La lyase du photoproduit des spores (SPL): Une métalloenzyme "Radical-SAM" de réparation de l'ADN.

Mohamed ATTA Laboratoire de Chimie et Biologie des Métaux CEA/CNRS/Université Joseph Fourier Grenoble, France

- Structure de l'ADN.
- Lésions de l'ADN et systèmes de réparation. NER, BER, MMR

Une lésion ou un dommage de l'ADN correspond à toute modification chimique non physiologique de l'ADN qui perturbera la configuration de la double hélice et/ou ses propriétés biologiques.

- Lésions UV –induites de l'ADN et réparation.
- Ce qui se passe dans les spores de bactéries (SP).
- La Lyase du photoproduit des spores (SPL).

Structure de l'ADN et complémentarité des bases

CDF18/05/11

Sucre

Base

 \cap

Base

Ò

Source	Type de lésions	Nombre d'adduits induits/cellules
Bain de soleil (1 heure)	dimères de thymine	60 000 à 80 000
Tabagisme (20 cigarettes/jour)	Adduits sur l'ADN (hydrocarbures polycycliques)	100 à 200
Bruit de fond des radiations naturelles (2,4 à 40mSv/an)	Ruptures simple brin	2/an
Température corporelle (37°C) Radicaux libres	Ruptures simples Site apuriniques Sites apyrimidiques Déamination Thymine glycol 5-hydroxométhyluracile 8-hydroxométhylguanosine Ruptures simples, doubles, pontages	20 000 - 40 000/ par jour 10 000 500 100-300 27 620 168 ?

La nécessité du maintien de l'intégrité du génome a conduit les organismes à développer de nombreux mécanismes de sauvegarde et de réparation de l'ADN

1) Système de sauvegarde

Convertir les agents toxiques ou mutagènes en molécules inoffensives

Système de détoxification des agents Xénobiotiques, centrés sur les enzymes cytoplasmiques, (les cytochromes P450) CDF18/05/1

2) Systèmes de réparation

Corriger les lésions produites dans l'ADN par les agents toxiques

plusieurs systèmes de batterie d'enzymes et de protéines (nombreuses) agissant de concert

lucleotides Réparat

Réparation par Excision de Bases

Réparation par excision de: *nucléotides *bases

- Chez tous les organismes vivants
- Excision d'un oligonucléotide de 12-13 bases
- 3 étapes :
 - Reconnaissance du dommage.
 - Excision de l'oligonucléotide ou de base.
 - Re-synthèse et ligation.

ADN et Irradiation UV

Types de lèsions

Lésions de l'ADN induites par les UV

- Irradiation UV = Agent mutagène bien connu.
- <u>UV-C et UV-B</u>: absorption directe : dimérisation des bases pyrimidiques (T,C) – lésions très létales et mutagènes.
- Réparées par "Réparation par excision de nucléotides" (mécanisme non spécifique) et enzymes photoactivables (Photolyase)

Figure 1. Spectre de la lumière solaire à la surface terrestre. La portion située entre 280 et 320 nm correspond au rayonnement UVB et celle entre 320 et 400 nm à l'UVA. Seuls les UVB sont significativement absorbés par l'ADN des cellules.

Le Photoproduit des Spores

- Chez les **spores** : exposition UV → **un seul photoproduit**
- Découvert par Donnellan et Setlow en 1965

5-thyminyl-5,6-dihydrothymine

Le Photoproduit des Spores

- Formation de cette lésion spécifique expliquée par les caractéristiques spécifiques des spores :
 - Complexation de l'ADN aux Small acid-soluble proteins (SASP)
 - Déshydratation
 - Conformation de l'ADN (forme A)
 - Présence d'acide dipicolinique dans les spores

Le Photoproduit des Spores

Stéréochimie

Obtention du substrat SPTpT

Strategie : irradiation en présence de DPA

Structure du SPTpT ?

J. Am. Chem. Soc. 2008, 130, 16978-16984.

NMR measurements:

2D-NMR experiments 1H-1H COSY, TOCSY, 1H-13C HSQC,

1H-13C HMBC, 1H-31P HMBC, NOESY, ROESY

Theoretical DFT calculations

Lin G, Li L. Angew Chem Int Ed Engl. 2010, 9926-9929

La lyase du photoproduit des spores

S-Adenosylmethionine (SAM)

Fontecave M. Atta M. Mulliez E. Trends Biochem Sci. 2004, (5):243-949

Caractérisation biochimique

SDS-PAGE (12%) analysis

-SPL sous forme apoprotéine.
-Reconstitution chimique du centre [4Fe-4S].
-3.9 Fe/monomer
-4 S/monomer
- SPL est dimérique .

