
« On the Internet, nobody knows you are a dog » Twenty years later

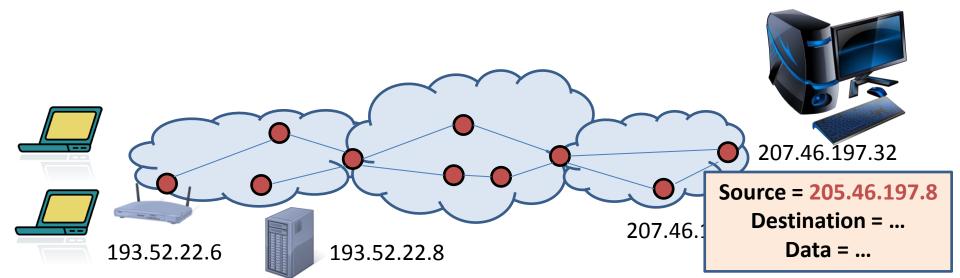
Chaire Informatique et sciences numériques Collège de France, cours du 4 mai 2011

Basics: weak authentication and its consequences

Infrastructure basics (brief review)

- Protocols for routing and communications work with IP addresses (e.g., 193.52.22.8).
 - IP delivers one packet.
 - Higher-level protocols, such as TCP, take care of multiple packets.

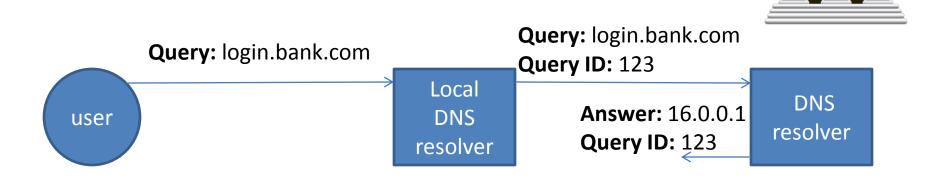
Infrastructure basics (cont.)


- The domain name system (DNS) associates symbolic names and IP addresses.
 - E.g., 193.52.22.8 is for <u>www.college-de-france.fr</u>.
 - The mapping is neither 1-1 nor constant.

Infrastructure basics (cont.)

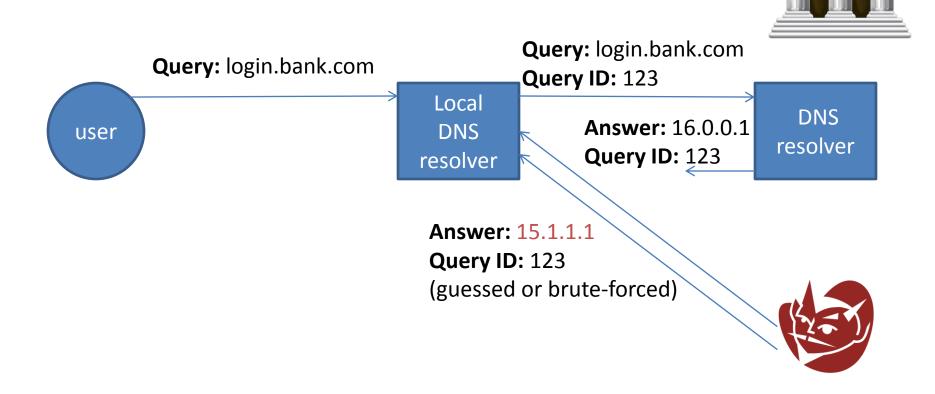
- The domain name system (DNS) associates symbolic names and IP addresses.
 - E.g., 193.52.22.8 is for <u>www.college-de-france.fr</u>.
 - The mapping is neither 1-1 nor constant.
 - And there are also *DNS lies* (e.g., returning advertisements instead of NXDOMAIN for non-existent domains).

Problems: Authenticity


- Packets include source IP addresses.
- Those can be chosen arbitrarily by senders.
- Intermediaries may also tamper with packets.

