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Context : cryptographic protocols

Cryptographic protocols are widely used in everyday life.

→ They aim at securing communications over public or insecure
networks.
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Security goals

Cryptographic protocols aim at

preserving confidentiality of data
(e.g. pin code, medical files, ...)

ensuring authenticity
(are you really talking to your bank ?)

ensuring anonymous communications
(for e-voting protocols, ...)

protecting against repudiation
(I never sent this message !)
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Difficulty : there are potential powerful attackers !

Presence of an attacker

may participate to the protocol.

may forge and send messages,

may read every message
sent on the net,

may intercept messages,
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Attacking Single Sign On Protocol

Single Sign On Protocols

enables to log in once for
several services

used e.g. in Google App

→ A flaw discovered in 2010, now fixed (Avantssar project)

Step 1 An attacker offers an interesting or funny (but
malicious) new Google App

Step 2 Some clients register to this malicious Application

Step 3 The attacker can now access all the other
applications of the client, including e.g. Gmail or
Google Calendar.
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Designing protocols is error prone

Software testing leaves flaws : cf Lectures of Mart́ın Abadi

Flaw in the authentication protocol used in Google Apps

Attack on pay-per-view devices

Man-in-the-middle attack

These flaws rely on the design of the protocols

Not on a bad implementation (bugs)

Not on weaknesses of the primitives (e.g. encryption,
signatures)

Not on generic hacking techniques (e.g. worms, code
injection)
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How to analyse security protocols ?

non-repudiation

anonymity

...

confidentiality

|=
? authenticity

Methodology

1 Proposing accurate models

symbolic models
cryptographic/computational models

2 Proving security

decision procedures
transfer results

Running example : electronic voting
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Example : Electronic voting

Elections are a security-sensitive process
which is the cornerstone of modern de-
mocracy.

Electronic voting promises

Convenient, efficient and secure
facility for recording and tallying
votes

for a variety of types of elections :
from small committees or on-line
communities through to full-scale
national elections

Already used e.g. in Estonia, Norway, USA.
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Two main families for e-voting

Voting machines

Voters have to attend a voting station

External authentication system (e.g. ID
card)

Internet voting

Voters vote from home

from their own computers

Systems in use : Civitas (A. Myers et al),
Helios, ...

cf Seminar of Ron Rivest (March 23rd).
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Running example : Helios

http ://heliosvoting.org/

Developed by B. Adida
et al, already in use :

Election at
Louvain University
Princeton

Election of the
IACR board
(major association
in Cryptography)
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Behavior of Helios (simplified)

Phase 1 : voting

Bulletin Board

Alice {vA}pk(S) vA = 0 or 1

Bob {vB}pk(S) vB = 0 or 1

Chris {vC}pk(S) vC = 0 or 1

Phase 2 : Tallying using homomorphic encryption (El Gamal)
n∏

i=1

{vi}pk(S) = {
n∑

i=1

vi}pk(S)

Only the final result needs to be decrypted.

pk(S) : public key, the private key being shared among trustees.
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Behavior of Helios (simplified)

Phase 1 : voting

Bulletin Board

Alice {vA}pk(S) vA = 0 or 1

Bob {vB}pk(S) vB = 0 or 1

Chris {vC}pk(S) vC = 0 or 1

David {vD}pk(S) vD = 0 or 1

... ...

Phase 2 : Tallying using homomorphic encryption (El Gamal)
n∏

i=1

{vi}pk(S) = {
n∑

i=1

vi}pk(S) based on ga ∗ gb = ga+b

→ Only the final result needs to be decrypted !

pk(S) : public key, the private key being shared among trustees.
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This is oversimplified !

{vD}pk(S)

Bulletin Board

Alice {vA}pk(S) vA = 0 or 1

Bob {vB}pk(S) vB = 0 or 1

Chris {vC}pk(S) vC = 0 or 1

David {vD}pk(S)

... ...

Result : {vA + vB + vC + vD + · · · }pk(S)
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This is oversimplified !

