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Multielectron Redox Processes
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Redox Enzymes
• Often possess multiple metal centers
• Metals play multiple roles

1. Bind substrate
2. Increase reactivity of substrate
3. Prevent side reaction
4. Provide electrons quickly

• Couple a multielectron process to several single 
electron processes
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Cytochrome c Oxidase (CcO)
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A Metabolic Overview
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Schematic View of CcO in the Mitochondrial Inner Membrane
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Schematic Diagram of Cytochrome c Oxidase
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Heme a3

CuB

Cytochrome c

Cytochrome c 
oxidase

Mitochondrial 
membrane

Catalytic heme/Cu site

Reduction level   CuA Fea Fea3 CuB
Oxidized: +2 +3 +3 +2
1e reduced: mixed +3 +2
2e reduced: +2 +3 +2 +1
3e reduced: mixed +2 +1
4e reduced: +1 +2 +2 +1

Aerobically stable

Reduce O2 by 4e

N O

Fe

imidazole

imidazole

phenol

Cytochrome c Oxidase Couples Diffusional 1e Oxidation 
of Ferrocytochrome c to Rapid 4e Reduction of O2

O2 + 4H+ + 4e- → 2 H2 O



Trisimidazole coordination 
sphere of Cu

FeCu distance

proximal imidazole ligand

R = H, R’ = Me
R = Pr, R’ = H         
R = Pr, R’ = Me

Our Complexes Reproduce Key Structural 
Features of the Heme a3 /CuB Site

Fe



The Challenge of Using Oxygen

Oxygen

Superoxide

Peroxide

Hydroxyl radicals
(very reactive)

Water

Organisms needed to develop a catalyst that can take oxygen to water 
without releasing reactive oxygen species

Toxic Partially Reduced Oxygen Species 
(PROS)

1 electron

3 electrons

2 electrons

4 electrons

Energy

Electrons



Difference in Electron Transfer Rates

CcO can accept electrons 1 at a time from cytochrome c  
slowly (1 every 5-20 msec)

Cytochrome c limits the turnover frequency

FeIV
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CuII-OH
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●
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In contrast, the active site can reduce oxygen by four 
electrons in less than 200μsec

Cytochrome c oxidase

Fe2+cyt c

Fe3+
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CcO Active Site

Redox active groups

Iron: 2 electrons
Copper: 1 electron
Tyrosine: 1 electron

What are the roles of 
the redox centers?

Fe



Collman, J. P. ; Sunderland, C. J.; Berg, K.; Vance, M.; Solomon, E. I.  J. Am. Chem. Soc.  2003, 125, 2649
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Single Turnover Studies
Model reacts with oxygen in a manner similar
to that of the native enzyme (reduces oxygen
by four electrons)

Demonstrates that the phenol can
donate an electron/proton to bound oxygen

Collman, J. P.; Decréau, R. A.; Yan, Y.-L.; Yoon, J.; Solomon, E. I. J. Am. Chem. Soc. 2007, 129, 5794



Intramolecular Reaction in a Heme-Superoxide/Cu(I)

Reactivity:

PPh3 O

Ferryloxo (4) (-40°C)Superoxo (oxy-2) (-80°C) CuII/Tyrosyl Radical (4) (-40°C)

PPh3 >50%
4

Collaboration with Ed. Solomon
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Advantages of SAMs
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1. Well-defined and “easily” characterized surface (IR, XPS, etc)

2. Isolation of redox molecules using diluents

3. Control over the rate of electron transfer

4. Monolayers passivate bare electrode (barrier)

Clean electron transfer from the 
electrode through an organic 

bridge to a redox site

e-

Active 
sitee-

Redox EnzymeMonolayer of Redox Molecules

Electrode



Post-coupling on Monolayers

SS SS SS SS

X
Y
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Past methods suffer from

1. Incomplete coupling
2. Complexity
3. Harsh Conditions

Superior to 
Direct Absorption

Required a better method



“Click” Chemistry
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High Yielding

Extremely Selective

Room Temperature

Works Best in Aqueous 
Systems!