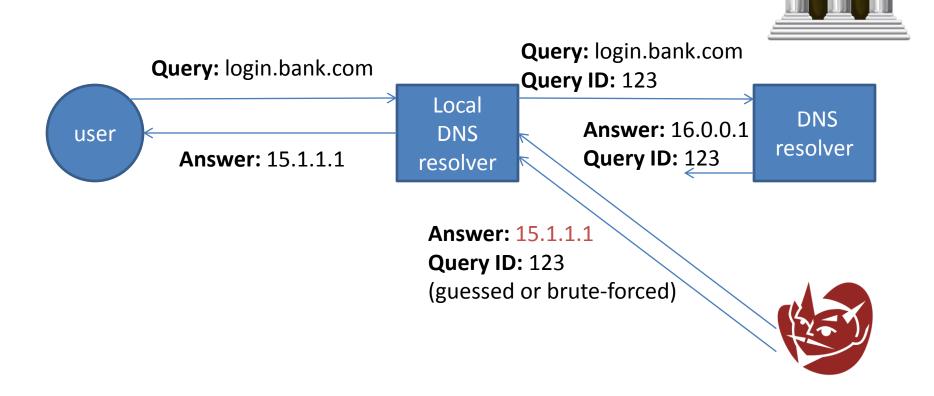
16.0.0.1

BANK


DNS (in its original form) is also vulnerable

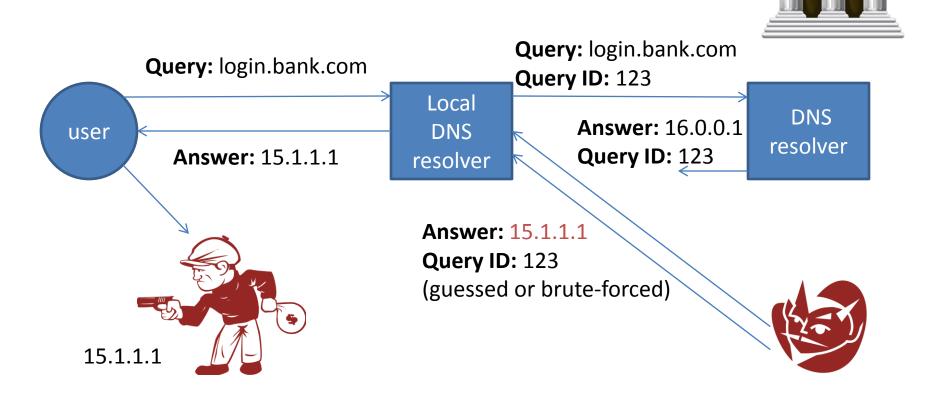
16.0.0.1

BANK

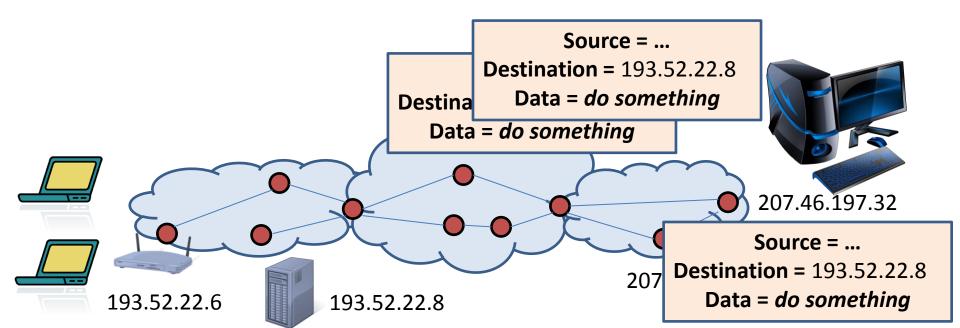

DNS (in its original form) is also vulnerable

16.0.0.1

BANK


DNS (in its original form) is also vulnerable

16.0.0.1


BANK

DNS (in its original form) is also vulnerable

Problems: Availability

- Any sender (or group of senders, e.g., botnet) may be able to contact any potential target.
- It may cause the target to commit some resources and do some work.

Problems: Availability (cont.)

Corrigendum- Most Urgent

GOVERNMENT OF PAKISTAN PAKISTAN TELECOMMUNICATION AUTHORITY ZONAL OFFICE PESHAWAR

Plot-11, Sector A-3, Phase-V, Hayatabad, Peshawar.

Ph: 091-9217279- 5829177 Fax: 091-9217254

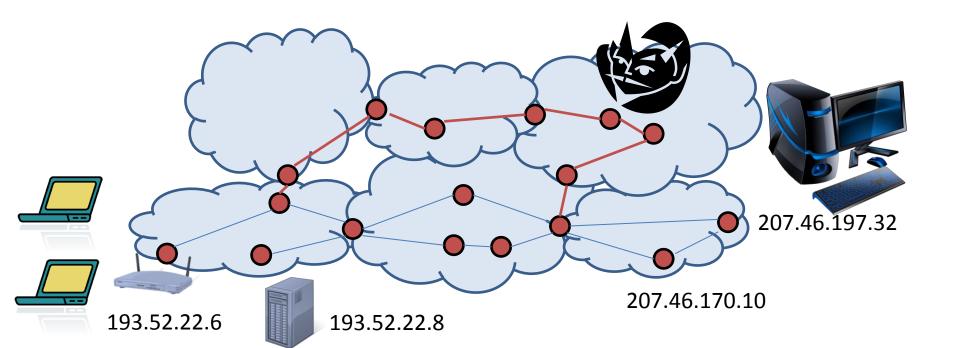
www.pta.gov.pk

NWFP-33-16 (BW)/06/PTA

February ,2008

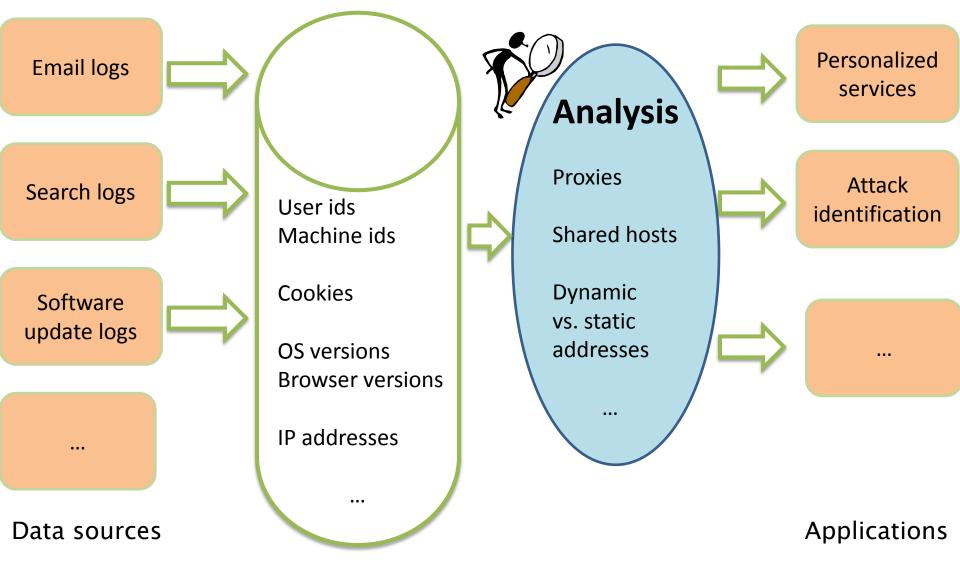
Subject: Blocking of Offensive Website

Problems: Availability (cont.)


- The blocking order focused on 208.65.153.238, 208.65.153.253, and 208.65.153.251.
- YouTube advertised the range 208.65.152.0/22
 (2¹⁰ IP addresses with top 22 bits in common).
- Pakistan telecom advertised the more specific range 208.65.153.0/24 (2⁸ IP addresses).