{vD}pk(S)

Bulletin Board

Alice {vA}pk(S) vA = 0 or 1

Bob {vB}pk(S) vB = 0 or 1

Chris {vC}pk(S) vC = 0 or 1

David {vD}pk(S) vD = 100

... ...

Result : {vA + vB + vC + 100 + · · · }pk(S)

A malicious voter can cheat !
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This is oversimplified !

{vD}pk(S)

Bulletin Board

Alice {vA}pk(S) vA = 0 or 1

Bob {vB}pk(S) vB = 0 or 1

Chris {vC}pk(S) vC = 0 or 1

David {vD}pk(S) vD = 100

... ...

Result : {vA + vB + vC + vD + · · · }pk(S)

A malicious voter can cheat !

In Helios : use of (Signature of) Proof of Knowledge

{vD}pk(S), SPK{vD = 0 or 1}
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How to analyse security protocols ?

For example, how to prove that Helios is secure ?
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How to analyse security protocols ?

For example, how to prove that Helios is secure ?

Task 1 : Modeling

1 Modeling messages
2 Modeling the behavior of the protocol
3 Modeling “security”
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Modeling messages

Idea 1 : keeping only the structure of the messages
→Messages are abstracted by terms.

Example :
The message {〈A, Na〉}K is
represented by :

< >

{}

Na

K

A
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Modeling messages

Idea 1 : keeping only the structure of the messages
→Messages are abstracted by terms.

Example :
The message {〈A, Na〉}K is
represented by :

< >

{}

Na

K

A

Idea 2 : Equations for reflecting the properties of the primitives

Decryption dec({x}y , y) = x
Homomorphic encryption {x1}y ∗ {x2}y = {x1 + x2}y
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Modeling protocols

Processes of the applied pi-calculus, introduced by Mart́ın Abadi

Voter id voting v

Voter(id, v) = cid({v}pk(S), spk(v , {v}pk(S)))
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Modeling protocols

Processes of the applied pi-calculus, introduced by Mart́ın Abadi

Voter id voting v

Voter(id, v) = cid({v}pk(S), spk(v , {v}pk(S)))

Bulletin board for n voters

BulletinBoard = cid1(x1). if Valid(x1) then out(x1).

· · ·

cidn
(xn). if Valid(xn) then out(xn).

ctally (π1(x1) ∗ · · · ∗ π1(xn))
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Modeling protocols

Processes of the applied pi-calculus, introduced by Mart́ın Abadi

Voter id voting v

Voter(id, v) = cid({v}pk(S), spk(v , {v}pk(S)))

Bulletin board for n voters

BulletinBoard = cid1(x1). if Valid(x1) then out(x1).

· · ·

cidn
(xn). if Valid(xn) then out(xn).

ctally (π1(x1) ∗ · · · ∗ π1(xn))

Tallying phase

Tally = ctally (y).out(dec(y , sk(S)))
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Modeling attackers

We assume that the network can be controlled by attackers

may participate to the protocol.

may forge and send messages,

may read every message sent on the net,

may intercept messages,
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Modeling attackers

We assume that the network can be controlled by attackers

may participate to the protocol.

may forge and send messages,

may read every message sent on the net,

may intercept messages,

Attackers in applied pi-calculus

A protocol P satisfies some property φ if for all process A

A | P |= φ
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What is a secure voting protocol ?
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Let’s have a closer look to privacy

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.
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Let’s have a closer look to privacy

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.
But everyone knows 0 and 1 !
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”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker should not attach my vote to my identity.
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Let’s have a closer look to privacy

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker should not attach my vote to my identity.
But everyone can form 〈Alice, 0〉 and 〈Alice, 1〉 !
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Let’s have a closer look to privacy

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker should not attach my vote to my identity.

Idea 3 : An attacker cannot see the difference when I vote 0 or 1.

