Status on safety of large lithium-ion batteries in Japan

Central Research Institute of Electric Power Industry(CRIEPI) Yo Kobayashi

Copyright © 2011 by CRIEP

Outline

- Li-ion for EV & Stationary in Japan
 - EV sales volume in Japan
 - Unfavorable / Favorable conditions for EV
 - Stationary Li-ion "Boom" after 3.11
- Challenge to safe Li-ion battery
 - Choice of electrode materials for EV
 - New material approach in National Project (NEDO)

CRIEP

Copyright © 2011 by CRIEP

- Our approach
 - Pure polymer & Li-metal free "Li-ion battery"
 - Forced destruction test in NEDO project
- Summary

EV total sales in Japan

Unfavorable condition for EV

- Deficiency in electricity after 3.11
 - Actual rotation blackout in Tokyo
 - Save on electricity: 1st priority in Japan
 - No TVCF about EV until August

Donation from French Red Cross : €13M "Merci pour support"

Rotation Blackout(15/Mar)

Favorable Wind

- EV : Recognized as also EPS*
- Strong adverse wind to Nuclear power generation
 - Limited fuel choice: Fossil fuel $\rightarrow 1^{st}$ Priority
 - EV: Still lower CO₂ emission than oil
- 2nd use of EV battery →Target : Smart grid

Released Stationary Li-ion after The Earthquake in Japan

KOKAM(Korea)

(注:一部デザインが変更になる場合があります。

2.5 kWh/ €18900

NEC

6 kWh/€25000

2.4 kWh/€8000

PANASONIC

3.2 kWh/ €16800

SONY

300 Wh/ €1500

TOSHIBA

Copyright © 2011 by CRIEPI

Bad New for NaS*, Warning for Li-ion?

- NaS(NGK): Fire accident on 21th/Sep.
- Control fire: 2 weeks with "Sand"
- NGK
 - Stop production of NaS
 - Recommend to stop operation of NaS
- Li-ion can't substitute such huge capacity immediately.
- But, should be in the future?
- If so, Li-ion for EV=Li-ion for LL**??

*Sodium Sulfur Battery **Load Leveling

Introduction of 80MW NaS to Tohoku Electric Power Company

Copyright © 2011 by CRIEPI

Li-ion Cell Size History in Japan

- 1990's: Challenge to 100 Ah
 - SONY: Cylindrical (1996 NISSAN Prairie)
 - Panasonic: Cylindrical (2000, NEDO)
 - GSY*: Rolled Prismatic (2000, NEDO)
 - MHI**: Prismatic (2003)
 - →All 100Ah cells disappeared

Panasonic (NEDO) 100Ah x 8 module

MHI 100Ah

CRIFP

- MHI: 50 Ah Prismatic (2010, LL for 100 kW PV)

- TOSHIBA: 20 Ah Prismatic (2011, Honda EV-Bike)

- GSY: 50 Ah Prismatic (2009, Mitsubishi i-MiEV)

- AESC***: 30 Ah Laminate (2010, Nissan LEAF)

• 2000's: Safety is 1st priority for practical use

*GS-Yuasa **Mitsubishi Heavy Industrial ***Automotive Energy Supply Corporation (Joint company of NEC&NISSAN)

Safety Concept of EV Battery

- 2010: 100 Wh/kg
 - "Conservative" material choice: LiMn₂O₄, Graphite, Li₄Ti₅O₁₂
 - Not so high energy density
 - Not so large cell
- 2020: 200 Wh/kg
 - High Cap. Anode/Cathode
 - Electrolyte Modification
- 2030: >300 Wh/kg
 - Solvent free (TOYOTA)

Difference in Position of Safety : Donor or Acceptor?

are our interest

National Project concerning Safety

No specific national project about safety in Japan

- 1. Expected safe materials: Mainly focused on electrolyte
 - Solid electrolyte(Inorganic/Glass/Polymer)
 - Ionic liquid
 - Flame retardant electrolyte
 - Ceramic coated separator/electrode
- 2. Safety test: Battery for PHEV (10 Ah class)
 - Cell/Module/System: JARI
 - Forced destruction test: CRIEPI
- 3. Discussion on Regulation
 - Li-ion for residential (Tokyo Fire Department)

Our approach

- Solution for the safe battery
- Estimation of event in abuse condition

Solvent-free & Metal-free Lithium-ion Polymer Battery [Graphite |SPE | LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂]x3 stack in one package

Proposed Safety Test

Test Type	Open Space Test	Accelerated Rate Calorimeter (ARC)	Forced Destruction using Pressure Vessel
Advantages	 Simulate actual event No size limitation Various test Visible 	 Precise Temp. of thermal runaway Reaction rate estimation by Temp. 	 Precise pressure trace in event Reaction rate estimation by pressure Combine nail test Visible
Drawbacks	Poor Quantitative comparison	 Invisible Size limitation Difficult to nail/crash 	 Size limitation(<100Ah) Can't simulate reaction with ambient air
Labs & Companies	SNL INERIS JARI	Thermal Hazards	CRIEPI

Li-ion Forced Destruction System

Schematic of Pressure Tight Housing

Proposed Forced Destruction Test

- Concept
 - Estimate maximum energy of cells in event
 - Not safety judgment
- Event in pressure tight housing
 - Max. pressure(*P*max) & *dP/dt* : Reaction rate estimation
 - Outgas volume estimation from the pressure before/after event (ΔP)
- Soft (blunt) & staircase Nailing
 - Simulate spot internal short circuit without using metal chip inside
- Goal
 - Compare fresh & cycled cell
 - Confirm cycled≒safe cell

Summary : Li-ion for EV & Stationary-use in Japan

- Present
 - Conservative battery design in EV
 →Safety : Not so serious news at present in Japan
 - Stationary : Quick release after 3.11. Safety check is needed
 → Solvent free Li-ion polymer : Will be one solution
- Issues
 - Keep battery safety after cycles
 →Compare new & cycled cells using forced destruction test
- Higher energy density (for long distance EV)
 - High capacity electrodes : Lots of choice
 - Improvement of safety with high capacity electrodes
 → Electrolyte & interface design : Key technology for safety
- Innovative post Li-ion (>300 Wh/kg)
 - Academic approach, but very serious competition in Japan
 - No solution in organic liquid electrolyte?

Appendix: Science Museum in 1974

- My father explained the future technology of the 21th century
 - TV phone
 - Electric Vehicles

Now,

- I can enjoy "Video Chat" using smart phones.
- But, EV is just start running..
 →My father had told me a lie....

But, I still have a dream..

• I don't want to tell a lie to my son again.

This work is financially supported from New Energy and Industrial Technology Development Organization (NEDO).

Copyright © 2011 by CRIEPI

NEDO