Quantum electro-mechanics: a new quantum technology

Konrad Lehnert

<u>Post-docs</u> Tauno Palomaki Tobias Donner Joseph Kerckhoff

<u>Collaborators</u> John Teufel Cindy Regal Ray Simmonds Kent Irwin <u>Graduate students</u> Jennifer Harlow Reed Andrews Hsiang-Sheng Ku William Kindel Adam Reed

Precision measurement tools were once mechanical oscillators

The Cavendish balance for weighing the earth

Huygens pendulum clock

Modern measurement tools exploit optics and electronics, not mechanics

Laser light

Optical and electrical measurement tools: Large dynamic range

Optical probes are ill-suited to directly measuring many interesting systems

nuclear spins in a virus (Rugar lab, IBM)

electrons in an aluminum ring (Harris lab, Yale)

Systems with:

dense low-energy spectra nanometer length scales weak coupling to light optical or electrical probe

Mechanics enables measurements of systems that interact weakly with light

Mechanical oscillators as quantum coherent interfaces between incompatible systems

What is the largest object in which quantum behavior can be observed?

quantum superposition

Mechanical oscillator large tangible

Cavity optomechanics: Use radiation pressure for state initialization and measurement

Fabry-Perot cavity with oscillating mirror

Aspelmeyer lab, IOQOI, Vienna

Cool with cavity-retarded radiation force

Infer motion through optical phase

Images of cavity optomechanical systems

Caltech, Painter

EPFL, Kippenberg

Yale, Harris

MIT, Mavalvala

UCSB: Bouwmeester

ENS: Cohadon and Heidmann

Microwave cavity optomechanics

Reduce coupling to the environment by lowering temperature: microwave optomechanics

Microwave "light" in ultralow temperature cryostat

for 10 MHz oscillator $n_{env} = 40$

goal: $\Gamma > n_{env}\gamma$

Superconducting electromechanics used in resonant mass gravitational wave detectors

centimeter sized superconducting cavity with mechanically compliant element

Braginsky, V. B., V. P. Mitrofanov, and V. I. Panov, 1981, Sistemi s maloi dissipatsei (Nauka, Moscow) [English translation: Systems with Small Dissipation (University of Chicago, Chicago, 1985)].

Resonant electromechan

Soviet passive bug hidden in th

Henry Cabot Lodge, Jr. May 26, in the UN

Images appear in http://www.spybusters.com/Great_Seal_

Electromechanical system realized from a MEMS capacitor in a resonant circuit

15 µm 10.5 MHz

Electrical circuit resonant at 7.5 GHz

*K. Cicak, et al APL **96**, 093502 (2010) *J. D. Teufel, R. W. Simmonds et al., Nature 471, 204208 (2011).

capacitor built with suspended micromechanical drumhead*

Resonant circuit enhances coupling between microwave fields and mechanical motion

 κ decay rate of circuit energy

Detuned microwave drive couples mechanical motion to electrical circuit resonance

Electrically detect thermal motion of drumhead

J. D. Teufel, J. W. Harlow, C. A. Regal , KWL, Phys. Rev. Lett., 101, 197203 (2008). J. D. Teufel, T. Donner, KWL, R. W. Simmonds, *et al* Nature, 475, 359–363 (2011).

Mechanical motion in equilibrium with cryostat

Measurement cools mechanical motion below single phonon occupancy

$$\hat{H}_{I} = \hbar G \sqrt{N_{d}} \left(a b^{\dagger} + a^{\dagger} b \right)$$

Many-photon cooperativity > 1 accesses the quantum regime

State transfer between mechanics and itinerant microwave fields

Can mechanical oscillators form quantum coherent memories for intinerant microwaves?

catch, store, and release propagating microwaves

mechanical oscillators long-lived coherence $T_2 > 300 \ \mu s$ compact integrable with superconducting qubits

Large cooperativity enables quantum control of mechanics with microwaves

$$\hat{H}_{I}(t) = \hbar G \sqrt{N_{d}(t)} \left(ab^{\dagger} + a^{\dagger}b \right) \qquad \Gamma(t) = \frac{4G^{2}N_{d}(t)}{\kappa}$$

 $n_{\rm env}\gamma < \Gamma < \kappa$ state transfer between mechanics and itinerant microwave fields

Extreme resolved sideband limit enables agile state control

 $\hat{H}_{I} = \hbar G \sqrt{N_{d}(t)} \left(ab^{\dagger} + a^{\dagger}b \right)$

Measure oscillator via state transfer to itinerant microwave fields

Measure oscillator via state transfer to itinerant microwave fields

Thermal state of oscillator reconstructed by repeated measurements

Mechanical oscillator is a long-lived coherent memory for microwaves

State transfer prepares mechanical oscillator in a low entropy state

State transfer between mechanical oscillator and microwave circuit

Strong coupling regime enables state transfer between circuit and mechanical oscillator

$$G\sqrt{N_d} > \kappa, n_{\text{therm}}\gamma$$

state transfer between mechanics and LC circuit

Mechanical oscillator stores state much longer than resonant circuit

Mechanical oscillator stores state much longer than resonant circuit

A quantum interface between electricity and light

with Cindy Regal and Ray Simmonds

Microwave to optical quantum state transfer

Hofheinz...Martinis, Cleland, Nature (2009)

Microwaves: Arbitrary quantum states Require ultralow temperatures

Optics: Communication and storage

Mechanical oscillators couple to both light and electricity in a quantum regime

Couple microwave to optics through one mechanical oscillator

Si₃N₄ membrane

Membrane in free-space cavity Superconducting LC circuit

Mechanics and optics couple to different antinodes

Assemble optical-electrical-mechanical device by joining two chips

Bottom chip: part of a microwave resonant circuit

Opto-electromechanical exploits symmetry of 2,2 membrane mode

top chip

no galvanic connection between top and bottom chip

Images of bottom and top chips

Assembled flip-chip structure

Electromechanics with a Si₃N₄ membrane

Dielectric membrane in optical cavity*

group

design of optical cavity coupled to membrane motion

high finesses end mirror high finesses end mirror

"*Membrane in the middle" J. D. Thompson, J. G. E. Harris, et al Nature 452 72–75 (2008)

Compact, cryogenic optical cavity designed to incorporate opto-electromechanical structures

Regal group

design diagram

image in cryostat

Membrane motion cooled to near ground state with optical light

Conclusions

• Ground state cooling of a low-frequency mechanical oscillator

 Mechanics: long-lived coherent memory classical: 10 ms quantum: 300 μs (estimate)

 Ultrahigh Q electromechanics with Si₃N₄ membranes

Opto-electromechanics

Funding: NSF, NIST, DARPA QuEST, DARPA QuASR, NASA