Catalyzed

Cu(I) catalyst

Copper(I) catalyzed azide-alkyne
cycloaddition (Sharpless, Meldal) 



Syntheses of Cytochrome c Oxidase Models



Syntheses of Cytochrome c Oxidase Models



Models of Cytochrome c Oxidase 
Bearing a Phenol (Tyr 244 mimic)

Collman, J. P.; Devaraj, N. K.; Decréau, R. A.; Yang, Y.; Yan, Y.; 
Ebina, W.; Eberspacher, T. A.; Chidsey, C. E. D., Science, 2007, 315, 1565

wash with acid to yield iron only model



CcO Mimics on SAMs

Fast SAM Slow SAM 
k0 = 6 sec-1 k0 > 104sec-1

Collman, J. P.; Devaraj, N. K.; Decréau, R. A.; Yang, Y.; Yan, Y.; Ebina, W.; 
Eberspacher, T. A.; Chidsey, C. E. D.,  J. Phys. Chem. B, 2006, 110, 15955

sluggish electron transfer rapid electron transfer
pH 7 air-saturated 100mV vs. NHE
use platinum ring to detect peroxide (PROS)



Detection of side reactions: RRDE
If the catalyst produces partially reduced oxygen species, they can be
detected using a rotating ring disc electrode:

+ 4H+ + 4e-disc

Catalyst + O2

2H2 O

+ H+ + e-
HO2

H2 O2

+ 2H+ + 2e-

ring
H2 O2 O2 + 2H+ + 2e-

working 
electrode

(disc)

insulator

O2 , H+
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Detector
Electrode
(Pt ring)

Working
Electrode

Detector
Electrode
(Pt ring)

e-

O2 , H+H2 O2 , H2 O O2 , H+ H2 O, H2 O2

e-

The ratio of the working electrode current (Idisc ) to the detector electrode current (Iring )
allows one to estimate the proportion of the 4-electron pathway at any potential of the 
working electrode (how the rate of the redox steps effects the efficiency of the catalysis)

detector electrode (Pt ring)



Partially Reduced Oxygen Leakage
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Collman, J. P.; Devaraj, N. K.; Decréau, R. A.; Yang, Y.; Yan, Y.; 
Ebina, W.; Eberspacher, T. A.; Chidsey, C. E. D., Science, 2007, 315, 1565



A Functional Model of CcO

Model reproduces structure of the CcO active site: 
active site contains four electron equivalents

Role of phenol during turnover is to lower release of 
partially reduced species under rate-limiting electron flux

~96% selectivity under rate-limiting electron-flux



Not Perfect: Why?
• Redox Cooperativity

– in enzyme Fe/Cu are either both reduced or both 
oxidized. Short circuiting (Fe(II)Cu(II)) prevented

• Heterogeneity in the Film?
– damaged catalyst? defects?

• Hydrolysis of the superoxide complex?

FeIII

O

His

FeIII

His

HO2

O

k (sec-1) > 1
t1/2 < 1 sec
pH 8.5 25oC

Electrophile (proton)

Water

Typical oxyheme 2HO2 +H2O2 O2



Improving Selectivity: toward >99%

Hydrophobic burying

Preliminary results 
demonstrate that this 
can reduce PROS
leakage by a factor of 2-3

Raising the pH also can
lower PROS



Catalytic Reduction of O2 by Cytochrome c 
using the Functional CcO Model

2 mol%
CcO model4CytcII (horse heart) + O2 + 4H+ 4CytcIII + 2H2 O

50:50 aqueous buffer, CH3 CN solvent

Collman, J. P.; Ghosh, S.; Dey, A.; Decreau, R. A.; Yang, Y.J. Am. Chem. Soc. 2009, 131, 5034.
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How Does CcO Tolerate NO?

Nitric Oxide is beneficial to CcO:

Lessons Learned from 

“Functional” Models

Nitric Oxide (NO)
A critical regulator and a unique messenger molecule
Molecule of the year 1992
Nobel Prize in Chemistry 1998
Over 3000 publications a year

Collman, J. P.; Dey, A.; Decréau, R. A.; Yang, Y.; Hosseini, A.; Solomon, E. I. S.; 
Eberspacher, T. A.   Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 9892-9896



Mitochondrial NO synthase (mNOS) produces a steady flux of NO

Involved in blood vessel modulation, neurotransmission, respiratory regulation

A stable but reactive free-radical, readily diffusible (50 μs-1 in biological systems)