Voter1(0) | Voter2(v2) | · · · | Votern(vn) ∼ Voter1(1) | Voter2(v2) | · · · | Votern(vn)
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Let’s have a closer look to privacy

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker should not attach my vote to my identity.

Idea 3 : An attacker cannot see the difference when I vote 0 or 1.

Voter1(0) | Voter2(v2) | · · · | Votern(vn) ∼ Voter1(1) | Voter2(v2) | · · · | Votern(vn)

The attacker always sees the difference since the tally differs.

Unanimity does break privacy.
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Let’s have a closer look to privacy

How to state formally :

”No one should know my vote (0 or 1)” ?

Idea 1 : An attacker should not learn the value of my vote.

Idea 2 : An attacker should not attach my vote to my identity.

Idea 3 : An attacker cannot see the difference when I vote 0 or 1.

Voter1(0) | Voter2(v2) | · · · | Votern(vn) ∼ Voter1(1) | Voter2(v2) | · · · | Votern(vn)

Idea 4 : An attacker cannot see when votes are swapped.

Voter1(0) | Voter2(1) ∼ Voter1(1) | Voter2(0)

S. Kremer & M. Ryan
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How to analyse security protocols ?

non-repudiation

anonymity

...

confidentiality

|=
? authenticity

Methodology

1 Proposing accurate models

symbolic models
cryptographic/computational models

2 Proving security

decision procedures
transfer results
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How to analyse security protocols ?

How to prove e.g.

∀A, A |Voter1(0) | Voter2(1) ∼ A |Voter1(1) | Voter2(0)?

Task 2 : Automatic verification
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How to analyse security protocols ?

How to prove e.g.

∀A, A |Voter1(0) | Voter2(1) ∼ A |Voter1(1) | Voter2(0)?

Task 2 : Automatic verification

Unfortunately, security (e.g. confidentiality) is undecidable.
→ No generic algorithm can work.

Identification of decidable fragments

Analysis of a finite number of sessions
restriction on the class of protocols

Semi-decision procedure : ProVerif

20/34



Introduction on security protocols Modeling Verification Towards cryptographic guarantees

How does ProVerif work ?

Developed by Bruno Blanchet, ENS Paris, France.

Implements a sound semi-decision procedure (that may not
terminate).

The applied pi-calculus is translated into first-order logic,
more precisely into Horn clauses.

Based on a resolution strategy well adapted to protocols.

21/34



Introduction on security protocols Modeling Verification Towards cryptographic guarantees

Horn clauses for the intruder

Horn clauses perfectly reflect the attacker symbolic manipulations
on terms.

∀x ∀y I (x), I (y) ⇒ I (< x , y >) pairing

∀x ∀y I (x), I (y) ⇒ I ({x}y ) encryption

∀x ∀y I ({x}y ), I (y) ⇒ I (x) decryption

∀x ∀y I (< x , y >) ⇒ I (x) projection

∀x ∀y I (< x , y >) ⇒ I (y) projection
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Horn clauses for the protocol

Protocol WMF :

A → S : {na, b, k}ka

S → B : {ns , a, k}kb

B → A : {mab}k

Horn clauses :

⇒ I ({na, b, k}ka
)

I ({x , b, y}ka
) ⇒ I ({ns(x , y), a, y}kb

)

I ({x , a, y}kb
) ⇒ I ({mab}y )
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Horn clauses for the protocol

Protocol WMF :

A → S : {na, b, k}ka

S → B : {ns , a, k}kb

B → A : {mab}k

Horn clauses :

⇒ I ({na, b, k}ka
)

I ({x , b, y}ka
) ⇒ I ({ns(x , y), a, y}kb

)

I ({x , a, y}kb
) ⇒ I ({mab}y )

Secrecy property is a reachability (accessibility) property

¬I (mab)

Checking security reduces to checking satisfiability

There exists an attack iff the set of formulas corresponding to
Intruder manipulations + protocol + property

is NOT satisfiable.
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How to decide satisfiability ?