Problems: Availability (cont.)

- The blocking order focused on 208.65.153.238, 208.65.153.253, and 208.65.153.251.
- YouTube advertised the range 208.65.152.0/22
 (2¹⁰ IP addresses with top 22 bits in common).
- Pakistan telecom advertised the more specific range 208.65.153.0/24 (2⁸ IP addresses).
- ⇒ Within two minutes, *everyone* sent traffic for 208.65.153.238, 208.65.153.253, and 208.65.153.251 to Pakistan.
- \Rightarrow The outage lasted over two hours.


Problems: Secrecy

- Intermediaries see messages.
- Advertisement of false routes can allow unintended intermediaries.

Tracking

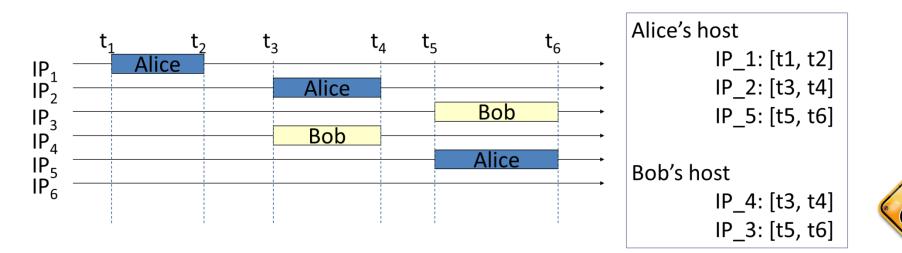
Lack of authenticity does not mean perfect anonymity!

A recent example: HostTracker [with Xie and Yu]

Input: Hotmail user-login trace for one month.

- 550 million user IDs.
- Many of them botnet-created.

e₁: <Alice, IP₁, t₁> e₂: <Alice, IP₁, t₂> e₃: <Alice, IP₂, t₃>

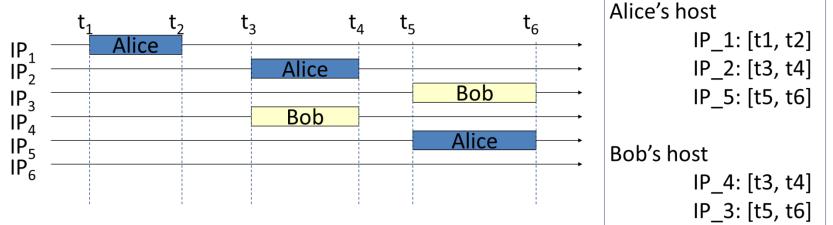

A recent example: HostTracker [with Xie and Yu]

Input: Hotmail user-login trace for one month.

- 550 million user IDs.
- Many of them botnet-created.

Output: host-IP bindings over time.

```
e<sub>1</sub>: <Alice, IP<sub>1</sub>, t<sub>1</sub>>
e<sub>2</sub>: <Alice, IP<sub>1</sub>, t<sub>2</sub>>
e<sub>3</sub>: <Alice, IP<sub>2</sub>, t<sub>3</sub>>
```



A recent example: HostTracker [with Xie and Yu]

Input: Hotmail user-login trace for one month.

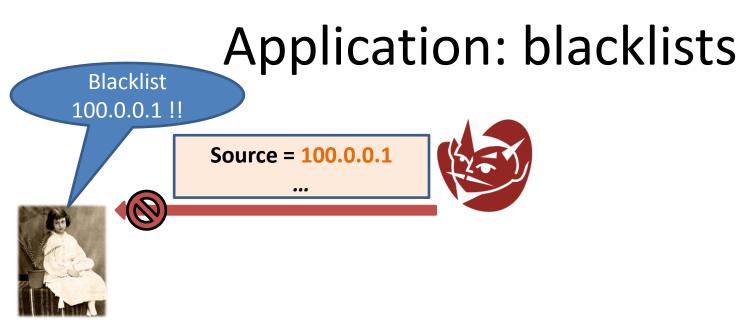
- 550 million user IDs.
- Many of them botnet-created.

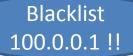
Output: host-IP bindings over time.

- Identified 220 million hosts.
- Validated accurate (~ 90%) against Windows Update data.
- 76% of login events attributed to hosts.