Caractérisation spectroscopique de l'Holo-SPL

Conclusions

Mécanisme de réparation par « base-flipping »

Carell, T., and Essen, L. O. (2004) Science 306, 1789-1793

2. 5R-SPTpT est un substrat pour la SPL. *Pas besoin d'une séquence d'ADN*

3. SP dinucleoside est un mauvais substrat 0.004 vs 0.4 mol/mol/min (SP-TpT) <u>Importance du pont phosphate</u>

T Carell, M. M. Atta, Fontecave *et al*: *Chem Commun* 2006, <u>4</u>, 445-447

Snapshots of dynamics in synthesizing N6-isopentenyladenosine at tRNA anticodon, M. Atta, M. Fontecave, J-F. Hunt, and I. Tanaka. *Biochemistry*. (2009), 48, 5057–5065.

Analyse des produits de la réaction.

Rôle de la cystéine-141?

B. subtilis B. cereus

- B.Halodurans
- B.thurigiensis
- B.anthracis

Cys 141 :

N'est pas impliquée dans la coordination du centre [Fe-S]

Absolument nécessaire à l'activité de l'enzyme

Fajardo-Cavazos, P., Rebeil, R., Nicholson, W.L., Essential cysteine residues in *Bacillus subtilis* spore photoproduct lyase identified by alanine scanning mutagenesis, Curr Microbiol 51 (2005) 331-5.

- B. subtilis
- B.cereus
- B.Halodurans
- B.thurigiensis
- B.anthracis

		·	141
SSKPSAEYAIPFATG <mark>C</mark>	MGH <mark>C</mark> HY <mark>C</mark>	CYLQTTMGSKPYIRTYVNVEEILDQADKYMKERAPEFTRFEA	S <mark>C</mark> TSD
ſSKPSAEYAIPFATG <mark>C</mark>	MGH <mark>C</mark> HY <mark>C</mark>	CYLQTTMGSKPYIRTYVNVEEILGAADKYMEERAPELTRFEA	SCTSD.
ſSKPSAEYAIPLATG <mark>C</mark>	MGH <mark>C</mark> HY <mark>C</mark>	CYLQTTLGSKPYIRTYVNLEEIFAAADQYIHEREPEITRFEA	A <mark>C</mark> TSD
ſSKPSAEYAIPLATG <mark>C</mark>	MGH <mark>C</mark> HY <mark>C</mark>	CYLQTTLGSKPYVRVYVNLDEIFEKAKQYMDERAPEITRFEA	A <mark>C</mark> TSD
rskpsaeyaiplatg <mark>c</mark>	MGH <mark>C</mark> HY <mark>C</mark>	CYLQTTLGSKPYVRVYVNLDEIFEKAQQYMDERAPEITRFEA	A <mark>C</mark> TSD
:.****.: :*: :* [*]	. *.**	***:* *.:**:: .*::*: * :*:.:* *: * **.	:. **

La SPL sauvage et la SPLC141A catalyse la réductolyse de la SAM

The SPLC141A mutant

• Les caractéristiques biochimiques et spectroscopiques de la protéine SPLC141A et SPL sauvage sont semblables .

Caratérisation de l'adduit avec le dithionite.

Caratérisation par HPLC

TpTSO2H SO₂H C 5' 5' HN UV-C 5min ŇΗ TSO2HpT ΗŅ ŇΗ HO °0 3' $Na_2S_2O_4$ ° HO H Ň 3' H - O₂ он н 0 он н **`0**-22 24 26 time (min) SO₂H 5' TpTSO₂H ΗŅ ŅΗ HŅ ŅΗ 3' HO-UV-C 5min Ô н 3' HO-H Ô н $Na_2S_2O_4$ ТрТОН `**0**он н Ő - O₂ `**0**-ÓН Ő H 22 24 26 time (min)

Laboratoire Chimie et Biologie des Métaux UMR54249-CEA/CNRS/UJF Grenoble – France.

- Marc Fontecave
- Alexia Chandor
- Olivier Berteau
- Sandrine Ollagnier-de-Choudens

CEA-Grenoble

- T. Douki- HPLC, mass spectrometry
- D. Gasparutto- Synthesis
- S. Gambarelli- Hyscore
- M. Bardet, C. Mantel-NMR
- J.M. Mouesca-DFT

- T. Carell (Munich, Germany)- Synthesis

- Y. Sanakis (Greece)- Mössbauer spectroscopy

