
Andrew Myers
Cornell University

Constructive Security
Using Information

Flow Control

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

What is computer security?

• Past: can an attacker control my computer?

• Future: do networked systems sharing information
provide security and privacy despite limited trust?
–web applications, mashups

–social networking platforms
–medical information systems

–government information
systems

–supply chain management
–the Internet

2

Pharmacy

Hospital

Doctor Doctor

Pharmacy

Dept of
Transportation State Police

Federal PoliceJustice Dept

Amazon

Supplier Vendor

Security requirements

•

3

Amazon.com Privacy Notice:
…We reveal only the last four digits of your credit card numbers when
confirming an order. Of course, we transmit the entire credit card number to
the appropriate credit card company during order processing.
…third-party Web sites and advertisers, or...advertising companies...sometimes
use technology to send...advertisements that appear on our Web site directly to
your browser. They automatically receive your IP address...
…Examples of the information we collect and analyze include...[IP]address used to connect your
computer to the Internet; login; e-mail address; password; computer and connection
information...plug-in types and versions, operating system, and platform; purchase history...the full
[URL]clickstream...the phone number you used to call our 800 number...cookies...we may
use...JavaScript to measure and collect session information, including...scrolling, clicks, and
mouse-overs...
...Sometimes we send offers to selected groups of Amazon.com customers on behalf of other
businesses. When we do this, we do not give that business your name and address. If you do not
want to receive such offers, please adjust your Customer Communication Preferences.
...We release account and other personal information when...appropriate to comply with the law; enforce or
apply our Conditions of Use and other agreements; or protect the rights, property, or safety of Amazon.com,
our users, or others.

…Lots of promises about confidentiality and integrity…

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Requirements → mechanisms?

How does Amazon know this evolving system containing many
nodes, code from many sources meets their legal obligations?

customer host #548713

browser + JS

scripts

web server web server

app server app server app server

database database database

Amazon

3rd-party seller #327

firewall

cookies 3rd-party advertiser #518

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Cooperation with distrust

• Past: can an attacker control my computer?

• Future: do networked systems sharing information
provide security and privacy despite limited trust?
–web applications, mashups

–social networking platforms
–medical information systems

–government agencies

–supply chain management
–the Internet

5

Pharmacy

Hospital

Doctor Doctor

Pharmacy

Dept of
Transportation State Police

Federal PoliceJustice Dept

Amazon

Supplier Vendor

Security: bridges vs. software

• Bridges fail rarely (post-arch)
–Assurance derived from construction process

• Software violates security/privacy (frequently)
–Assurance is weak at best

–Much “destructive” security research

Constructive security?
• Idea: build secure systems with:

–explicit, declarative security policies capturing security requirements
–higher-level language-based abstractions

• Compiler, runtime automatically employ mechanisms to
achieve security and performance
–synthesizing implementation-level mechanisms (access control,

partitioning, replication, encryption, signatures, logging, …)

• Security by construction!

compiler

7

Language-based security
• Developer writes code in a

safe language (e.g., Jif) with
explicit security policies

• Software construction
process checks policies are
enforced, adds run-time
enforcement mechanisms

• Can verify target code to
ensure policy enforcement

• Policies exposed for checking
against rest of system at load
time and run time

source code policy

target code
policy

external
policies

running	
 code

compare
policies

sta3c	
 checking

compare

policies

transforma3on

synthesized security
mechanisms

Policies and end-to-end security

• System-wide, end-to-end enforcement of policies for
information security ⇒ need compositional policies

9

interface
code modules,
network nodes,

services,
…

• Information flow policies on interfaces constrain
end-to-end behavior
⇒ are compositional

⇒ enable raising the level of abstraction

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Plan

1. Jif: Java + information flow control

2. Swift: synthesizing secure web applications

3. Fabric: a distributed platform for secure
computation, sharing, and storage

10

Jif: A security-typed language

• Jif = Java + information flow control [POPL99]

–Types include explicit (but simple) security policies

–Enforcement: compile-time and run-time

• Trust and access control:
 principals and authority

• Information flow: decentralized labels

11

tractable?

expressive?

lightweight?