[NO]/[O2 ] = 0.001 in mitochondria

NO is a competitive inhibitor of CcO (KI = 0.27 μM)

Ferrous hemes strongly bind NO: FeII + NO Fe-NO    Keq = 109

The dioxygen affinity is much lower: FeII + O2 Fe-O2 Keq = 0.1

Comparable kon rates for both 107-8 M-1s-1

There’s a conundrum: 
CcO should be permanently inhibited by NO in mitochondria

Ford, P. C.; Lorkovic, I. M. Chem. Rev. 2002, 102, 993
Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science, 1992, 258, 1898

Nitric Oxide: Potent Inhibitor of CcO
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Nitrosyl Adducts: Spectroscopy FTIR/EPR
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FTIR indicates νN-O at 1660 cm-1

(confirmed by N15 isotope shift)
EPR ligand super-hyperfines show both 

NO and Imidazole are coordinated 

NO adduct stable in air
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1) Loss of NO signal
2) New Cu2+ signal
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Reactivity of the Functional CcO Model with NO and O2

2 FeII “picket fence” porphyrin with covalently attached imidazole tail and CuI in the “distal pocket”
2-NO NO adduct of 2; Addition of O2 to 2-NO leads to 3 which is an FeII “picket fence” porphyrin with covalently attached 
imidazole tail and CuII in the “distal pocket”

Uv-Vis: 
2-NO 3
Soret 425nm 428 nm
Q-band  551 nm 536 nm

CuII hyperfines

FeNO signal



Proposed Mechanism

Recovery from NO Inhibition by the Functional CcO Model

425nm, 548nm 430nm, 537nm428nm, 536nm
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Silent. 4 has a characteristic 
FeNO S=1/2 EPR

4 (1-CN+NO)

1-CO CO bound FeII “picket fence” porphyrin with covalently attached imidazole tail
1-CN CN- bound FeII “picket fence” porphyrin with covalently attached imidazole tail
4 Results from NO addition to both 1-CN and 1-CO which is NO bound FeII “picket fence” porphyrin with covalently attached imidazole tail i.e. 1



2-CO 2-NO

A Proposed NO Assisted Defense Mechanism in CcO

NO replacement of CO/CN- Recovery from NO inhibition by CcO

Need NO Provided by mNOS which is present in mitochondria
Need O2 Substrate for CcO which is present in mitochondria
Need Electrons to reduce CuB provided by the electron transfer chain
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Amyl Nitrites: A Surrogate NO source for CcO

Amyl Nitrite: AmONO

2 2-CN 3-NO

2-CN CN- bound FeII “picket fence” porphyrin with covalently attached imidazole tail and CuI in the “distal pocket”
3-NO NO adduct of 3 which is FeII “picket fence” porphyrin with covalently attached imidazole tail and CuII in the 
“distal pocket”

Proposed Mechanism

CuII hyperfines

FeNO signal

3-NO
1-NO



• H2 S is produced in mammals (including humans) 
from cysteine by two enzymes 

• At 600 ppm H2 S is lethal 

• At 80 ppm H2 S slows respiration and produces 
hypothermia inducing a state resembling hibernation.  
This is reversible.

• H2 S is said to reversibly inhibit CcO

Key Reference: E. Blackstone, M. Morrison, and M. B. Roth, 
Science, 2005, 308, 518.

A third gas, Hydrogen Sulfide (H2 S) may be 
encountered in the mitochondria



H2 S Reversibly Binds to the Reduced Catalyst

Evidence: UV-Vis, Mass spectrometry, 1H NMR

Estimated binding constants (K) = 0.5, 0.1 (much lower than O2 binding)

H2 S H2 S

In submission



H2 S Reversibly Inhibits the Electrochemical 
Catalytic Reduction of O2

O2 + 4H+ + 4e- 2H2 O

Reversible competitive inhibition by H2 S

* Comparable amounts to those reported in literature to affect mice

*

In submission

CcO model

Inhibition is proportional
to the H2 S concentration



H2 S is a Potent Two-Electron Reducing Agent

FeIII CuII +   H2 S FeII CuI +   (S) 

CytcIII +   H2 S CytcII +   (S) 

These results indicate that at low H2 S and moderate O2 concentration, our model 
will catalytically reduce O2 to H2 O In submission

(synthetically reduced form)

H2 S also reduces Cytochrome c
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