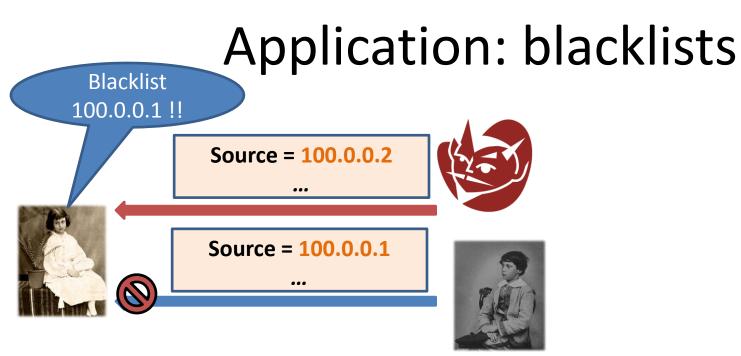
e₁: <Alice, IP₁, t₁>

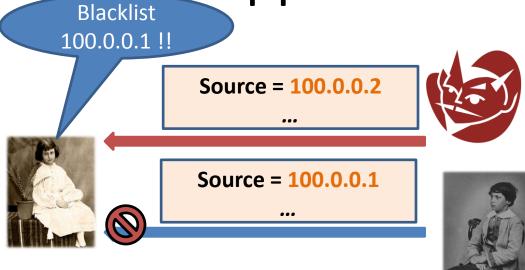
e₂: <Alice, IP₁, t₂>

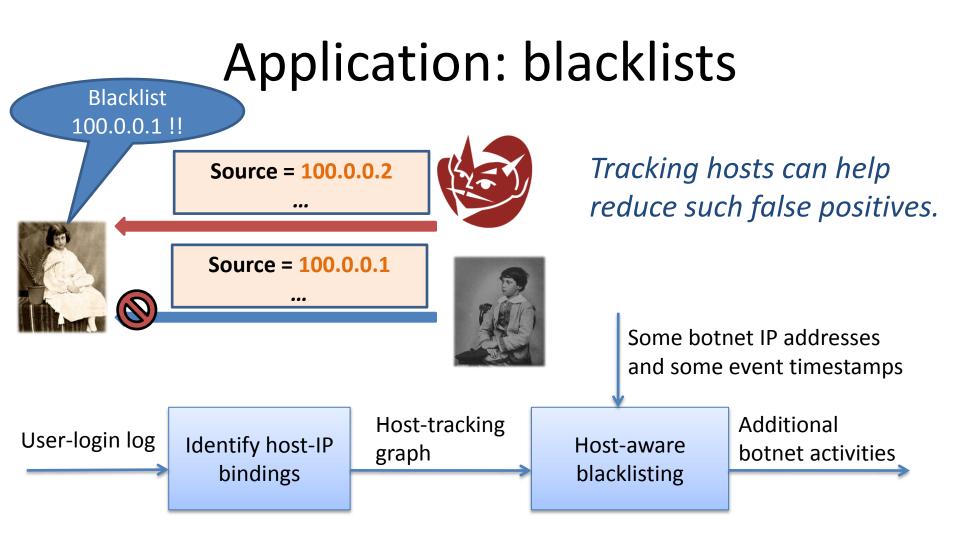

 e_3 : <Alice, IP₂, t_3 >

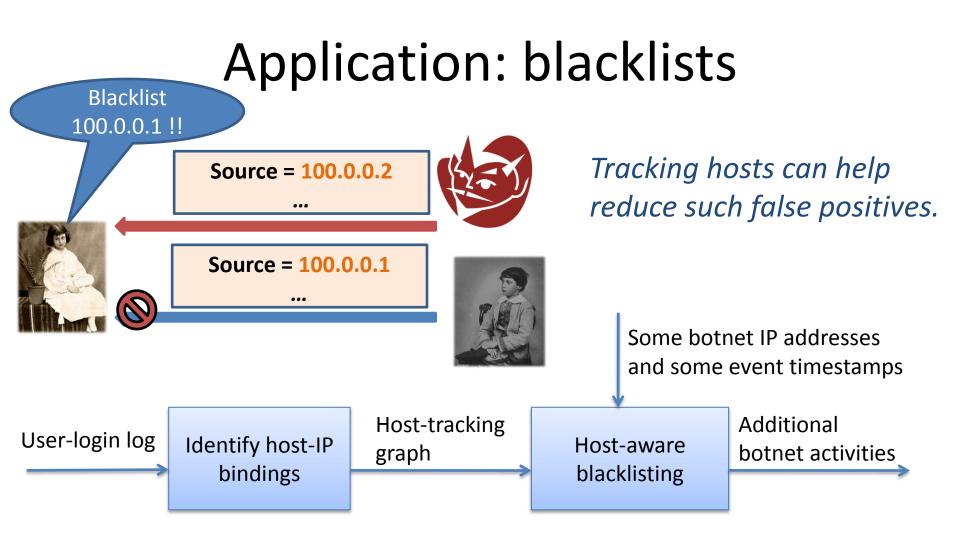


Blacklist 100.0.0.1 !!









Tracking hosts can help reduce such false positives.

An	experiment:	Application	
----	-------------	-------------	--

to Hotmail bot blocking	# of malicious blocked users	False positives
Block IP / one hour	28 million	34%
Blacklist host / one hour	16 million	5%

Other fingerprints

Other information, besides logins, can identify users and hosts. E.g.:

- Cookies
- Browser user-agent strings
 - E.g., "Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.3; MS-RTC LM 8; Zune 4.0)"
 - 19 million distinct ones seen in our logs [with Xie, Yen, and Yu].

These fingerprints are less secure but useful.

Other fingerprints (cont.)

Browser characteristics have > 18 bits of entropy:

"if we pick a browser at random, at best we expect that only one in 286,777 other browsers will share its fingerprint".

[Eckersley, EFF]
http://panopticlick.eff.org

Other fingerprints (cont.)

Browser characteristics have > 18 bits of entropy:

"if we pick a browser at random, at best we expect that only one in 286,777 other browsers will share its fingerprint".

[Eckersley, EFF] http://panopticlick.eff.org

Race Is On to "Fingerprint" Phones, PCs

December 1, 2010 by Julia Angwin and Jennifer Valentino-DeVries Reporters, The Wall Street Journal

Login <u>doggy@kennel.com</u> Logout <u>doggy@kennel.com</u>

Search for "séminaire"

Login doggy@kennel.com

Login <u>doggy@kennel.com</u> User agent = Mozilla/4.0 (...) Logout <u>doggy@kennel.com</u>

Search for "nice dog food" User agent = Mozilla/4.0 (...)

IP_1

Login <u>doggy@kennel.com</u> User agent = Mozilla/4.0 (...) Logout <u>doggy@kennel.com</u>

IP₂

Search for "nice dog food"

User agent = Mozilla/4.0 (...)

IP₂

 IP_1

"On Facebook, 273 people know I'm a dog. The rest can only see my limited profile."

Source: socialsignal.com

Using cryptography (preliminaries)

Cryptography to the rescue?

- Cryptography provides attractive techniques for improving network security.
 But:
- Cryptography is not a panacea.
- It is not always perfect.
- It can be used inappropriately.
- And there are other techniques, such as firewalls and honeypots.