Principals in Jif
A principal is an abstraction of authority and trust
• represents users, groups, roles; privileges; access rights; host nodes and

other system components.

• acts-for relation p ≽ q means p can do whatever q can. “q trusts p”.
(related to speaks-for in authentication logic [e.g., ABLP93])

andrew

andrew_advisor andrew_instructorusers

alice bob

acts	
 for
acts	
 for

12

• Top, bottom principals:
 “acts for everyone” = ⊤ ≽ p ≽ ⊥ = “acts for no one”

• Principals form a lattice with meet (⋀) and join (⋁).

Programming with authority

• Code can run with the authority of a principal.

• Can be used to implement access control
13

class	
 C	
 authority(Alice)	
 {

int	
 m()	
 where	
 authority(Alice)	
 {
	
 	
 	
 	
 f();	
 //	
 use	
 authority	
 of	
 Alice

}

int	
 f()	
 where	
 caller(Alice)	
 {	
 …	
 }

}

Decentralized labels
• Confidentiality policies: u→p

–u is the owner of the policy (a principal), p is a reader
–meaning: u trusts p to learn information and not leak it

–e.g., Bob → Alice means Bob trusts Alice (and Bob) to
learn information about the data

• Integrity policies: u←p
– meaning: u trusts p not to influence the information in a

way that damages it
– p is a writer of the information

• Decentralized label: set of owned policies
 e.g., {Alice→Bob; Alice ←Alice}

14

• Dangerous, so controlled in Jif by requiring authority (trusted code
only) and integrity (for robust declassification)

Decentralized label space

15

{⊥→⊥; ⊤←⊤}

secure
information

flow

(⊑)

{⊤→⊤; ⊥←⊥}

{⊥→⊥; ⊥←⊥} {⊤→⊤; ⊤←⊤}
co
nfi
de
nti
ali
ty

integrity

labels

Reducing confidentiality:
declassification

Increasing integrity:
endorsement

• Application-specific downgrading is needed by real applications

secret, untrusted

secret, trustedpublic, untrusted

public, trusted

• Confidentiality labels: int{Alice→Bob} a;
 “Alice says only Bob (&Alice) can learn a”

• Integrity labels: int{Alice←Alice} a;
 “Alice says only Alice can affect a”

Combined: int{Alice→Bob ; Alice←} a;
• End-to-end static checking of flow L1→ L2: L1  L2 ?

16

Information security policies as types

int{Alice→} a1, a2;
int{Bob←} b;
int{Bob←Alice} c;

Insecure
b = a1;
b = c;

Secure
a1 = a2;
a1 = b;
a1 = c;
c = b;

“Bob says only Alice (& Bob) can affect c”

But: ok if Alice ≽ Bob

• Jif label checking is type checking in a nonstandard
type system: compositional!

• End-to-end security: noninterference
(termination-insensitive)
–caveat: proved for

simplified models

–challenges: objects,
dynamic labels and
principals, dependent
types, parameterized
types, exceptions, ...

Information flow control
as type checking

*Symantec Internet Security Threat Report
2007

Secure web applications?

• Ubiquitous, important, yet insecure
–Cross-site scripting, SQL injection, information leakage, etc.

• Development methods make security assurance hard
–Distributed system in multiple languages

• Client: CSS, XHTML, JavaScript, Flash

• Server: PHP, ASP, Ruby, SQL

–Ajax/Web 2.0: Complex JavaScript UIs generating HTTP requests

Swift

• A programming system that makes
secure, interactive web applications
easier to write [SOSP 07]

• A higher-level programming model:
one program in one language
automatically split by the compiler

• Security by construction:
–automatically partitioning code

and data based on decentralized
labels

• Automatic performance
optimization

Jif
source
code

Compiler

Splitter

JavaScript
client
code

Java
server
code

policy

19

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Guess-the-number

Secret Number: 7

Tries: 3

Take a Guess!

(You have 3 chances)

Random number
between 1 and 10

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Guess-the-number

Secret Number: 7

Tries: 3

Take a Guess!