→ Resolution techniques : Binary resolution

D1 ∧ · · · ∧ Dk ⇒ B A1 ∧ · · · ∧ An ⇒ C
A1θ = Bθ

(D1 ∧ · · · ∧ Dk ∧ A2 ∧ · · · ∧ An ⇒ C )θ

24/34



Introduction on security protocols Modeling Verification Towards cryptographic guarantees

How to decide satisfiability ?

→ Resolution techniques : Binary resolution

D1 ∧ · · · ∧ Dk ⇒ B A1 ∧ · · · ∧ An ⇒ C
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(D1 ∧ · · · ∧ Dk ∧ A2 ∧ · · · ∧ An ⇒ C )θ

→ It does not terminate.

Example :
I (s) I (x), I (y) ⇒ I (〈x , y〉)
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How to decide satisfiability ?

→ Resolution techniques : Binary resolution

D1 ∧ · · · ∧ Dk ⇒ B A1 ∧ · · · ∧ An ⇒ C
A1θ = Bθ

(D1 ∧ · · · ∧ Dk ∧ A2 ∧ · · · ∧ An ⇒ C )θ

→ It does not terminate.

Example :
I (s) I (x), I (y) ⇒ I (〈x , y〉)
I (y) ⇒ I (〈s, y〉)
I (〈s, s〉)
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How to decide satisfiability ?

→ Resolution techniques : Binary resolution

D1 ∧ · · · ∧ Dk ⇒ B A1 ∧ · · · ∧ An ⇒ C
A1θ = Bθ

(D1 ∧ · · · ∧ Dk ∧ A2 ∧ · · · ∧ An ⇒ C )θ

→ It does not terminate.

Example :
I (s) I (x), I (y) ⇒ I (〈x , y〉)
I (y) ⇒ I (〈s, y〉)
I (〈s, s〉) I (〈s, 〈s, s〉〉)
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How to decide satisfiability ?

→ Resolution techniques : Binary resolution

D1 ∧ · · · ∧ Dk ⇒ B A1 ∧ · · · ∧ An ⇒ C
A1θ = Bθ

(D1 ∧ · · · ∧ Dk ∧ A2 ∧ · · · ∧ An ⇒ C )θ

→ It does not terminate.

Example :
I (s) I (x), I (y) ⇒ I (〈x , y〉)
I (y) ⇒ I (〈s, y〉)
I (〈s, s〉) I (〈s, 〈s, s〉〉) I (〈s, 〈s, 〈s, s〉〉〉) I (〈s, 〈s, 〈s, 〈s, s〉〉〉〉)
I (〈s, 〈s, 〈s, 〈s, 〈s, s〉〉〉〉〉) · · ·
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Efficient and sound resolution strategy

Idea : Resolution is only applied on selected literals A1, B that do
not belong to a forbidden set S . Typically S = {I (x)}.

Theorem

Resolution based on selection, avoiding S, is complete w.r.t.
satisfiability.

If the fixed point does not contain the empty clause, then the
corresponding protocol is secure.
ProVerif may not terminate.
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Efficient and sound resolution strategy

Idea : Resolution is only applied on selected literals A1, B that do
not belong to a forbidden set S . Typically S = {I (x)}.

Theorem

Resolution based on selection, avoiding S, is complete w.r.t.
satisfiability.

If the fixed point does not contain the empty clause, then the
corresponding protocol is secure.
ProVerif may not terminate.

Performs very well in practice !

Works on most of existing protocols in the literature
Is also used on industrial protocols (e.g. certified email
protocol, JFK, Plutus filesystem)
Can handle various cryptographic primitives (various
encryption, signatures, blind signatures, hash, etc.)
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Security of Helios

→ ProVerif cannot be applied (yet).

Privacy
∀A, A | Voter1(0) | Voter2(1) ∼ A | Voter1(1) | Voter2(0)
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Security of Helios

→ ProVerif cannot be applied (yet).