Communication and cryptography

- Many network protocols aim to achieve stronger security by the use of cryptography:
 - IPSec
 - S-BGP
 - DNSSEC
 - SSL (or TLS)
 - HTTPS

...

Communication with shared-key cryptography

For confidential messages

- The sender encrypts with a shared key K.
- The recipient decrypts with the same key K.

For messages with integrity

- The sender includes MACs with a shared key K.
- The recipient checks MACs with the same key K.

Communication with shared-key cryptography

For confidential messages

- The sender encrypts with a shared key K.
- The recipient decrypts with the same key K.

For messages with integrity

- The sender includes MACs with a shared key K.
- The recipient checks MACs with the same key K.

For both

- The proper order of signatures and encryptions is a subject of debate and confusion.
- And there are also *authenticated encryption* schemes.
- Encryption keys and MAC keys should be different.
- Each direction of communication may have its own keys.

Communication with public-key cryptography

For confidential messages

- The sender encrypts with the recipient's public encryption key.
- The recipient decrypts with its secret decryption key.

For messages with integrity

- The sender signs with its secret signature key.
- The recipient checks with the corresponding public key.

Communication with public-key cryptography

For confidential messages

- The sender encrypts with the recipient's public encryption key.
- The recipient decrypts with its secret decryption key.

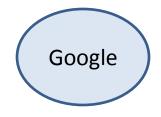
For messages with integrity

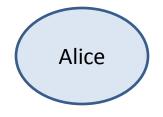
- The sender signs with its secret signature key.
- The recipient checks with the corresponding public key.

For both

- The proper order of signatures and encryptions is a subject of debate and confusion.
- If the sender should prove knowledge of the plaintext, sign before encrypting.
- Encryption keys and signature keys should be different.

Remaining problems (many!)

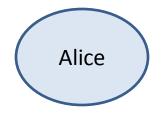

- Associating keys with principals
- Performance
- Correctness (e.g., signing the right fields)
- Many important specifics:
 - multiple messages, connections, and sessions,
 - timestamps, nonces, sequence numbers,
 - key identifiers,


See the next lecture.

- compression and padding,
- and peripheral concerns such as key storage.

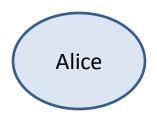
Example: protecting search

https://encrypted.google.com/

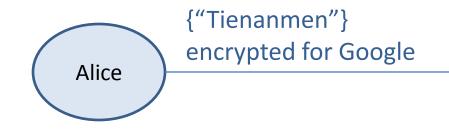


Example: protecting search

https://encrypted.google.com/


Example: protecting search

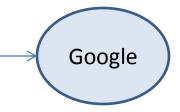
https://encrypted.google.com/


with a key pair for asymmetric encryption

A problem: how does Alice reliably learn Google's public key? (more on this later)

Example: protecting search (simplified, first take)

https://encrypted.google.com/


Google

Example: protecting search (simplified)

{key material}
encrypted for Google,
{"Tienanmen"}
encrypted and MACed
with key material

Alice

https://encrypted.google.com/

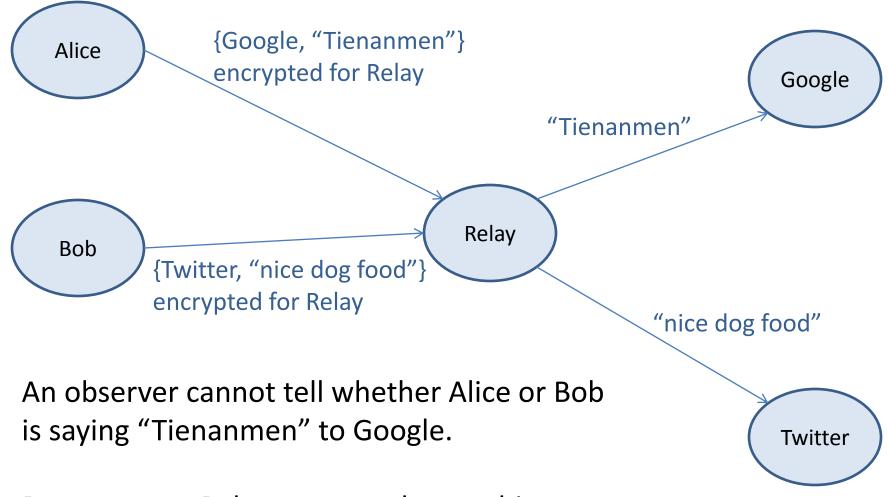
Example: protecting search (simplified)

{key material}
encrypted for Google,
{"Tienanmen"}
encrypted and MACed
with key material