(You have 3 chances)

6

Try Again

12

Out of range

4

Try Again

7

You win $500

Tries: 2Tries: 1

(You have 2 chances)(You have 1 chance)You win $500

Bounds Check

Compare Guess

Tries: 0

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Guess-the-number

Secret Number: 7

Tries: 3

Take a Guess!

(You have 3 chances)

7

You win $500

Confidentiality
Requirement

Tries: 10

1234567

Integrity
Requirement

I win $500

Integrity
Requirement

Bounds Check

Compare Guess

Buggy or
malicious Trusted

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

A secure optimal split

Secret Number: 7

Tries: 3

Take a Guess!

(You have 3 chances)

Tries: 3

Compare Guess

Bounds CheckBounds Check

6
Try Again

12
Out of range

4

Try Again

7

You win $500

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

input
validation

check
fails

called from a
Listener

Swift Guess-the-number

 {

 if (guess >= 1 && guess <= 10) {

int secret;
int tries;

 } else {
 message.setText("Out of range:" + guess);

 }
 }

void makeGuess (int guess))
…

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

compare with
stored secret

successful
guess

…

 {

 if (guess >= 1 && guess <= 10) {

 } else {
 message.setText("Out of range:" + guess);

 }
 }

 if (tries > 0 && correct) {
 finishApp("You win $500!");

 }

boolean correct = (guess == secret);

void makeGuess (int guess)

int secret;
int tries; Swift Guess-the-number

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

compare with
stored secret

…

 {

 if (guess >= 1 && guess <= 10) {

 } else {
 message.setText("Out of range:" + guess);

 }
 }

 if (tries > 0 && correct) {
 finishApp("You win $500!");

 } else {

boolean correct = (guess == secret);

void makeGuess (int guess)

int secret;
int tries;

 tries--;
 if (tries > 0)

 else

message.setText("Try again");

finishApp("Game over");

unsuccessful
guess

 }

Swift Guess-the-number

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

…

 {

 if (guess >= 1 && guess <= 10) {

 } else {
 message.setText("Out of range:" + guess);

 }
 }

 if (tries > 0 && correct) {
 finishApp("You win $500!");

 } else {

boolean correct = (guess == secret);

void makeGuess (int guess)

int secret;
int tries;

 tries--;
 if (tries > 0)

 else

message.setText("Try again");

finishApp("Game over");
 }

Automatic partitioning

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

…

 {

 if (guess >= 1 && guess <= 10) {

 } else {
 message.setText("Out of range:" + guess);

 }
 }

 if (tries > 0 && correct) {

 finishApp("You win $500!");
 } else {

boolean correct = (guess == secret);

void makeGuess (int guess)

int secret;

int tries;

 tries--;
 if (tries > 0)

 else

message.setText("Try again");

finishApp("Game over");
 }

…

 {

 if (guess >= 1 && guess <= 10) {

 } else {
 message.setText("Out of range:" + guess);

 }
 }

 if (tries > 0 && correct) {
 finishApp("You win $500!");

 } else {

boolean correct = (guess == secret);

void makeGuess (int guess)

int secret;
int tries;

 tries--;
 if (tries > 0)

 else

message.setText("Try again");

finishApp("Game over");
 }

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

int{server→server ; server←server} secret;

int{server→clien ; server←server } tries;

int{server→client} display;

display = secret;

server→server

server→client

server←server

server←server

= Alice permits Bob to learn info

= Alice permits Bob to affect info

Alice → Bob
Alice ← Bob

Security policies

• Swift adds two built-in principals: server, client
• Application can define more principals (Alice, Bob, …)

Rejected at compile time

client may learn if
guess is correct:

declassify
(requires authority of

server)

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

…

 {

 if (guess >= 1 && guess <= 10) {

int{server→server; server←server} secret;
int{server→client; server←server} tries;

