morrison, and M. B. Roth, *Science*, 2005, *308*, 518.

H₂S Reversibly Binds to the Reduced Catalyst

Evidence: UV-Vis, Mass spectrometry, ¹H NMR

Estimated binding constants (K) = 0.5, 0.1 (much lower than O_2 binding)

In submission

H₂S Reversibly Inhibits the Electrochemical Catalytic Reduction of O₂

* Comparable amounts to those reported in literature to affect mice In submission

H₂S is a Potent Two-Electron Reducing Agent

H₂S also reduces Cytochrome c

 $Cytc^{III} + H_2S \rightarrow Cytc^{II} + (S)$

These results indicate that at low H_2S and moderate O_2 concentration, our model will catalytically reduce O_2 to H_2O In submission