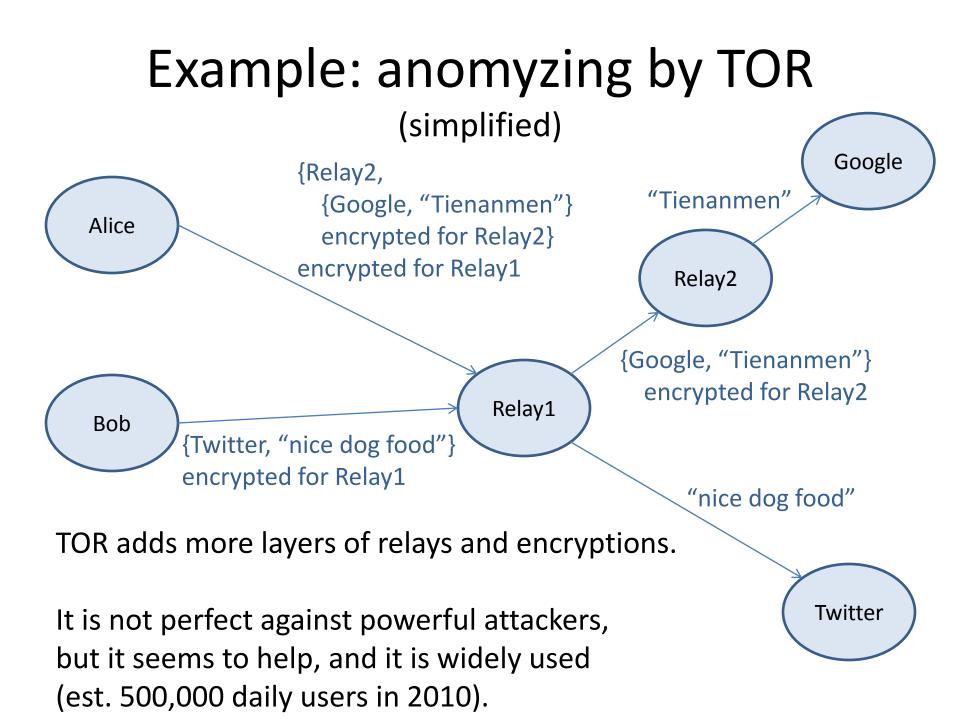
https://encrypted.google.com/

Alice

{*query results*} encrypted and MACed with key material

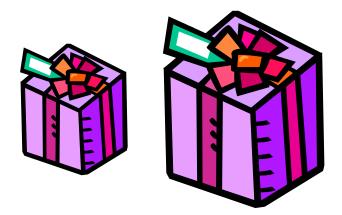


{query results} encrypted and MACed with key material

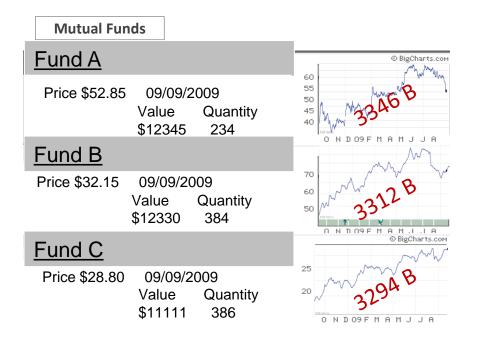

with a key pair for asymmetric encryption

Still an issue: network operators and intermediaries may identify the interlocutors and analyze traffic.

Example: anomyzing by a relay (simplified)

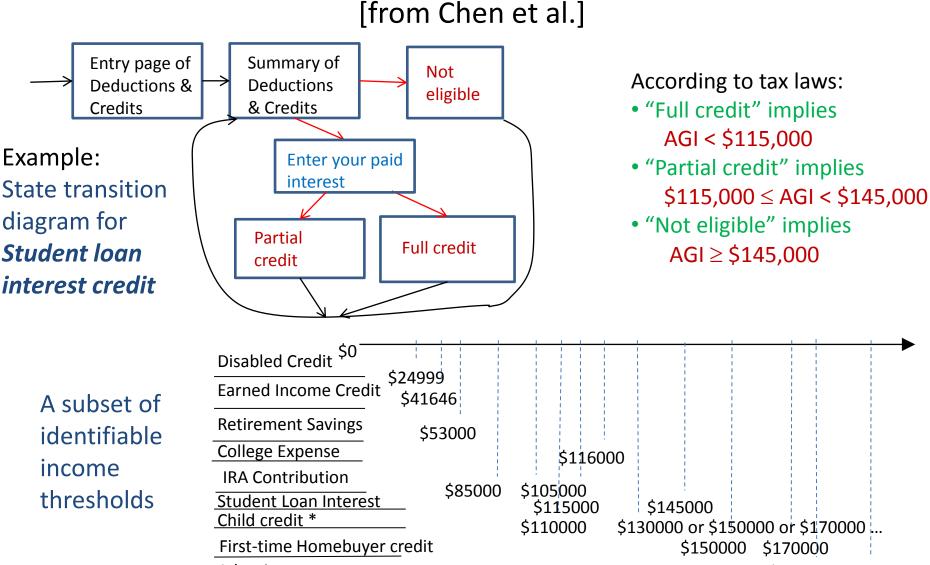

But a corrupt Relay can reveal everything.

Side channels


Even with encryption, the timing, the number and size of packets, etc., may be exploited.

- E.g., Sun et al. (2002) identified (static) Web pages by their number of objects and their sizes.
- E.g., Chen et al. (2010) attacked several Web applications despite encryption:
 - search engines,
 - online health sites,
 - financial services.

Attack on investment service


[from Chen et al.]

Each price history curve is a GIF from MarketWatch, which anyone can obtain.

 \Rightarrow Just compare image sizes to identify the funds!

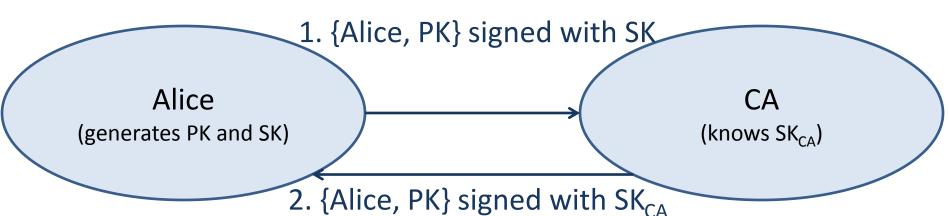
Attack on tax-filing service

Adoption expense

\$174730 \$214780

Certification authorities

Certification authorities (CAs)

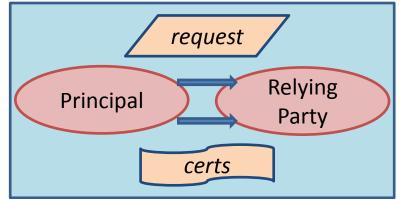

- If Alice sends its public key to Bob, how can Bob know that it is really Alice's?
- A CA is a trusted third party that solves this problem by signing Alice's public key.
- The key may be
 - a signature-verification key,
 - an encryption key,
 - both.
- Bob should check the certificate!