 }
 } else {

 message.setText("Out of range:" + guess);
 }

 }

{server→server} to {server→client});
 if (tries > 0 && correct) {

 finishApp("You win $500!");
 } else {

 tries--;
 if (tries > 0)

 else

message.setText("Try again");

boolean correct = declassify (guess == secret,

finishApp("Game over");

 endorse (guess, {server←client} to {server←server})

boolean correct = (guess == secret);

client guess within
bounds can be

treated as trusted:
checked endorse

violation of robust
declassification:
client can affect

information release

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Swift
 architecture

Jif
source
code

WebIL
code

Located
WebIL code

label projection

partitioning

Confidentiality/
Integrity labels

Server/Client
Placement

HTTP

Java
servlet

framework

Swift
server

runtime

Java
server
code

Web Server

Java
client code

GWT
Swift
client

runtime

GWT
runtime
library

Javascript
client
code

Web Browser 31

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Swift
server

runtime

Java
servlet

framework

GWT
runtime
library

Swift
client

runtime

Java
server
code

Javascript
client
code

WebIL
code

Located
WebIL code

partitioning

HTTP

Web Server

Java
client code

GWT

Web Browser

Jif
source
code

label projection

Swift
 architecture

32

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Labels→placement constraints

{Alice→Bob; Alice←Bob}

{Chuck→Alice,Bob;Alice←Chuck}

{Alice→Bob, Dave}

{Chuck←Chuck, Alice}

{Chuck←Chuck, Alice}

{Chuck←Bob, Alice}

{Alice→Bob, Dave}

{Fiona→Bob, Eve, Alice; Bob←Fiona}

{Eve←Chuck, Alice}

{George→Bob, Dave; Fiona→Bob; George←Alice,Dave}

{Dave→Bob, Heather}

{}

{Alice→Bob, Dave; w}

{*l}

{x}

{p←p}

{Irina→Bob; Heather←Dave,Bob,Irina}

{p→Bob, q; n}

{Alice→Bob, Dave}

client or
server
S?C?

client cannot read

client can read

client
can
write

client
cannot
write

(low confidentiality)

(high confidentiality)

(low integrity) (high integrity)

server and
maybe
client
ShC?

server
only

S

server
only
Sh

L � {� → client}

L �� {� → client}

{�←client} ��L{�←client}�L

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

client cannot read

client can read

client
can
write

client
cannot
write

(low confidentiality)

(high confidentiality)

(low integrity) (high integrity)

S Sh

S?C? ShC?

Labels→placement constraints

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

C

security constraints
S?C?

S Sh

architectural constraints

S
database

library calls
UI widget

calls

More placement constraints

ShC?

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

S?C?:

S?C?:

int secret;
int tries;
…

void makeGuess (int guess)
 {

 if (guess >= 1 && guess <= 10) {

 } else {
 message.setText("Out of range:" + guess);

 }
 }

 finishApp("You win $500!");

 } } else {

 tries--;
 if (tries > 0)

 else finishApp("Game over");
 }

Sh:
ShC?:

ShC?:
Sh:

ShC?:

 message.setText("Try again");
S?C?:

C:

C:

Label forces
comparison
on server

calls to UI
methods on

client

 if (tries > 0 && correct) {
boolean correct = (guess == secret);

Sh:

WebIL

Some
placements

undetermined

C:

C:

int secret;
int tries;
…

void makeGuess (int guess)
 {

 if (guess >= 1 && guess <= 10) {

 } else {
 message.setText("Out of range:" + guess);

 }
 }

 finishApp("You win $500!");

 } } else {

 tries--;
 if (tries > 0)

 else finishApp("Game over");
 }

Sh:
ShC:

Sh:

ShC:

 message.setText("Try again");
C:
C:

C:

 if (tries > 0 && correct) {
boolean correct = guess == secret;

Sh:

ShC:

Each statement/field
annotated with one of
{C, S, SC, Sh, ShC}

Annotations chosen to
minimize network
messages using min-
cut algorithm.