Privacy
∀A, A | Voter1(0) | Voter2(1) ∼ A | Voter1(1) | Voter2(0)

Helios is actually subject to replay attack, which breaks
privacy !

The fixed version (weeding duplicated ballots) provably
ensures privacy

Verifiability

Individual verifiability : voter can check that her own ballot is
included in the election’s bulletin board.

Universal verifiability : anyone can check that the election
outcome corresponds to the ballots published on the bulletin
board.

Helios provably satisfy both verifiability properties.
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Limitations of this approach ?

Are you ready to use any protocol verified with this technique ?
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Limitations of this approach ?

Are you ready to use any protocol verified with this technique ?

→ Side channel attacks cf Seminar of Adi Shamir (May, 4th
2011)

→ Representing messages by a term algebra abstracts away many
mathematical properties.
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Setting for cryptographic/computational models

Messages : 01111001010110 (Bitstrings)

Protocol :

Message exchange program

Use cryptographic algorithms

cf Seminar of David Pointcheval (April, 27th 2011).
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Setting for cryptographic/computational models

Messages : 01111001010110 (Bitstrings)

Protocol :

Message exchange program

Use cryptographic algorithms

Adversary A : any probabilistic polynomial Turing
machine, i.e. any probabilistic polynomial program.

polynomial : captures what is feasible

probabilistic : the adversary may try to guess
some information

cf Seminar of David Pointcheval (April, 27th 2011).
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Formal and Cryptographic approaches

Formal approach Cryptographic approach

Messages terms bitstrings

Encryption idealized algorithm

Adversary idealized
any polynomial

algorithm

Guarantees unclear strong

Protocol may be complex usually simpler

Proof automatic
by hand, tedious
and error-prone

Link between the two approaches ?
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Proving cryptographic security through symbolic models

Symbolic models

< >

{}

Na

K

A

Computational models

0111010111010010
0101010001011101
1110010000110101
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Proving cryptographic security through symbolic models

Symbolic models

< >

{}

Na

K

A

Computational models

0111010111010010
0101010001011101
1110010000110101

Idea : soundness result

Show that security in symbolic models implies security in
computational ones. [Abadi Rogaway 00]
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Soundness of equivalences in the applied pi-calculus

Result : Assuming a strong encryption scheme (IND-CCA2
hypothesis)

P1 ∼ P2 ⇒ [[P1]] ≈ [[P2]]

Symbolic equivalence of
processes P1 and P2

Indistinguishability of
the implementation of P1 and P2
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Soundness of equivalences in the applied pi-calculus

Result : Assuming a strong encryption scheme (IND-CCA2
hypothesis)

P1 ∼ P2 ⇒ [[P1]] ≈ [[P2]]

Symbolic equivalence of
processes P1 and P2

Indistinguishability of
the implementation of P1 and P2

Key technique

Any attack trace from the concrete adversary is an attack against
the symbolic protocol, or the adversary breaks encryption.

Consequence : Security in symbolic models directly implies security
in cryptographic models, against arbitrary attackers.
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Benefit : modularity

Cryptographic security guarantees can be obtained
at the symbolic level

Ideal
protocol

protocol
Implemented

of the cryptographic primitives

of idealized protocols
Formal approach: verification

encryption

algorithmalgorithm

signature
Cryptographers: verification
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Conclusion

Formal methods form a powerful approach
for analyzing security protocols

Use of existing techniques : term algebra, equational theories,
clauses and resolution techniques, tree automata, etc.
⇒ Many decision procedures

Several successful automatic tools
e.g. ProVerif, Avispa/Avantssar, Scyther, NRL Protocol
Analyzer

Detect attacks (e.g. flaw in Gmail)
Prove security of standard protocols (e.g. IKE, JFK, Certified
email, Helios, ...)

Provides cryptographic guarantees under classical assumptions
on the implementation of the primitives
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The end

Special thanks to :

Hubert Comon-Lundh Ben Smyth

Stéphanie Delaune Bogdan Warinschi

Steve Kremer
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