Alice's public key is 0x6576a6b...

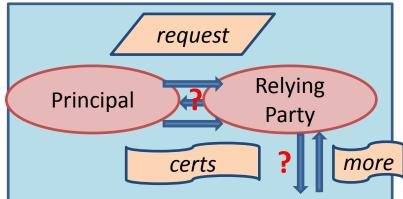
Signed: CH

Obtaining a certificate (one method)

- Alice generates a key pair (PK, SK).
- Alice signs PK and identity information with SK.
- The CA does some verifications.
 (It may refuse a certificate to A1ice.)
- The CA signs PK and the identity information.
- Alice checks CA's certificate.


Certificate distribution

Alice may show (*push*) its certificate when it uses its keys.


Or relying parties may request (*pull*) the certificate:

- from CA,
- from other directories,
- from Alice.

pull: Relying parties gather certificates.

"The phonebook CA"

Early on, it was hoped that a simple directory could associate public keys with names.

- The directory could be implemented as a set of certificates, signed with a CA key.
- The CA could be kept off-line, in a safe, most of the time.

Public-key infrastructures (PKIs)

The basic tasks of a PKI are:

- creation of certificates,
- dissemination of certificates,
- renewal of certificates,
- revocation of certificates,
- (sometimes) key escrow and archival.

Who are the CAs (and why)? Why are the CAs trusted (for this purpose)?

Scaling: certificate chains

Having a single CA is unrealistic beyond small, closed organizations:

- No CA is trusted by everyone for everything.
- A single CA may be a bottleneck.

One solution is to have multiple CAs (perhaps a hierarchy), and to chain certificates:

CA1 certifies Alice CA2 certifies CA1 ...

Root certifies CAn

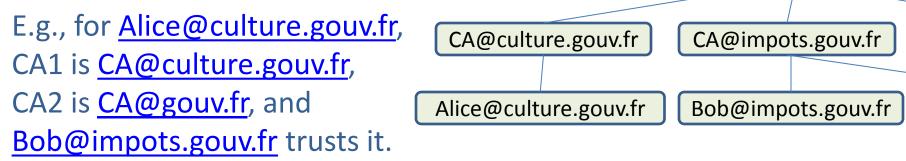
Scaling: names

- Ordinary naming is not a bijection.
 - Who is "John Smith"?
 - Who is "Prince"?
- Many names are not stable.
 ⇒ Early vs. late binding
- Adding addresses, etc., complicates matters.
- UIDs and other possible forms of names have their own problems.

Names and trust

CA@fr

CA@gouv.fr


- E.g., for Alice@culture.gouv.fr, CA1 is CA@culture.gouv.fr, CA2 is CA@gouv.fr, and Bob@impots.gouv.fr trusts it.
- Hierarchical names correspond to hierarchical CAs. (See Privacy Enhanced Email.)

Names and trust

CA@fr

CA@gouv.fr

- Hierarchical names correspond to hierarchical CAs. (See Privacy Enhanced Email.)
- In web-of-trust systems, without hierarchy, names may still relate to trust. (See SDSI.)
 E.g., <u>Bob</u> may be trusted on the key for <u>Bob's attorney</u>.

X.500

X.500 relies on the notion of distinguished names (DNs). Everything should have a DN.

A DN includes:

- country,
- state or province,
- locality,
- organization,
- organizational unit,
- common name,
- certificate type,
- email address,
- fields required by signature laws,

Nevertheless, X.500 is in widespread use.

But:

There is no agreement on what these mean. The specification is vague in various areas. Implementations are not always consistent.

X.500 in browsers (go look!)

\bigcirc	🕞 🗢 🙋 https://societegenerale.fr/ 📼 😵 Certificate Error 🗟 😽 💈	×
×	Certificate	>>
5	General Details Certification Path	
88	Certification path	nqu
	VeriSign Class 3 Public Primary CA	L
	www.societegenerale.fr	

Internet Options	Certificates			23	ertificate		23		
General Security Privacy Content Connections Programs Advanced	Intended purpose: <a>All	>		•	General Details Certification Par	h			
Content Advisor Ratings help you control the Internet content that can be viewed on this computer.	Intermediate Certification A	uthorities Trusted Root C	ertification Aut	norities Trusted Publ	Show: <a>All>	•			
	Issued To	Issued By	Expiratio	Friendly Name	Field	Value	^		
🚱 Enable 🚱 Settings	AAA Certificate Ser	AAA Certificate Services	12/31/2028	COMODO E	Signature hash algorithm	sha1	- -		
Certificates	AddTrust External	AddTrust External CA	5/30/2020	USERTrust	📴 Issuer	America Online Root Certificati			
Use certificates for encrypted connections and identification.	America Online Roo	America Online Root	11/19/2037	America Online R	🛅 Valid from	Monday, May 27, 2002 10:00:	=		
ose ceruncates for end ypted connections and identification.	Class 1 Public Prima	Class 1 Public Primary	8/2/2028	VeriSign Class 1	🔄 Valid to	Thursday, November 19, 2037			
	Class 1 Public Prima	Class 1 Public Primary	8/1/2028	VeriSign	📴 Subject	America Online Root Certificati			
Clear SSL state Certificates Publishers	Class 1 Public Prima	Class 1 Public Primary	1/7/2020	VeriSign	📴 Public key	RSA (2048 Bits)			
	Class 2 Primary CA	Class 2 Primary CA	7/6/2019	CertPlus Class 2	Subject Key Identifier	00 ad d9 a3 f6 79 f6 6e 74 a9			
AutoComplete	Class 3 Public Prima	Class 3 Public Primary	8/2/2028	VeriSign Class 3	Authority Key Identifier	KevID=00 ad d9 a3 f6 79 f6 6	-		

X.500 in browsers (cont.)

tificate		- D-th	22
- 🚎		al Root t Authority ure Server Author	ity
			View Certificate
Certificate	status: cate is OK.		
Learn more	about <u>certificatior</u>	n paths	

Note that a Microsoft browser seems to use GTE CyberTrust for authenticating a Microsoft server.