Input validation
code replicated

WebIL with placements

Located
WebIL code

HTTP

Java
servlet

framework

Swift
server

runtime

Java
server
code

Web Server

Java
client code

GWT
Swift
client

runtime

GWT
runtime
library

Javascript
client
code

Web Browser

Jif
source
code

WebIL
code

label projection

partitioning

Swift
 architecture

38

Evaluation: functionality
Guess-the-Number

142 lines
Poll

113 lines
Secret Keeper

324 lines

Treasure Hunt
92 lines

Auction
502 lines

Shop
1094 lines

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Evaluation: network messages

Example Task
ActualActual OptimalOptimal

Example Task
Server→Client Client→Server Server→Client Client→Server

Guess-the-
Number

guessing a
number 1 2 1 1

Shop adding an item 0 0 0 0

Poll casting a vote 1 1 0 1

Secret Keeper viewing the
secret 1 1 1 1

Treasure Hunt exploring a cell 1 2 1 1

Auction bidding 1 1 1 1

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Related work

• Unified web programming models
– Links [CLWY06]
– Hop [SGL06]
– Hilda [YGQDGS07,YSRG 06]

• Web application security
– Static analysis [HYHTLK 04, LL05, X06, XA06, JKK06]
– Information flow via dynamic taint tracking [HO05, NGGE05, XBS06, CVM07]

• Security by construction
– Jif/split [ZZNM02, ZCMZ03] and provably sound impls of partitioning [FR08,

FGR09]
– Fairplay [MNPS04]
– SMCL [NS07]

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Swift summary
• Web applications with security assurance by

construction
–cleaner, higher-level programming model
–enabled by declarative security annotations
–automated enforcement ⇒ greater security assurance
–security-constrained optimization

• What about more general distributed
computation?

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Decentralized sharing?

• Federated systems integrate data and computation
across administrative boundaries
–can add functionality, increase automation

–Web is federated but not very programmable

–Need security and consistency

43

Pharmacy

Hospital

Doctor Doctor

Pharmacy Army

Air ForceNavy

Dept of
Transportation State Police

Federal PoliceJustice Dept

Amazon

Supplier Vendor

 : a system and a language [SOSP 09]

• Goal: a undergraduate can write secure, reliable
programs for the Internet Computer

• All information (persistent or otherwise) looks like an
ordinary program object

• Objects connected by references
–Any object can be referenced uniformly from anywhere
–References look like ordinary object pointers but can cross

nodes and trust domains

Compiler and runtime
enforce security and

consistency despite distrust
n.leD.value++

node 1

node 2

value:	
 42

n
leD:
right:

FabricFabric

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Fabric enables federated sharing

General
Practitioner

(GP)

Psychiatrist

HIPAA-compliant
policy

Different
HIPAA-compliant

policy

Alice

Constructive Security Using Information Flow Control/Andrew Myers, Cornell University

Example: Filling a prescription

Order medication

Verify prescription Get current medications

Pharmacist

Psychiatrist General Practitioner

Check for conflicts

Update inventory

Example: Filling a prescription

Pharmacist

Fill order

Mark prescription as filled

Psychiatrist

Must be done by pharmacist

Must be done by psychiatrist

Security issues
•Pharmacist shouldn’t see entire
record

•Psychiatrist doesn’t fully trust
pharmacist with update

–Need secure distributed
computation

Consistency issues
•Need atomicity
•Doctors might be accessing
medical record concurrently

Pharmacy example in Fabric

Order	
 orderMed(PatRec	
 psyRec,	
 PatRec	
 gpRec,	
 Prescrip3on	
 p)	
 {
	
 	
 	
 atomic	
 {
	
 	
 	
 	
 	
 	
 if	
 (!psyRec.hasPrescrip3on(p))	
 return	
 Order.INVALID;
	
 	
 	
 	
 	
 	
 if	
 (isDangerous(p,	
 gpRec.getMeds()))	
 return	
 Order.DANGER;

	
 	
 	
 	
 	
 	
 Worker	
 psy	
 =	
 psyRec.getWorker();
	
 	
 	
 	
 	
 	
 psyRec.markFilled@psy(p);
	
 	
 	
 	
 	
 	
 updateInventory(p);
	
 	
 	
 	
 	
 	
 return	
 Order.fill(p);
	
 	
 	
 }
}

Mark prescription as filled

Update

inventory

Fill order

Get current
 medications

Fabric: a high-level language

Order	
 orderMed(PatRec	
 psyRec,	
 PatRec	
 gpRec,	
 Prescrip3on	
 p)	
 {
	
 	
 	
 atomic	
 {
	
 	
 	
 	
 	
 	
 if	
 (!psyRec.hasPrescrip3on(p))	
 return	
 Order.INVALID;
	
 	
 	
 	
 	
 	
 if	
 (isDangerous(p,	
 gpRec.getMeds()))	
 return	
 Order.DANGER;

	
 	
 	
 	
 	
 	
 Worker	
 psy	
 =	
 psyRec.getWorker();
	
 	
 	
 	
 	
 	
 psyRec.markFilled@psy(p);
	
 	
 	
 	
 	
 	
 updateInventory(p);
	
 	
 	
 	
 	
 	
 return	
 Order.fill(p);
	
 	
 	
 }
}

Java with:
•Remote calls
•Nested transactions (atomic blocks)
•Label annotations for security (elided)

Order	
 orderMed(PatRec	
 psyRec,	
 PatRec	
 gpRec,	
 Prescrip3on	
 p)	
 {
	
 	
 	
 atomic	
 {
	
 	
 	
 	
 	
 	
 if	
 (!psyRec.hasPrescrip3on(p))	
 return	
 Order.INVALID;
	
 	
 	
 	
 	
 	
 if	
 (isDangerous(p,	
 gpRec.getMeds()))	
 return	
 Order.DANGER;

	
 	
 	
 	
 	
 	
 Worker	
 psy	
 =	
 psyRec.getWorker();
	
 	
 	
 	
 	
 	
 psyRec.markFilled@psy(p);
	
 	
 	
 	
 	
 	
 updateInventory(p);
	
 	
 	
 	
 	
 	
 return	
 Order.fill(p);
	
 	
 	
 }
}

Fabric: a high-level language

• All objects accessed uniformly
regardless of location

• Objects fetched transparently
as needed

• Remote calls are explicit

Order	
 orderMed(PatRec	
 psyRec,	
 PatRec	
 gpRec,	
 Prescrip3on	
 p)	
 {
	
 	
 	
 atomic	
 {
	
 	
 	
 	
 	
 	
 if	
 (!psyRec.hasPrescrip3on(p))	
 return	
 Order.INVALID;
	
 	
 	
 	
 	
 	
 if	
 (isDangerous(p,	
 gpRec.getMeds()))	
 return	
 Order.DANGER;

	
 	
 	
 	
 	
 	
 Worker	
 psy	
 =	
 psyRec.getWorker();
	
 	
 	
 	
 	
 	
 psyRec.markFilled@psy(p);
	
 	
 	
 	
 	
 	
 updateInventory(p);
	
 	
 	
 	
 	
 	
 return	
 Order.fill(p);
	
 	
 	
 }
}

Remote calls

Remote call — pharmacist runs
code at psychiatrist’s node

Order	
 orderMed(PatRec	
 psyRec,	
 PatRec	
 gpRec,	
 Prescrip3on	
 p)	
 {
	
 	
 	
 atomic	
 {
	
 	
 	
 	
 	
 	
 if	
 (!psyRec.hasPrescrip3on(p))	
 return	
 Order.INVALID;
	
 	
 	
 	
 	
 	
 if	
 (isDangerous(p,	
 gpRec.getMeds()))	
 return	
 Order.DANGER;

	
 	
 	
 	
 	
 	
 Worker	
 psy	
 =	
 psyRec.getWorker();
	
 	
 	
 	
 	
 	
 psyRec.markFilled@psy(p);
	
 	
 	
 	
 	
 	
 updateInventory(p);
	
 	
 	
 	
 	
 	
 return	
 Order.fill(p);
	
 	
 	
 }
}

Federated transactions

Remote call — pharmacist runs
method at psychiatrist’s node

Federated transaction — spans
multiple nodes & trust domains

Fabric security model

• Decentralized system
– anyone can join
–No centralized enforcement

• Decentralized security principle:
–You can’t be hurt by what you don’t trust

Security labels in Fabric

class	
 Prescrip3on	
 {
	
 	
 	
 Drug{Psy→Apharm	
 ;	
 Psy←Psy}	
 drug;

	
 	
 	
 Dosage{Psy→Apharm	
 ;	
 Psy←Psy}	
 dosage;

…	
 }

• Compiler and runtime together ensure policies are not
violated by any information flows in system.