Browsers come with knowledge of some certification authorities and more get added.

rusted Root Certification A	uthorities Trusted Publish	ers ondusted	d Publishers	4
Issued To	Issued By	Expiratio	Friendly Name	4
AAA Certificate Ser	AAA Certificate Services	12/31/2028	COMODO	-
AddTrust External	AddTrust External CA	5/30/2020	USERTrust	
🔄 America Online Roo	America Online Root	11/19/2037	America Online R	
Class 1 Public Prima	Class 1 Public Primary	8/2/2028	VeriSign Class 1	
Class 1 Public Prima	Class 1 Public Primary	8/1/2028	VeriSign	
Class 1 Public Prima	Class 1 Public Primary	1/7/2020	VeriSign	
🔄 Class 2 Primary CA	Class 2 Primary CA	7/6/2019	CertPlus Class 2	
🔄 Class 3 Public Prima	Class 3 Public Primary	8/2/2028	VeriSign Class 3	
🔄 Class 3 Public Prima	Class 3 Public Primary	8/1/2028	VeriSign Class 3	-
Import Export Certificate intended purpose Gerver Authentication, Clien		nail Code Sign	Advar	nce

Browsers come with knowledge of some certification authorities and more get added.

- Mozilla comes with 124 trust roots.
- IE in Win7 comes with 19 trust roots.

				_
Issued To	Issued By	Expiratio	Friendly Name	1
AAA Certificate Ser	AAA Certificate Services	12/31/2028	COMODO	
🔄 AddTrust External	AddTrust External CA	5/30/2020	USERTrust	
🔄 America Online Roo	America Online Root	11/19/2037	America Online R	
Class 1 Public Prima	Class 1 Public Primary	8/2/2028	VeriSign Class 1	
Class 1 Public Prima	Class 1 Public Primary	8/1/2028	VeriSign	
	Class 1 Public Primary	1/7/2020	VeriSign	
Class 2 Primary CA		7/6/2019	CertPlus Class 2	
	Class 3 Public Primary		VeriSign Class 3	
Class 3 Public Prima	Class 3 Public Primary	8/1/2028	VeriSign Class 3	1
Import Export	Remove		Advan	nce
ertificate intended purpose	25			
	t Authentication, Secure Er		. <u>-</u>	

Browsers come with knowledge of some certification authorities and more get added.

- Mozilla comes with 124 trust roots.
- IE in Win7 comes with 19 trust roots.
 But silent updating can make this > 300!

rusted Root Certification A	uthorities Trusted Publish	ers ontruster	d Publishers	4
Issued To	Issued By	Expiratio	Friendly Name	1
AAA Certificate Ser	AAA Certificate Services	12/31/2028	COMODO	-
AddTrust External	AddTrust External CA	5/30/2020	USERTrust	
🔄 America Online Roo	America Online Root	11/19/2037	America Online R	
🔄 Class 1 Public Prima	Class 1 Public Primary	8/2/2028	VeriSign Class 1	
🔄 Class 1 Public Prima	Class 1 Public Primary	8/1/2028	VeriSign	
	Class 1 Public Primary	1/7/2020	VeriSign	
🔄 Class 2 Primary CA	Class 2 Primary CA	7/6/2019	CertPlus Class 2	
Class 3 Public Prima	Class 3 Public Primary	8/2/2028	VeriSign Class 3	
Class 3 Public Prima	Class 3 Public Primary	8/1/2028	VeriSign Class 3	1
Import Export	Remove		Advar	nce
ertificate intended purpose	25			
<u></u>				

- 16.2M IP addresses listened on port 443.
- 10.8M started an SSL handshake.
- 4.3+M used valid certificate chains.
- 1.3+M were *distinct* valid leaves.
- There are:
 - strange certificates (e.g., for "localhost", "mail"),
 - vulnerabilities (e.g., 508-bit RSA keys).

Trusted but not trustworthy?

Experts Warn of a Weak Link in the Security of Web Sites

By MIGUEL HELFT Published: August 13, 2010 The New Hork Eimes nytimes.com

From EFF's open letter to Verizon:

We are writing to request that Verizon investigate the security and privacy implications of the SSL CA certificate (serial number 0x40003f1) that Cybertrust (now a division of Verizon) issued to Etisalat on the 19th of December, 2005, and evaluate whether this certificate should be revoked.

As you are aware, Etisalat is a telecommunications company headquartered in the United Arab Emirates. In July 2009, Etisalat issued a mislabeled firmware update to approximately 100,000 of its BlackBerry subscribers that contained malicious surveillance software [1]. Research In Motion subsequently issued patches to remove this malicious code [2].

Trusted but not trustworthy?

TECHNOLOGY | MARCH 24, 2011

Web Firm Suspects Iran Hacked Into It

Internet-Security Company Says It Was Tricked Into Authenticating Fake Sites, Opening Access to Data, Not Money

By CHRISTOPHER RHOADS

An Internet-security company said it was tricked into trying to lure Iranian users to fake versions of major websites, a sophisticated hack it suspects the Iranian government carried out.

Some reading

- Bellovin's "A Look Back at Security Problems in the TCP/IP Protocol Suite".
- Goldberg et al.'s "How Secure are Secure Interdomain Routing Protocols?".
- Dingledine et al.'s "Tor: The Second-Generation Onion Router".
- Chen et al.'s "Side-Channel Leaks in Web Applications".
- Xie et al.'s "De-anonymizing the Internet Using Unreliable IDs".
- Eckersley's "How Unique Is Your Web Browser?".
- Chapter 15 of Schneier's book *Secrets and Lies*.