Confidentiality: Alice → Bob Alice permits Bob to learn

Integrity: Alice ← Bob Alice permits Bob to affect

Trust management

• Fabric principals are objects

• Explicit trust delegation via method calls

–Compiler and run-time ensure that caller has proper
authority

//	
 Assert	
 “Alice	
 acts-­‐for	
 Bob”
bob.addDelegatesTo(alice)

class	
 Principal	
 {
	
 	
 	
 boolean	
 delegatesTo(principal	
 p);
	
 	
 	
 void	
 addDelegatesTo(principal	
 p)	
 where	
 caller	
 (this);
	
 	
 	
 …
}

Determines whether
p acts for this principal

Must have authority of this
principal to call

Fabric abstraction

• Fabric language combines:
–Information flow policy annotations

–Remote calls

–(Optimistic) nested atomic transactions

• Fabric system is a decentralized platform for secure,
consistent sharing of information and computation
–Nodes join freely
–No central control over security How to build a system

that implements this
abstraction?

Fabric Architecture

Worker nodes
(Workers)

Storage nodes
(Stores)

transaction

remote
call

Fabric Architecture

Worker nodes
(Workers)

• Storage nodes securely
store persistent objects

• Each object specifies its own
security policy, enforced by
store

transaction

remote
call

Fabric Architecture
transaction • Worker nodes compute on

cached objects

• Computation may be
distributed across workers
in federated transactions

remote
call

write

• Storage nodes securely
store persistent objects

• Each object specifies its own
security policy, enforced by
store

Fabric Architecture

• Dissemination nodes cache
signed, encrypted objects in
peer-to-peer distribution
network for high availability

• Storage nodes securely
store persistent objects

• Each object specifies its own
security policy, enforced by
store

disseminate

transaction

remote
call

write

• Worker nodes compute on
cached objects

• Computation may be
distributed across workers in
federated transactions

Fabric run-time system

• Nodes are principals in Fabric language

• Root of trust: X.509 certificates bind hostnames to
node principal objects

• Store getStore(String hostname) checks certificate
• Nodes act for principals stored at them.

Node

Principal

Worker Store

62

Secure data placement
• Placing objects with label L securely: is node n trusted to enforce

label L?

• Trust ordering ≽ on labels lifts principal acts-for ordering ≽	
 to
relate information flow policies.

{⊤←n;	
 ⊤→n}	
 ≽	
 L new	
 Foo@n(…)
Static check

labels

trust (≼)
{⊥→⊥; ⊤←⊤}

secure
information

flow
(⊑)

{⊤→⊤; ⊥←⊥}

{⊥→⊥; ⊥←⊥} {⊤→⊤; ⊤←⊤}
co

nfi
de

nti
alit

y

integrity

Secure remote calls

Is callee trusted to see call?
•Call itself might reveal private
information
•Arguments might be private

Is caller trusted to make call?
•Caller might lack sufficient
authority to make call
•Method arguments might have
been tampered with by caller

Is callee trusted to execute call?
•Result might have been tampered
with by callee

Is caller trusted to see result?
•Call result might reveal private
information

Static checks Dynamic checks

Confidentiality

Integrity

Integrity

Confidentiality calleecaller

Result: secure information flow enforced end-to-end across network

and more mechanisms...

• Writer maps for secure propagation of updates
• Automatic ‘push’ of updated objects to dissemination

layer
• In-memory caching of object groups at store
• Object-group clustering and prefetching
• Caching and incrementally updating acts-for

relationships
• Secure distributed transaction logs
• Hierarchical two-phase commit protocol

(see the SOSP’09 paper)

Implementation

• Fabric prototype implemented in Java and Fabric
–Total: 35 kLOC
–Compiler translates Fabric into Java

• 15 k-line extension to Jif compiler using Polyglot [NCM03]

–Dissemination layer: 1.5k-line extension to FreePastry
• Popularity-based replication (à la Beehive [RS04])

–Store uses BDB as backing store

Object overheads

• Extra overhead on object accesses at worker
–Run-time label checking
–Logging reads and writes
–Cache management (introduces indirection)
–Transaction commit

• Overhead at store for reads and commits
• Ported non-trivial web application to evaluate

performance: a course management system.

• CMS has been used at Cornell since 2004
–Over 2000 students in over 40 courses

• Two prior implementations using SQL database:
–J2EE/EJB2.0 (production system) [BCCDGGGLPRRYACGMS05]

• 54k-line web app with hand-written SQL
• Oracle database

–Hilda [YGG+07]

• High-level language for
data-driven web apps

• Fabric implementation:
3k lines → 740 lines

CMS experiment

app
server

DB
server

app server
(worker)

CMS
store

Performance results

0

7.5000

15.0000

22.5000

30.0000
Requests per second

Course overview (read) Student info (read) Update grades (write)

EJB Hilda
Fabric

• EJB, Hilda: DB server must be contacted frequently.
• Fabric: persistent objects can be cached at app server.

Related work: Fabric
Category Examples Fabric adds:

Federated object store OceanStore/Pond
• Transactions

• Security policies

Secure distributed storage
systems Boxwood, CFS, Past

• Fine-grained security

• High-level programming

Distributed object systems Gemstone, Mneme,
ObjectStore, Sinfonia, or

• Security enforcement

• Multi-worker transactions
 with distrust

Distributed computation/
RPC

Argus, Avalon, CORBA,
Emerald, Live Objects,
Network Objects

• Single-system view of
 persistent data

• Strong security enforcement

Distributed information
flow systems DStar, Jif/split, Swift • Consistency for shared persistent

data

No prior system has provided the security and expressiveness of Fabric.

Constructive security×3
• Jif

– adding information flow policies to a real programming language
– compiler supports programmer reasoning about security

• Swift
– automatically, securely partitioning web applications

• Fabric
– a general, high-level abstraction for secure, consistent, federated

computing
• A truly secure Internet Computer requires raising the level of

abstraction even higher
– Decentralization and federation (ala Fabric) + automatic mapping of

code and data (ala Swift)
– Many challenges: mobile code; dynamic, adaptive partitioning; efficient,

secure data management; richer compositional policies; formal security
proofs; consistency policies; synthesizing more crypto protocols

Conclusions
Information flow policies enable a
constructive approach to security:
• stronger, end-to-end, compositional security
• higher-level, more abstract programming model
• opportunities for greater efficiency and

automatic optimization

FabricFabric

Acknowledgments

• Steve Chong

• Jed Liu

• Nate Nystrom

72

• Steve Zdancewic

• Lantian Zheng

• Xin Zheng

• Xin Qi

• Mike George

• K. Vikram

FabricFabric

Additional material

e following slides were not used in the talk but
may help answer questions.

73

Covert channels
• Confidentiality depends on adversary not learning

things from observations

• Information flow control prevents learning from
observations at language level of abstraction
(exception: termination vs. nontermination)

• Lower-level observations might still leak information:
–Time and power
–Size, existence, source, destination of network messages
–Nondeterministic choices: addresses, interleavings, ...
–Lower-level protocol message contents

• Run-time mechanisms exist for mitigating them
74

GUI interfaces
• Swift is a GUI toolkit similar to Swing (Java)

– Layout is dynamic and user events are handled securely

• Information flow tracked through GUI widgets
– Out and In labels bound information flowing up and down through hierarchy.

class Widget[label Out, label In] { ... }
class Panel[label Out, label In]
 extends Widget[Out,In] {
 void addChild{Out}(label wOut, label wIn, Widget[wOut,wIn]{Out} w)
 where {*wOut} <= Out, {In;w} <= {*wIn};
}
class ClickableWidget[label Out, label In]
 extends Widget[Out,In] {
 void addListener{In}(ClickListener[Out,In]{In} li);
class Button[label Out, label In] extends ClickableWidget[Out,In] {
 String{Out} getText();
 void setText{Out}(String{Out} text);
}
interface ClickListener[label Out, label In] {
 void onClick{In}(Widget[Out, In]{In} b);
}

Window

Panel

Button Text

Child widget must agree statically
with parent—bad hierarchies
ruled out at compile time.

Classes can be parameterized on
labels and principals

